Files
openfoam/applications/utilities/surface/surfaceHookUp/surfaceHookUp.C
Mark Olesen ac4f580d09 ENH: cleanup treeData items (#2609)
Changes / Improvements

- more consistent subsetting, interface

  * Extend the use of subset and non-subset collections with uniform
    internal getters to ensure that the subset/non-subset versions
    are robustly handled.

  * operator[](label) and objectIndex(label) for standardized access
    to the underlying item, or the original index, regardless of
    subsetting or not.

  * centres() and centre(label) for representative point cloud
    information.

  * nDim() returns the object dimensionality (0: point, 1: line, etc)
    these can be used to determine how 'fat' each shape may be
    and whether bounds(labelList) may contribute any useful information.

  * bounds(labelList) to return the full bound box required for
    specific items. Eg, the overall bounds for various 3D cells.

- easier construction of non-caching versions. The bounding boxes are
  rarely cached, so simpler constructors without the caching bool
  are provided.

- expose findNearest (bound sphere) method to allow general use
  since this does not actually need a tree.

- static helpers

  The boxes() static methods can be used by callers that need to build
  their own treeBoundBoxList of common shapes (edge, face, cell)
  that are also available as treeData types.

  The bounds() static methods can be used by callers to determine the
  overall bound-box size prior to constructing an indexedOctree
  without writing ad hoc code inplace.

  Not implemented for treeDataPrimitivePatch since similiar
  functionality is available directly from the PrimitivePatch::box()
  method with less typing.

========
BREAKING: cellLabels(), faceLabels(), edgeLabel() access methods

- it was always unsafe to use the treeData xxxLabels() methods without
  subsetting elements. However, since the various classes
  (treeDataCell, treeDataEdge, etc) automatically provided
  an identity lookup, this problem was not apparent.

  Use objectIndex(label) to safely de-reference to the original index
  and operator[](index) to de-reference to the original object.
2022-11-24 12:21:01 +00:00

