Files
openfoam/src/turbulenceModels/compressible/RAS/kOmegaSST/kOmegaSST.C
Mark Olesen 583d518ad5 ENH: Register RAS/LES models with (optional) alternative name
- allows better inheritance of models, since the coefficients
  dictionary can be made to match the derived class.

  related to commits 9544280e65 + 14b4c3849c
2010-06-18 15:37:00 +02:00

465 lines
10 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 1991-2010 OpenCFD Ltd.
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "kOmegaSST.H"
#include "addToRunTimeSelectionTable.H"
#include "backwardsCompatibilityWallFunctions.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
namespace compressible
{
namespace RASModels
{
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
defineTypeNameAndDebug(kOmegaSST, 0);
addToRunTimeSelectionTable(RASModel, kOmegaSST, dictionary);
// * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * * //
tmp<volScalarField> kOmegaSST::F1(const volScalarField& CDkOmega) const
{
volScalarField CDkOmegaPlus = max
(
CDkOmega,
dimensionedScalar("1.0e-10", dimless/sqr(dimTime), 1.0e-10)
);
volScalarField arg1 = min
(
min
(
max
(
(scalar(1)/betaStar_)*sqrt(k_)/(omega_*y_),
scalar(500)*(mu()/rho_)/(sqr(y_)*omega_)
),
(4*alphaOmega2_)*k_/(CDkOmegaPlus*sqr(y_))
),
scalar(10)
);
return tanh(pow4(arg1));
}
tmp<volScalarField> kOmegaSST::F2() const
{
volScalarField arg2 = min
(
max
(
(scalar(2)/betaStar_)*sqrt(k_)/(omega_*y_),
scalar(500)*(mu()/rho_)/(sqr(y_)*omega_)
),
scalar(100)
);
return tanh(sqr(arg2));
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
kOmegaSST::kOmegaSST
(
const volScalarField& rho,
const volVectorField& U,
const surfaceScalarField& phi,
const basicThermo& thermophysicalModel,
const word& turbulenceModelName,
const word& modelName
)
:
RASModel(modelName, rho, U, phi, thermophysicalModel, turbulenceModelName),
alphaK1_
(
dimensioned<scalar>::lookupOrAddToDict
(
"alphaK1",
coeffDict_,
0.85034
)
),
alphaK2_
(
dimensioned<scalar>::lookupOrAddToDict
(
"alphaK2",
coeffDict_,
1.0
)
),
alphaOmega1_
(
dimensioned<scalar>::lookupOrAddToDict
(
"alphaOmega1",
coeffDict_,
0.5
)
),
alphaOmega2_
(
dimensioned<scalar>::lookupOrAddToDict
(
"alphaOmega2",
coeffDict_,
0.85616
)
),
Prt_
(
dimensioned<scalar>::lookupOrAddToDict
(
"Prt",
coeffDict_,
1.0
)
),
gamma1_
(
dimensioned<scalar>::lookupOrAddToDict
(
"gamma1",
coeffDict_,
0.5532
)
),
gamma2_
(
dimensioned<scalar>::lookupOrAddToDict
(
"gamma2",
coeffDict_,
0.4403
)
),
beta1_
(
dimensioned<scalar>::lookupOrAddToDict
(
"beta1",
coeffDict_,
0.075
)
),
beta2_
(
dimensioned<scalar>::lookupOrAddToDict
(
"beta2",
coeffDict_,
0.0828
)
),
betaStar_
(
dimensioned<scalar>::lookupOrAddToDict
(
"betaStar",
coeffDict_,
0.09
)
),
a1_
(
dimensioned<scalar>::lookupOrAddToDict
(
"a1",
coeffDict_,
0.31
)
),
c1_
(
dimensioned<scalar>::lookupOrAddToDict
(
"c1",
coeffDict_,
10.0
)
),
y_(mesh_),
k_
(
IOobject
(
"k",
runTime_.timeName(),
mesh_,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
autoCreateK("k", mesh_)
),
omega_
(
IOobject
(
"omega",
runTime_.timeName(),
mesh_,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
autoCreateOmega("omega", mesh_)
),
mut_
(
IOobject
(
"mut",
runTime_.timeName(),
mesh_,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
autoCreateMut("mut", mesh_)
),
alphat_
(
IOobject
(
"alphat",
runTime_.timeName(),
mesh_,
IOobject::NO_READ,
IOobject::AUTO_WRITE
),
autoCreateAlphat("alphat", mesh_)
)
{
bound(k_, kMin_);
bound(omega_, omegaMin_);
mut_ =
(
a1_*rho_*k_
/ max
(
a1_*omega_,
