Files
openfoam/applications/utilities/mesh/manipulation/stitchMesh/stitchMesh.C
Andrew Heather d8d6030ab6 INT: Integration of Mattijs' collocated parallel IO additions
Original commit message:
------------------------

Parallel IO: New collated file format

When an OpenFOAM simulation runs in parallel, the data for decomposed fields and
mesh(es) has historically been stored in multiple files within separate
directories for each processor.  Processor directories are named 'processorN',
where N is the processor number.

This commit introduces an alternative "collated" file format where the data for
each decomposed field (and mesh) is collated into a single file, which is
written and read on the master processor.  The files are stored in a single
directory named 'processors'.

The new format produces significantly fewer files - one per field, instead of N
per field.  For large parallel cases, this avoids the restriction on the number
of open files imposed by the operating system limits.

The file writing can be threaded allowing the simulation to continue running
while the data is being written to file.  NFS (Network File System) is not
needed when using the the collated format and additionally, there is an option
to run without NFS with the original uncollated approach, known as
"masterUncollated".

The controls for the file handling are in the OptimisationSwitches of
etc/controlDict:

OptimisationSwitches
{
    ...

    //- Parallel IO file handler
    //  uncollated (default), collated or masterUncollated
    fileHandler uncollated;

    //- collated: thread buffer size for queued file writes.
    //  If set to 0 or not sufficient for the file size threading is not used.
    //  Default: 2e9
    maxThreadFileBufferSize 2e9;

    //- masterUncollated: non-blocking buffer size.
    //  If the file exceeds this buffer size scheduled transfer is used.
    //  Default: 2e9
    maxMasterFileBufferSize 2e9;
}

When using the collated file handling, memory is allocated for the data in the
thread.  maxThreadFileBufferSize sets the maximum size of memory in bytes that
is allocated.  If the data exceeds this size, the write does not use threading.

When using the masterUncollated file handling, non-blocking MPI communication
requires a sufficiently large memory buffer on the master node.
maxMasterFileBufferSize sets the maximum size in bytes of the buffer.  If the
data exceeds this size, the system uses scheduled communication.

The installation defaults for the fileHandler choice, maxThreadFileBufferSize
and maxMasterFileBufferSize (set in etc/controlDict) can be over-ridden within
the case controlDict file, like other parameters.  Additionally the fileHandler
can be set by:
- the "-fileHandler" command line argument;
- a FOAM_FILEHANDLER environment variable.

A foamFormatConvert utility allows users to convert files between the collated
and uncollated formats, e.g.
    mpirun -np 2 foamFormatConvert -parallel -fileHandler uncollated

An example case demonstrating the file handling methods is provided in:
$FOAM_TUTORIALS/IO/fileHandling

The work was undertaken by Mattijs Janssens, in collaboration with Henry Weller.
2017-07-07 11:39:56 +01:00