592 lines
16 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2014-2017 OpenFOAM Foundation
Copyright (C) 2020-2022 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
surfaceHookUp
Group
grpSurfaceUtilities
Description
Find close open edges and stitches the surface along them
Usage
- surfaceHookUp hookDistance [OPTION]
\*---------------------------------------------------------------------------*/
#include "argList.H"
#include "Time.H"
#include "triSurfaceMesh.H"
#include "indexedOctree.H"
#include "treeBoundBox.H"
#include "bitSet.H"
#include "unitConversion.H"
#include "searchableSurfaces.H"
#include "IOdictionary.H"
using namespace Foam;
// Split facei along edgeI at position newPointi
void greenRefine
(
const triSurface& surf,
const label facei,
const label edgeI,
const label newPointi,
DynamicList<labelledTri>& newFaces
)
{
const labelledTri& f = surf.localFaces()[facei];
const edge& e = surf.edges()[edgeI];
// Find index of edge in face.
label fp0 = f.find(e[0]);
label fp1 = f.fcIndex(fp0);
label fp2 = f.fcIndex(fp1);
if (f[fp1] == e[1])
{
// Edge oriented like face
newFaces.append
(
labelledTri
(
f[fp0],
newPointi,
f[fp2],
f.region()
)
);
newFaces.append
(
labelledTri
(
newPointi,
f[fp1],
f[fp2],
f.region()
)
);
}
else
{
newFaces.append
(
labelledTri
(
f[fp2],
newPointi,
f[fp1],
f.region()
)
);
newFaces.append
(
labelledTri
(
newPointi,
f[fp0],
f[fp1],
f.region()
)
);
}
}
//scalar checkEdgeAngle
//(
// const triSurface& surf,
// const label edgeIndex,
// const label pointIndex,
// const scalar& angle
//)
//{
// const edge& e = surf.edges()[edgeIndex];
// const vector eVec = e.unitVec(surf.localPoints());
// const labelList& pEdges = surf.pointEdges()[pointIndex];
//
// forAll(pEdges, eI)
// {
// const edge& nearE = surf.edges()[pEdges[eI]];
// const vector nearEVec = nearE.unitVec(surf.localPoints());
// const scalar dot = eVec & nearEVec;
// const scalar minCos = degToRad(angle);
// if (mag(dot) > minCos)
// {
// return false;
// }
// }
// return true;
//}
void createBoundaryEdgeTrees
(
const PtrList<triSurfaceMesh>& surfs,
PtrList<indexedOctree<treeDataEdge>>& bEdgeTrees,
labelListList& treeBoundaryEdges
)
{
forAll(surfs, surfI)
{
const triSurface& surf = surfs[surfI];
// Boundary edges
treeBoundaryEdges[surfI] =
identity
(
surf.nEdges() - surf.nInternalEdges(),
surf.nInternalEdges()
);
Random rndGen(17301893);
// Slightly extended bb. Slightly off-centred just so on symmetric
// geometry there are less face/edge aligned items.
treeBoundBox bb
(
treeBoundBox(surf.localPoints()).extend(rndGen, 1e-4, ROOTVSMALL)
);
bEdgeTrees.set
(
surfI,
new indexedOctree<treeDataEdge>
(
treeDataEdge
(
false, // cachebb
surf.edges(), // edges
surf.localPoints(), // points
treeBoundaryEdges[surfI] // selected edges
),
bb, // bb
8, // maxLevel
10, // leafsize
3.0 // duplicity
)
);
}
}
class findNearestOpSubset
{
const indexedOctree<treeDataEdge>& tree_;
DynamicList<label>& shapeMask_;
public:
findNearestOpSubset
(
const indexedOctree<treeDataEdge>& tree,
DynamicList<label>& shapeMask
)
:
tree_(tree),
shapeMask_(shapeMask)
{}
void operator()
(
const labelUList& indices,
const point& sample,
scalar& nearestDistSqr,
label& minIndex,
point& nearestPoint
) const
{
const treeDataEdge& shape = tree_.shapes();
for (const label index : indices)
{
const label edgeIndex = shape.objectIndex(index);
if (shapeMask_.found(edgeIndex))
{
continue;
}
pointHit nearHit = shape.line(index).nearestDist(sample);
// Only register hit if closest point is not an edge point
if (nearHit.hit())
{
const scalar distSqr = sqr(nearHit.distance());
if (distSqr < nearestDistSqr)
{
nearestDistSqr = distSqr;
minIndex = index;
nearestPoint = nearHit.point();
}
}
}
}
};
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
argList::addNote
(
"Hook surfaces to other surfaces by moving and retriangulating their"
" boundary edges to match other surface boundary edges"
);
argList::noParallel();
argList::addArgument("hookTolerance", "The point merge tolerance");
argList::addOption("dict", "file", "Alternative surfaceHookUpDict");
#include "setRootCase.H"
#include "createTime.H"
const word dictName("surfaceHookUpDict");
#include "setSystemRunTimeDictionaryIO.H"
Info<< "Reading " << dictIO.name() << nl << endl;
const IOdictionary dict(dictIO);
const scalar dist(args.get<scalar>(1));
const scalar matchTolerance(max(1e-6*dist, SMALL));
const label maxIters = 100;
Info<< "Hooking distance = " << dist << endl;
searchableSurfaces surfs
(
IOobject
(
"surfacesToHook",
runTime.constant(),
"triSurface",
runTime
),
dict,
true // assume single-region names get surface name
);
Info<< nl << "Reading surfaces: " << endl;