F2()*sqrt(magSqr(symm(fvc::grad(U_))))
)
);
mut_.correctBoundaryConditions();
alphat_ = mut_/Prt_;
alphat_.correctBoundaryConditions();
printCoeffs();
}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
tmp<volSymmTensorField> kOmegaSST::R() const
{
return tmp<volSymmTensorField>
(
new volSymmTensorField
(
IOobject
(
"R",
runTime_.timeName(),
mesh_,
IOobject::NO_READ,
IOobject::NO_WRITE
),
((2.0/3.0)*I)*k_ - (mut_/rho_)*dev(twoSymm(fvc::grad(U_))),
k_.boundaryField().types()
)
);
}
tmp<volSymmTensorField> kOmegaSST::devRhoReff() const
{
return tmp<volSymmTensorField>
(
new volSymmTensorField
(
IOobject
(
"devRhoReff",
runTime_.timeName(),
mesh_,
IOobject::NO_READ,
IOobject::NO_WRITE
),
-muEff()*dev(twoSymm(fvc::grad(U_)))
)
);
}
tmp<fvVectorMatrix> kOmegaSST::divDevRhoReff(volVectorField& U) const
{
return
(
- fvm::laplacian(muEff(), U) - fvc::div(muEff()*dev2(fvc::grad(U)().T()))
);
}
bool kOmegaSST::read()
{
if (RASModel::read())
{
alphaK1_.readIfPresent(coeffDict());
alphaK2_.readIfPresent(coeffDict());
alphaOmega1_.readIfPresent(coeffDict());
alphaOmega2_.readIfPresent(coeffDict());
Prt_.readIfPresent(coeffDict());
gamma1_.readIfPresent(coeffDict());
gamma2_.readIfPresent(coeffDict());
beta1_.readIfPresent(coeffDict());
beta2_.readIfPresent(coeffDict());
betaStar_.readIfPresent(coeffDict());
a1_.readIfPresent(coeffDict());
c1_.readIfPresent(coeffDict());
return true;
}
else
{
return false;
}
}
void kOmegaSST::correct()
{
if (!turbulence_)
{
// Re-calculate viscosity
mut_ =
a1_*rho_*k_
/max(a1_*omega_, F2()*sqrt(magSqr(symm(fvc::grad(U_)))));
mut_.correctBoundaryConditions();
// Re-calculate thermal diffusivity
alphat_ = mut_/Prt_;
alphat_.correctBoundaryConditions();
return;
}
RASModel::correct();
volScalarField divU = fvc::div(phi_/fvc::interpolate(rho_));
if (mesh_.changing())
{
y_.correct();
}
if (mesh_.moving())
{
divU += fvc::div(mesh_.phi());
}
tmp<volTensorField> tgradU = fvc::grad(U_);
volScalarField S2 = magSqr(symm(tgradU()));
volScalarField GbyMu = (tgradU() && dev(twoSymm(tgradU())));
volScalarField G("RASModel::G", mut_*GbyMu);
tgradU.clear();
// Update omega and G at the wall
omega_.boundaryField().updateCoeffs();
volScalarField CDkOmega =
(2*alphaOmega2_)*(fvc::grad(k_) & fvc::grad(omega_))/omega_;
volScalarField F1 = this->F1(CDkOmega);
volScalarField rhoGammaF1 = rho_*gamma(F1);
// Turbulent frequency equation
tmp<fvScalarMatrix> omegaEqn
(
fvm::ddt(rho_, omega_)
+ fvm::div(phi_, omega_)
- fvm::laplacian(DomegaEff(F1), omega_)
==
rhoGammaF1*GbyMu
- fvm::SuSp((2.0/3.0)*rhoGammaF1*divU, omega_)
- fvm::Sp(rho_*beta(F1)*omega_, omega_)
- fvm::SuSp
(
rho_*(F1 - scalar(1))*CDkOmega/omega_,
omega_
)
);
omegaEqn().relax();
omegaEqn().boundaryManipulate(omega_.boundaryField());
solve(omegaEqn);
bound(omega_, omegaMin_);
// Turbulent kinetic energy equation
tmp<fvScalarMatrix> kEqn
(
fvm::ddt(rho_, k_)
+ fvm::div(phi_, k_)
- fvm::laplacian(DkEff(F1), k_)
==
min(G, (c1_*betaStar_)*rho_*k_*omega_)
- fvm::SuSp(2.0/3.0*rho_*divU, k_)
- fvm::Sp(rho_*betaStar_*omega_, k_)
);
kEqn().relax();
solve(kEqn);
bound(k_, kMin_);
// Re-calculate viscosity
mut_ = a1_*rho_*k_/max(a1_*omega_, F2()*sqrt(S2));
mut_.correctBoundaryConditions();
// Re-calculate thermal diffusivity
alphat_ = mut_/Prt_;
alphat_.correctBoundaryConditions();
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace RASModels
} // End namespace compressible
} // End namespace Foam
// ************************************************************************* //