514 lines
14 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2017 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
stitchMesh
Group
grpMeshManipulationUtilities
Description
'Stitches' a mesh.
Takes a mesh and two patches and merges the faces on the two patches
(if geometrically possible) so the faces become internal.
Can do
- 'perfect' match: faces and points on patches align exactly. Order might
be different though.
- 'integral' match: where the surfaces on both patches exactly
match but the individual faces not
- 'partial' match: where the non-overlapping part of the surface remains
in the respective patch.
Note : Is just a front-end to perfectInterface/slidingInterface.
Comparable to running a meshModifier of the form
(if masterPatch is called "M" and slavePatch "S"):
\verbatim
couple
{
type slidingInterface;
masterFaceZoneName MSMasterZone
slaveFaceZoneName MSSlaveZone
cutPointZoneName MSCutPointZone
cutFaceZoneName MSCutFaceZone
masterPatchName M;
slavePatchName S;
typeOfMatch partial or integral
}
\endverbatim
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "polyTopoChanger.H"
#include "mapPolyMesh.H"
#include "ListOps.H"
#include "slidingInterface.H"
#include "perfectInterface.H"
#include "IOobjectList.H"
#include "ReadFields.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
label addPointZone(const polyMesh& mesh, const word& name)
{
label zoneID = mesh.pointZones().findZoneID(name);
if (zoneID != -1)
{
Info<< "Reusing existing pointZone "
<< mesh.pointZones()[zoneID].name()
<< " at index " << zoneID << endl;
}
else
{
pointZoneMesh& pointZones = const_cast<polyMesh&>(mesh).pointZones();
zoneID = pointZones.size();
Info<< "Adding pointZone " << name << " at index " << zoneID << endl;
pointZones.setSize(zoneID+1);
pointZones.set
(
zoneID,
new pointZone
(
name,
labelList(0),
zoneID,
pointZones
)
);
}
return zoneID;
}
label addFaceZone(const polyMesh& mesh, const word& name)
{
label zoneID = mesh.faceZones().findZoneID(name);
if (zoneID != -1)
{
Info<< "Reusing existing faceZone " << mesh.faceZones()[zoneID].name()
<< " at index " << zoneID << endl;
}
else
{
faceZoneMesh& faceZones = const_cast<polyMesh&>(mesh).faceZones();
zoneID = faceZones.size();
Info<< "Adding faceZone " << name << " at index " << zoneID << endl;
faceZones.setSize(zoneID+1);
faceZones.set
(
zoneID,
new faceZone
(
name,
labelList(0),
boolList(),
zoneID,
faceZones
)
);
}
return zoneID;
}
label addCellZone(const polyMesh& mesh, const word& name)
{
label zoneID = mesh.cellZones().findZoneID(name);
if (zoneID != -1)
{
Info<< "Reusing existing cellZone " << mesh.cellZones()[zoneID].name()
<< " at index " << zoneID << endl;
}
else
{
cellZoneMesh& cellZones = const_cast<polyMesh&>(mesh).cellZones();
zoneID = cellZones.size();
Info<< "Adding cellZone " << name << " at index " << zoneID << endl;
cellZones.setSize(zoneID+1);
cellZones.set
(
zoneID,
new cellZone
(
name,
labelList(0),
zoneID,
cellZones
)
);
}
return zoneID;
}
// Checks whether patch present
void checkPatch(const polyBoundaryMesh& bMesh, const word& name)
{
const label patchi = bMesh.findPatchID(name);
if (patchi == -1)
{
FatalErrorInFunction
<< "Cannot find patch " << name << endl
<< "It should be present and of non-zero size" << endl
<< "Valid patches are " << bMesh.names()
<< exit(FatalError);
}
if (bMesh[patchi].empty())
{
FatalErrorInFunction
<< "Patch " << name << " is present but zero size"
<< exit(FatalError);
}
}
int main(int argc, char *argv[])
{
argList::addNote
(
"Merge the faces on the specified patches (if geometrically possible)\n"
"so the faces become internal.\n"
"Integral matching is used when the options -partial and -perfect are "
"omitted.\n"
);
argList::noParallel();
#include "addOverwriteOption.H"
#include "addRegionOption.H"
argList::validArgs.append("masterPatch");
argList::validArgs.append("slavePatch");
argList::addBoolOption
(
"partial",
"couple partially overlapping patches (optional)"
);
argList::addBoolOption
(
"perfect",
"couple perfectly aligned patches (optional)"
);
argList::addOption
(
"toleranceDict",
"file",
"dictionary file with tolerances"
);
#include "setRootCase.H"
#include "createTime.H"
runTime.functionObjects().off();
#include "createNamedMesh.H"
const word oldInstance = mesh.pointsInstance();
const word masterPatchName = args[1];
const word slavePatchName = args[2];
const bool partialCover = args.optionFound("partial");
const bool perfectCover = args.optionFound("perfect");
const bool overwrite = args.optionFound("overwrite");
if (partialCover && perfectCover)
{
FatalErrorInFunction
<< "Cannot supply both partial and perfect." << endl
<< "Use perfect match option if the patches perfectly align"
<< " (both vertex positions and face centres)" << endl
<< exit(FatalError);
}
const word mergePatchName(masterPatchName + slavePatchName);
const word cutZoneName(mergePatchName + "CutFaceZone");
slidingInterface::typeOfMatch tom = slidingInterface::INTEGRAL;
if (partialCover)
{
Info<< "Coupling partially overlapping patches "
<< masterPatchName << " and " << slavePatchName << nl
<< "Resulting internal faces will be in faceZone " << cutZoneName
<< nl
<< "Any uncovered faces will remain in their patch"
<< endl;
