Files
openfoam/src/genericPatchFields/genericFvPatchField/genericFvPatchField.C
Henry Weller b6feaea53b fvPatchFields: Constructors from dictionary now call the corresponding constructor of the fvPatchField base-class
to ensure 'patchType' is set as specified.

Required substantial change to the organization of the reading of the
'value' entry requiring careful testing and there may be some residual
issues remaining.  Please report any problems with the reading and
initialization of patch fields.

Resolves bug-report http://bugs.openfoam.org/view.php?id=2266
2016-09-25 09:11:53 +01:00

822 lines
26 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "genericFvPatchField.H"
#include "fvPatchFieldMapper.H"
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
template<class Type>
Foam::genericFvPatchField<Type>::genericFvPatchField
(
const fvPatch& p,
const DimensionedField<Type, volMesh>& iF
)
:
calculatedFvPatchField<Type>(p, iF)
{
FatalErrorInFunction
<< "Trying to construct an genericFvPatchField on patch "
<< this->patch().name()
<< " of field " << this->internalField().name()
<< abort(FatalError);
}
template<class Type>
Foam::genericFvPatchField<Type>::genericFvPatchField
(
const fvPatch& p,
const DimensionedField<Type, volMesh>& iF,
const dictionary& dict
)
:
calculatedFvPatchField<Type>(p, iF, dict),
actualTypeName_(dict.lookup("type")),
dict_(dict)
{
if (!dict.found("value"))
{
FatalIOErrorInFunction
(
dict
) << "\n Cannot find 'value' entry"
<< " on patch " << this->patch().name()
<< " of field " << this->internalField().name()
<< " in file " << this->internalField().objectPath()
<< nl
<< " which is required to set the"
" values of the generic patch field." << nl
<< " (Actual type " << actualTypeName_ << ")" << nl
<< "\n Please add the 'value' entry to the write function "
"of the user-defined boundary-condition\n"
<< exit(FatalIOError);
}
forAllConstIter(dictionary, dict_, iter)
{
if (iter().keyword() != "type" && iter().keyword() != "value")
{
if
(
iter().isStream()
&& iter().stream().size()
)
{
ITstream& is = iter().stream();
// Read first token
token firstToken(is);
if
(
firstToken.isWord()
&& firstToken.wordToken() == "nonuniform"
)
{
token fieldToken(is);
if (!fieldToken.isCompound())
{
if
(
fieldToken.isLabel()
&& fieldToken.labelToken() == 0
)
{
scalarFields_.insert
(
iter().keyword(),
new scalarField(0)
);
}
else
{
FatalIOErrorInFunction
(
dict
) << "\n token following 'nonuniform' "
"is not a compound"
<< "\n on patch " << this->patch().name()
<< " of field "
<< this->internalField().name()
<< " in file "
<< this->internalField().objectPath()
<< exit(FatalIOError);
}
}
else if
(
fieldToken.compoundToken().type()
== token::Compound<List<scalar>>::typeName
)
{
scalarField* fPtr = new scalarField;
fPtr->transfer
(
dynamicCast<token::Compound<List<scalar>>>
(
fieldToken.transferCompoundToken(is)
)
);
if (fPtr->size() != this->size())
{
FatalIOErrorInFunction
(
dict
) << "\n size of field " << iter().keyword()
<< " (" << fPtr->size() << ')'
<< " is not the same size as the patch ("
<< this->size() << ')'
<< "\n on patch " << this->patch().name()
<< " of field "
<< this->internalField().name()
<< " in file "
<< this->internalField().objectPath()
<< exit(FatalIOError);
}
scalarFields_.insert(iter().keyword(), fPtr);
}
else if
(
fieldToken.compoundToken().type()
== token::Compound<List<vector>>::typeName
)
{
vectorField* fPtr = new vectorField;
fPtr->transfer
(
dynamicCast<token::Compound<List<vector>>>
(
fieldToken.transferCompoundToken(is)
)
);
if (fPtr->size() != this->size())
{
FatalIOErrorInFunction
(
dict
) << "\n size of field " << iter().keyword()
<< " (" << fPtr->size() << ')'
<< " is not the same size as the patch ("
<< this->size() << ')'