forAll(surfs, surfI)
{
Info<< incrIndent;
Info<< nl << indent << "Surface = " << surfs.names()[surfI] << endl;
const wordList& regions = surfs[surfI].regions();
forAll(regions, surfRegionI)
{
Info<< incrIndent;
Info<< indent << "Regions = " << regions[surfRegionI] << endl;
Info<< decrIndent;
}
Info<< decrIndent;
}
PtrList<indexedOctree<treeDataEdge>> bEdgeTrees(surfs.size());
labelListList treeBoundaryEdges(surfs.size());
List<DynamicList<labelledTri>> newFaces(surfs.size());
List<DynamicList<point>> newPoints(surfs.size());
List<bitSet> visitedFace(surfs.size());
PtrList<triSurfaceMesh> newSurfaces(surfs.size());
forAll(surfs, surfI)
{
const triSurfaceMesh& surf =
refCast<const triSurfaceMesh>(surfs[surfI]);
newSurfaces.set
(
surfI,
new triSurfaceMesh
(
IOobject
(
"hookedSurface_" + surfs.names()[surfI],
runTime.constant(),
"triSurface",
runTime
),
surf
)
);
}
label nChanged = 0;
label nIters = 1;
do
{
Info<< nl << "Iteration = " << nIters++ << endl;
nChanged = 0;
createBoundaryEdgeTrees(newSurfaces, bEdgeTrees, treeBoundaryEdges);
forAll(newSurfaces, surfI)
{
const triSurface& newSurf = newSurfaces[surfI];
newFaces[surfI] = newSurf.localFaces();
newPoints[surfI] = newSurf.localPoints();
visitedFace[surfI] = bitSet(newSurf.size(), false);
}
forAll(newSurfaces, surfI)
{
const triSurface& surf = newSurfaces[surfI];
List<pointIndexHit> bPointsTobEdges(surf.boundaryPoints().size());
labelList bPointsHitTree(surf.boundaryPoints().size(), -1);
const labelListList& pointEdges = surf.pointEdges();
forAll(bPointsTobEdges, bPointi)
{
pointIndexHit& nearestHit = bPointsTobEdges[bPointi];
const label pointi = surf.boundaryPoints()[bPointi];
const point& samplePt = surf.localPoints()[pointi];
const labelList& pEdges = pointEdges[pointi];
// Add edges connected to the edge to the shapeMask
DynamicList<label> shapeMask;
shapeMask.append(pEdges);
forAll(bEdgeTrees, treeI)
{
const indexedOctree<treeDataEdge>& bEdgeTree =
bEdgeTrees[treeI];
pointIndexHit currentHit =
bEdgeTree.findNearest
(
samplePt,
sqr(dist),
findNearestOpSubset
(
bEdgeTree,
shapeMask
)
);
if
(
currentHit.hit()
&&
(
!nearestHit.hit()
||
(
currentHit.point().distSqr(samplePt)
< nearestHit.point().distSqr(samplePt)
)
)
)
{
nearestHit = currentHit;
bPointsHitTree[bPointi] = treeI;
}
}
if (nearestHit.hit())
{
// bool rejectEdge =
// checkEdgeAngle
// (
// surf,
// nearestHit.index(),
// pointi,
// 30
// );
scalar distSqr = nearestHit.point().distSqr(samplePt);
if (distSqr > Foam::sqr(dist))
{
nearestHit.setMiss();
}
}
}
forAll(bPointsTobEdges, bPointi)
{
const pointIndexHit& eHit = bPointsTobEdges[bPointi];
if (eHit.hit())
{
const label hitSurfI = bPointsHitTree[bPointi];
const triSurface& hitSurf = newSurfaces[hitSurfI];
const label eIndex =
treeBoundaryEdges[hitSurfI][eHit.index()];
const edge& e = hitSurf.edges()[eIndex];
const label pointi = surf.boundaryPoints()[bPointi];
const labelList& eFaces = hitSurf.edgeFaces()[eIndex];
if (eFaces.size() != 1)
{
WarningInFunction
<< "Edge is attached to " << eFaces.size()
<< " faces." << endl;
continue;
}
const label facei = eFaces[0];
if (visitedFace[hitSurfI][facei])
{
continue;
}
DynamicList<labelledTri> newFacesFromSplit(2);
const point& pt = surf.localPoints()[pointi];
if
(
(
pt.distSqr(hitSurf.localPoints()[e.start()])
< matchTolerance
)
|| (
pt.distSqr(hitSurf.localPoints()[e.end()])
< matchTolerance
)
)
{
continue;
}
nChanged++;
label newPointi = -1;
// Keep the points in the same place and move the edge
if (hitSurfI == surfI)
{
newPointi = pointi;
}
else
{
newPoints[hitSurfI].append(newPoints[surfI][pointi]);
newPointi = newPoints[hitSurfI].size() - 1;
}
// Split the other face.
greenRefine
(
hitSurf,
facei,
eIndex,
newPointi,
newFacesFromSplit
);
visitedFace[hitSurfI].set(facei);
forAll(newFacesFromSplit, newFacei)
{
const labelledTri& fN = newFacesFromSplit[newFacei];
if (newFacei == 0)
{
newFaces[hitSurfI][facei] = fN;
}
else
{
newFaces[hitSurfI].append(fN);
}
}
}
}
}
Info<< " Number of edges split = " << nChanged << endl;
forAll(newSurfaces, surfI)
{
newSurfaces.set
(
surfI,
new triSurfaceMesh
(
IOobject
(
"hookedSurface_" + surfs.names()[surfI],
runTime.constant(),
"triSurface",
runTime
),
triSurface
(
newFaces[surfI],
newSurfaces[surfI].patches(),
pointField(newPoints[surfI])
)
)
);
}
} while (nChanged > 0 && nIters <= maxIters);
Info<< endl;
forAll(newSurfaces, surfI)
{
const triSurfaceMesh& newSurf = newSurfaces[surfI];
Info<< "Writing hooked surface " << newSurf.searchableSurface::name()
<< endl;
newSurf.searchableSurface::write();
}
Info<< "\nEnd\n" << endl;
return 0;
}
// ************************************************************************* //