tom = slidingInterface::PARTIAL;
}
else if (perfectCover)
{
Info<< "Coupling perfectly aligned patches "
<< masterPatchName << " and " << slavePatchName << nl
<< "Resulting (internal) faces will be in faceZone " << cutZoneName
<< nl << nl
<< "Note: both patches need to align perfectly." << nl
<< "Both the vertex"
<< " positions and the face centres need to align to within" << nl
<< "a tolerance given by the minimum edge length on the patch"
<< endl;
}
else
{
Info<< "Coupling patches " << masterPatchName << " and "
<< slavePatchName << nl
<< "Resulting (internal) faces will be in faceZone " << cutZoneName
<< nl << nl
<< "Note: the overall area covered by both patches should be"
<< " identical (\"integral\" interface)." << endl
<< "If this is not the case use the -partial option" << nl << endl;
}
// set up the tolerances for the sliding mesh
dictionary slidingTolerances;
if (args.optionFound("toleranceDict"))
{
IOdictionary toleranceFile
(
IOobject
(
args["toleranceDict"],
runTime.constant(),
mesh,
IOobject::MUST_READ_IF_MODIFIED,
IOobject::NO_WRITE
)
);
slidingTolerances += toleranceFile;
}
// Check for non-empty master and slave patches
checkPatch(mesh.boundaryMesh(), masterPatchName);
checkPatch(mesh.boundaryMesh(), slavePatchName);
// Create and add face zones and mesh modifiers
// Master patch
const polyPatch& masterPatch = mesh.boundaryMesh()[masterPatchName];
// Make list of masterPatch faces
labelList isf(masterPatch.size());
forAll(isf, i)
{
isf[i] = masterPatch.start() + i;
}
polyTopoChanger stitcher(mesh);
stitcher.setSize(1);
mesh.pointZones().clearAddressing();
mesh.faceZones().clearAddressing();
mesh.cellZones().clearAddressing();
if (perfectCover)
{
// Add empty zone for resulting internal faces
label cutZoneID = addFaceZone(mesh, cutZoneName);
mesh.faceZones()[cutZoneID].resetAddressing
(
isf,
boolList(masterPatch.size(), false)
);
// Add the perfect interface mesh modifier
stitcher.set
(
0,
new perfectInterface
(
"couple",
0,
stitcher,
cutZoneName,
masterPatchName,
slavePatchName
)
);
}
else
{
label pointZoneID = addPointZone(mesh, mergePatchName + "CutPointZone");
mesh.pointZones()[pointZoneID] = labelList(0);
label masterZoneID = addFaceZone(mesh, mergePatchName + "MasterZone");
mesh.faceZones()[masterZoneID].resetAddressing
(
isf,
boolList(masterPatch.size(), false)
);
// Slave patch
const polyPatch& slavePatch = mesh.boundaryMesh()[slavePatchName];
labelList osf(slavePatch.size());
forAll(osf, i)
{
osf[i] = slavePatch.start() + i;
}
label slaveZoneID = addFaceZone(mesh, mergePatchName + "SlaveZone");
mesh.faceZones()[slaveZoneID].resetAddressing
(
osf,
boolList(slavePatch.size(), false)
);
// Add empty zone for cut faces
label cutZoneID = addFaceZone(mesh, cutZoneName);
mesh.faceZones()[cutZoneID].resetAddressing
(
labelList(0),
boolList(0, false)
);
// Add the sliding interface mesh modifier
stitcher.set
(
0,
new slidingInterface
(
"couple",
0,
stitcher,
mergePatchName + "MasterZone",
mergePatchName + "SlaveZone",
mergePatchName + "CutPointZone",
cutZoneName,
masterPatchName,
slavePatchName,
tom, // integral or partial
true // couple/decouple mode
)
);
static_cast<slidingInterface&>(stitcher[0]).setTolerances
(
slidingTolerances,
true
);
}
// Search for list of objects for this time
IOobjectList objects(mesh, runTime.timeName());
// Read all current fvFields so they will get mapped
Info<< "Reading all current volfields" << endl;
PtrList<volScalarField> volScalarFields;
ReadFields(mesh, objects, volScalarFields);
PtrList<volVectorField> volVectorFields;
ReadFields(mesh, objects, volVectorFields);
PtrList<volSphericalTensorField> volSphericalTensorFields;
ReadFields(mesh, objects, volSphericalTensorFields);
PtrList<volSymmTensorField> volSymmTensorFields;
ReadFields(mesh, objects, volSymmTensorFields);
PtrList<volTensorField> volTensorFields;
ReadFields(mesh, objects, volTensorFields);
//- Uncomment if you want to interpolate surface fields (usually bad idea)
//Info<< "Reading all current surfaceFields" << endl;
//PtrList<surfaceScalarField> surfaceScalarFields;
//ReadFields(mesh, objects, surfaceScalarFields);
//
//PtrList<surfaceVectorField> surfaceVectorFields;
//ReadFields(mesh, objects, surfaceVectorFields);
//
//PtrList<surfaceTensorField> surfaceTensorFields;
//ReadFields(mesh, objects, surfaceTensorFields);
if (!overwrite)
{
runTime++;
}
// Execute all polyMeshModifiers
autoPtr<mapPolyMesh> morphMap = stitcher.changeMesh(true);
mesh.movePoints(morphMap->preMotionPoints());
// Write mesh
if (overwrite)
{
mesh.setInstance(oldInstance);
stitcher.instance() = oldInstance;
}
Info<< nl << "Writing polyMesh to time " << runTime.timeName() << endl;
IOstream::defaultPrecision(max(10u, IOstream::defaultPrecision()));
// Bypass runTime write (since only writes at writeTime)
if
(
!runTime.objectRegistry::writeObject
(
runTime.writeFormat(),
IOstream::currentVersion,
runTime.writeCompression(),
true
)
)
{
FatalErrorInFunction
<< "Failed writing polyMesh."
<< exit(FatalError);
}
mesh.faceZones().write();
mesh.pointZones().write();
mesh.cellZones().write();
// Write fields
runTime.write();
Info<< nl << "End" << nl << endl;
return 0;
}
// ************************************************************************* //