<< "\n on patch " << this->patch().name()
<< " of field "
<< this->internalField().name()
<< " in file "
<< this->internalField().objectPath()
<< exit(FatalIOError);
}
vectorFields_.insert(iter().keyword(), fPtr);
}
else if
(
fieldToken.compoundToken().type()
== token::Compound<List<sphericalTensor>>::typeName
)
{
sphericalTensorField* fPtr = new sphericalTensorField;
fPtr->transfer
(
dynamicCast
<
token::Compound<List<sphericalTensor>>
>
(
fieldToken.transferCompoundToken(is)
)
);
if (fPtr->size() != this->size())
{
FatalIOErrorInFunction
(
dict
) << "\n size of field " << iter().keyword()
<< " (" << fPtr->size() << ')'
<< " is not the same size as the patch ("
<< this->size() << ')'
<< "\n on patch " << this->patch().name()
<< " of field "
<< this->internalField().name()
<< " in file "
<< this->internalField().objectPath()
<< exit(FatalIOError);
}
sphericalTensorFields_.insert(iter().keyword(), fPtr);
}
else if
(
fieldToken.compoundToken().type()
== token::Compound<List<symmTensor>>::typeName
)
{
symmTensorField* fPtr = new symmTensorField;
fPtr->transfer
(
dynamicCast
<
token::Compound<List<symmTensor>>
>
(
fieldToken.transferCompoundToken(is)
)
);
if (fPtr->size() != this->size())
{
FatalIOErrorInFunction
(
dict
) << "\n size of field " << iter().keyword()
<< " (" << fPtr->size() << ')'
<< " is not the same size as the patch ("
<< this->size() << ')'
<< "\n on patch " << this->patch().name()
<< " of field "
<< this->internalField().name()
<< " in file "
<< this->internalField().objectPath()
<< exit(FatalIOError);
}
symmTensorFields_.insert(iter().keyword(), fPtr);
}
else if
(
fieldToken.compoundToken().type()
== token::Compound<List<tensor>>::typeName
)
{
tensorField* fPtr = new tensorField;
fPtr->transfer
(
dynamicCast<token::Compound<List<tensor>>>
(
fieldToken.transferCompoundToken(is)
)
);
if (fPtr->size() != this->size())
{
FatalIOErrorInFunction
(
dict
) << "\n size of field " << iter().keyword()
<< " (" << fPtr->size() << ')'
<< " is not the same size as the patch ("
<< this->size() << ')'
<< "\n on patch " << this->patch().name()
<< " of field "
<< this->internalField().name()
<< " in file "
<< this->internalField().objectPath()
<< exit(FatalIOError);
}
tensorFields_.insert(iter().keyword(), fPtr);
}
else
{
FatalIOErrorInFunction
(
dict
) << "\n compound " << fieldToken.compoundToken()
<< " not supported"
<< "\n on patch " << this->patch().name()
<< " of field "
<< this->internalField().name()
<< " in file "
<< this->internalField().objectPath()
<< exit(FatalIOError);
}
}
else if
(
firstToken.isWord()
&& firstToken.wordToken() == "uniform"
)
{
token fieldToken(is);
if (!fieldToken.isPunctuation())
{
scalarFields_.insert
(
iter().keyword(),
new scalarField
(
this->size(),
fieldToken.number()
)
);
}
else
{
// Read as scalarList.
is.putBack(fieldToken);
scalarList l(is);
if (l.size() == vector::nComponents)
{
vector vs(l[0], l[1], l[2]);
vectorFields_.insert
(
iter().keyword(),
new vectorField(this->size(), vs)
);
}
else if (l.size() == sphericalTensor::nComponents)
{
sphericalTensor vs(l[0]);
sphericalTensorFields_.insert
(
iter().keyword(),
new sphericalTensorField(this->size(), vs)
);
}
else if (l.size() == symmTensor::nComponents)
{
symmTensor vs(l[0], l[1], l[2], l[3], l[4], l[5]);
symmTensorFields_.insert
(
iter().keyword(),
new symmTensorField(this->size(), vs)
);
}
else if (l.size() == tensor::nComponents)
{
tensor vs
(
l[0], l[1], l[2],
l[3], l[4], l[5],
l[6], l[7], l[8]
);
tensorFields_.insert
(
iter().keyword(),
new tensorField(this->size(), vs)
);
}
else
{
FatalIOErrorInFunction
(
dict
) << "\n unrecognised native type " << l
<< "\n on patch " << this->patch().name()
<< " of field "
<< this->internalField().name()
<< " in file "
<< this->internalField().objectPath()
<< exit(FatalIOError);
}
}
}
}
}
}
}
template<class Type>
Foam::genericFvPatchField<Type>::genericFvPatchField
(
const genericFvPatchField<Type>& ptf,
const fvPatch& p,
const DimensionedField<Type, volMesh>& iF,
const fvPatchFieldMapper& mapper
)
:
calculatedFvPatchField<Type>(ptf, p, iF, mapper),
actualTypeName_(ptf.actualTypeName_),
dict_(ptf.dict_)
{
forAllConstIter
(
HashPtrTable<scalarField>,
ptf.scalarFields_,
iter
)
{
scalarFields_.insert
(
iter.key(),
new scalarField(*iter(), mapper)
);
}
forAllConstIter
(
HashPtrTable<vectorField>,
ptf.vectorFields_,
iter
)
{
vectorFields_.insert
(
iter.key(),
new vectorField(*iter(), mapper)
);
}
forAllConstIter
(
HashPtrTable<sphericalTensorField>,
ptf.sphericalTensorFields_,
iter
)
{
sphericalTensorFields_.insert
(
iter.key(),
new sphericalTensorField(*iter(), mapper)
);
}
forAllConstIter
(
HashPtrTable<symmTensorField>,
ptf.symmTensorFields_,
iter
)
{
symmTensorFields_.insert
(
iter.key(),
new symmTensorField(*iter(), mapper)
);
}
forAllConstIter
(
HashPtrTable<tensorField>,
ptf.tensorFields_,
iter
)
{
tensorFields_.insert
(
iter.key(),
new tensorField(*iter(), mapper)
);
}
}
template<class Type>
Foam::genericFvPatchField<Type>::genericFvPatchField
(
const genericFvPatchField<Type>& ptf
)
:
calculatedFvPatchField<Type>(ptf),
actualTypeName_(ptf.actualTypeName_),
dict_(ptf.dict_),
scalarFields_(ptf.scalarFields_),
vectorFields_(ptf.vectorFields_),
sphericalTensorFields_(ptf.sphericalTensorFields_),
symmTensorFields_(ptf.symmTensorFields_),
tensorFields_(ptf.tensorFields_)
{}
template<class Type>
Foam::genericFvPatchField<Type>::genericFvPatchField
(
const genericFvPatchField<Type>& ptf,
const DimensionedField<Type, volMesh>& iF
)
:
calculatedFvPatchField<Type>(ptf, iF),
actualTypeName_(ptf.actualTypeName_),
dict_(ptf.dict_),
scalarFields_(ptf.scalarFields_),
vectorFields_(ptf.vectorFields_),
sphericalTensorFields_(ptf.sphericalTensorFields_),
symmTensorFields_(ptf.symmTensorFields_),
tensorFields_(ptf.tensorFields_)
{}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
template<class Type>
void Foam::genericFvPatchField<Type>::autoMap
(
const fvPatchFieldMapper& m
)
{
calculatedFvPatchField<Type>::autoMap(m);
forAllIter
(
HashPtrTable<scalarField>,
scalarFields_,
iter
)
{
iter()->autoMap(m);
}
forAllIter
(
HashPtrTable<vectorField>,
vectorFields_,
iter
)
{
iter()->autoMap(m);
}
forAllIter
(
HashPtrTable<sphericalTensorField>,
sphericalTensorFields_,
iter
)
{
iter()->autoMap(m);
}
forAllIter
(
HashPtrTable<symmTensorField>,
symmTensorFields_,
iter
)
{
iter()->autoMap(m);
}
forAllIter
(
HashPtrTable<tensorField>,
tensorFields_,
iter
)
{
iter()->autoMap(m);
}
}
template<class Type>
void Foam::genericFvPatchField<Type>::rmap
(
const fvPatchField<Type>& ptf,
const labelList& addr
)
{
calculatedFvPatchField<Type>::rmap(ptf, addr);
const genericFvPatchField<Type>& dptf =
refCast<const genericFvPatchField<Type>>(ptf);
forAllIter
(
HashPtrTable<scalarField>,
scalarFields_,
iter
)
{
HashPtrTable<scalarField>::const_iterator dptfIter =
dptf.scalarFields_.find(iter.key());
if (dptfIter != dptf.scalarFields_.end())
{
iter()->rmap(*dptfIter(), addr);
}
}
forAllIter
(
HashPtrTable<vectorField>,
vectorFields_,
iter
)
{
HashPtrTable<vectorField>::const_iterator dptfIter =
dptf.vectorFields_.find(iter.key());
if (dptfIter != dptf.vectorFields_.end())
{
iter()->rmap(*dptfIter(), addr);
}
}
forAllIter
(
HashPtrTable<sphericalTensorField>,
sphericalTensorFields_,
iter
)
{
HashPtrTable<sphericalTensorField>::const_iterator dptfIter =
dptf.sphericalTensorFields_.find(iter.key());
if (dptfIter != dptf.sphericalTensorFields_.end())
{
iter()->rmap(*dptfIter(), addr);
}
}
forAllIter
(
HashPtrTable<symmTensorField>,
symmTensorFields_,
iter
)
{
HashPtrTable<symmTensorField>::const_iterator dptfIter =
dptf.symmTensorFields_.find(iter.key());
if (dptfIter != dptf.symmTensorFields_.end())
{
iter()->rmap(*dptfIter(), addr);
}
}
forAllIter
(
HashPtrTable<tensorField>,
tensorFields_,
iter
)
{
HashPtrTable<tensorField>::const_iterator dptfIter =
dptf.tensorFields_.find(iter.key());
if (dptfIter != dptf.tensorFields_.end())
{
iter()->rmap(*dptfIter(), addr);
}
}
}
template<class Type>
Foam::tmp<Foam::Field<Type>>
Foam::genericFvPatchField<Type>::valueInternalCoeffs
(
const tmp<scalarField>&
) const
{
FatalErrorInFunction
<< "cannot be called for a genericFvPatchField"
" (actual type " << actualTypeName_ << ")"
<< "\n on patch " << this->patch().name()
<< " of field " << this->internalField().name()
<< " in file " << this->internalField().objectPath()
<< "\n You are probably trying to solve for a field with a "
"generic boundary condition."
<< abort(FatalError);
return *this;
}
template<class Type>
Foam::tmp<Foam::Field<Type>>
Foam::genericFvPatchField<Type>::valueBoundaryCoeffs
(
const tmp<scalarField>&
) const
{
FatalErrorInFunction
<< "cannot be called for a genericFvPatchField"
" (actual type " << actualTypeName_ << ")"
<< "\n on patch " << this->patch().name()
<< " of field " << this->internalField().name()
<< " in file " << this->internalField().objectPath()
<< "\n You are probably trying to solve for a field with a "
"generic boundary condition."
<< abort(FatalError);
return *this;
}
template<class Type>
Foam::tmp<Foam::Field<Type>>
Foam::genericFvPatchField<Type>::gradientInternalCoeffs() const
{
FatalErrorInFunction
<< "cannot be called for a genericFvPatchField"
" (actual type " << actualTypeName_ << ")"
<< "\n on patch " << this->patch().name()
<< " of field " << this->internalField().name()
<< " in file " << this->internalField().objectPath()
<< "\n You are probably trying to solve for a field with a "
"generic boundary condition."
<< abort(FatalError);
return *this;
}
template<class Type>
Foam::tmp<Foam::Field<Type>>
Foam::genericFvPatchField<Type>::gradientBoundaryCoeffs() const
{
FatalErrorInFunction
<< "cannot be called for a genericFvPatchField"
" (actual type " << actualTypeName_ << ")"
<< "\n on patch " << this->patch().name()
<< " of field " << this->internalField().name()
<< " in file " << this->internalField().objectPath()
<< "\n You are probably trying to solve for a field with a "
"generic boundary condition."
<< abort(FatalError);
return *this;
}
template<class Type>
void Foam::genericFvPatchField<Type>::write(Ostream& os) const
{
os.writeKeyword("type") << actualTypeName_ << token::END_STATEMENT << nl;
forAllConstIter(dictionary, dict_, iter)
{
if (iter().keyword() != "type" && iter().keyword() != "value")
{
if
(
iter().isStream()
&& iter().stream().size()
&& iter().stream()[0].isWord()
&& iter().stream()[0].wordToken() == "nonuniform"
)
{
if (scalarFields_.found(iter().keyword()))
{
scalarFields_.find(iter().keyword())()
->writeEntry(iter().keyword(), os);
}
else if (vectorFields_.found(iter().keyword()))
{
vectorFields_.find(iter().keyword())()
->writeEntry(iter().keyword(), os);
}
else if (sphericalTensorFields_.found(iter().keyword()))
{
sphericalTensorFields_.find(iter().keyword())()
->writeEntry(iter().keyword(), os);
}
else if (symmTensorFields_.found(iter().keyword()))
{
symmTensorFields_.find(iter().keyword())()
->writeEntry(iter().keyword(), os);
}
else if (tensorFields_.found(iter().keyword()))
{
tensorFields_.find(iter().keyword())()
->writeEntry(iter().keyword(), os);
}
}
else
{
iter().write(os);
}
}
}
this->writeEntry("value", os);
}
// ************************************************************************* //