Files
openfoam/src/optimisation/adjointOptimisation/adjoint/dynamicMesh/motionSolver/elasticityMotionSolver/elasticityMotionSolver.C
Vaggelis Papoutsis b863254308 ENH: New adjont shape optimisation functionality
The adjoint library is enhanced with new functionality enabling
automated shape optimisation loops.  A parameterisation scheme based on
volumetric B-Splines is introduced, the control points of which act as
the design variables in the optimisation loop [1, 2].  The control
points of the volumetric B-Splines boxes can be defined in either
Cartesian or cylindrical coordinates.

The entire loop (solution of the flow and adjoint equations, computation
of sensitivity derivatives, update of the design variables and mesh) is
run within adjointOptimisationFoam. A number of methods to update the
design variables are implemented, including popular Quasi-Newton methods
like BFGS and methods capable of handling constraints like loop using
the SQP or constraint projection.

The software was developed by PCOpt/NTUA and FOSS GP, with contributions from

Dr. Evangelos Papoutsis-Kiachagias,
Konstantinos Gkaragounis,
Professor Kyriakos Giannakoglou,
Andy Heather

[1] E.M. Papoutsis-Kiachagias, N. Magoulas, J. Mueller, C. Othmer,
K.C.  Giannakoglou: 'Noise Reduction in Car Aerodynamics using a
Surrogate Objective Function and the Continuous  Adjoint Method with
Wall Functions', Computers & Fluids, 122:223-232, 2015

[2] E. M. Papoutsis-Kiachagias, V. G. Asouti, K. C. Giannakoglou,
K.  Gkagkas, S. Shimokawa, E. Itakura: ‘Multi-point aerodynamic shape
optimization of cars based on continuous adjoint’, Structural and
Multidisciplinary Optimization, 59(2):675–694, 2019
2019-12-12 14:17:29 +00:00

272 lines
7.7 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2007-2019 PCOpt/NTUA
Copyright (C) 2013-2019 FOSS GP
Copyright (C) 2019 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "elasticityMotionSolver.H"
#include "motionInterpolation.H"
#include "wallDist.H"
#include "fixedValuePointPatchFields.H"
#include "fvMatrices.H"
#include "fvcDiv.H"
#include "fvmDiv.H"
#include "fvmDiv.H"
#include "fvmLaplacian.H"
#include "addToRunTimeSelectionTable.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
defineTypeNameAndDebug(elasticityMotionSolver, 1);
addToRunTimeSelectionTable
(
motionSolver,
elasticityMotionSolver,
dictionary
);
}
// * * * * * * * * * * * * Protected Member Functions * * * * * * * * * * * //
void Foam::elasticityMotionSolver::setBoundaryConditions()
{
// Adjust boundary conditions based on the steps to be executed
forAll(pointMotionU_.boundaryField(), patchI)
{
pointPatchVectorField& pointBCs =
pointMotionU_.boundaryFieldRef()[patchI];
if (isA<fixedValuePointPatchVectorField>(pointBCs))
{
auto& fixedValueBCs =
refCast<fixedValuePointPatchVectorField>(pointBCs);
fixedValueBCs == fixedValueBCs/scalar(nSteps_);
}
}
// Copy boundary conditions to internalField
// Needed for interpolation to faces
pointMotionU_.boundaryFieldRef().updateCoeffs();
// Interpolate boundary conditions from points to faces
forAll(cellMotionU_.boundaryField(), pI)
{
fvPatchVectorField& bField = cellMotionU_.boundaryFieldRef()[pI];
if (isA<fixedValueFvPatchVectorField>(bField))
{
const pointField& points = fvMesh_.points();
const polyPatch& patch = mesh().boundaryMesh()[pI];
forAll(bField, fI)
{
bField[fI] = patch[fI].average(points, pointMotionU_);
}
}
}
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::elasticityMotionSolver::elasticityMotionSolver
(
const polyMesh& mesh,
const IOdictionary& dict
)
:
motionSolver(mesh, dict, typeName),
fvMesh_
(
const_cast<fvMesh&>
(
refCast<const fvMesh>(mesh)
)
),
pointMotionU_
(
IOobject
(
"pointMotionU",
mesh.time().timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
pointMesh::New(mesh),
dimensionedVector(dimless, Zero),
fixedValuePointPatchVectorField::typeName
),
cellMotionU_
(
IOobject
(
"cellMotionU",
mesh.time().timeName(),
mesh,
IOobject::READ_IF_PRESENT,
IOobject::AUTO_WRITE
),
fvMesh_,
dimensionedVector
(
"cellMotionU",
pointMotionU_.dimensions(),
vector::zero
),
pointMotionU_.boundaryField().types()
),
interpolationPtr_
(
coeffDict().found("interpolation")
? motionInterpolation::New(fvMesh_, coeffDict().lookup("interpolation"))
: motionInterpolation::New(fvMesh_)
),
E_
(
IOobject
(
"mu",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
fvMesh_,
dimensionedScalar(dimless, Zero),
zeroGradientFvPatchScalarField::typeName
),
exponent_(this->coeffDict().get<scalar>("exponent")),
nSteps_(this->coeffDict().get<label>("steps")),
nIters_(this->coeffDict().get<label>("iters")),
tolerance_(this->coeffDict().get<scalar>("tolerance"))
{}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
Foam::tmp<Foam::pointField> Foam::elasticityMotionSolver::curPoints() const
{
tmp<pointField> tnewPoints(new pointField(mesh().points()));
return tnewPoints;
}
void Foam::elasticityMotionSolver::solve()
{
// Re-init to zero
cellMotionU_.primitiveFieldRef() = vector::zero;
// Adjust boundary conditions based on the number of steps to be executed
// and interpolate to faces
setBoundaryConditions();
// Solve the elasticity equations in a stepped manner
for (label istep = 0; istep < nSteps_; ++istep)
{
Info<< "Step " << istep << endl;
// Update diffusivity
const scalarField& vols = mesh().cellVolumes();
E_.primitiveFieldRef() = 1./pow(vols, exponent_);
E_.correctBoundaryConditions();
for (label iter = 0; iter < nIters_; ++iter)
{
Info<< "Iteration " << iter << endl;
cellMotionU_.storePrevIter();
fvVectorMatrix dEqn
(
fvm::laplacian(2*E_, cellMotionU_)
+ fvc::div(2*E_*T(fvc::grad(cellMotionU_)))
- fvc::div(E_*fvc::div(cellMotionU_)*tensor::I)
);
scalar residual = mag(dEqn.solve().initialResidual());
cellMotionU_.relax();
// Print execution time
fvMesh_.time().printExecutionTime(Info);
// Check convergence
if (residual < tolerance_)
{
Info<< "\n***Reached mesh movement convergence limit for step "
<< istep
<< " iteration " << iter << "***\n\n";
break;
}
}
// Interpolate from cells to points
interpolationPtr_->interpolate(cellMotionU_, pointMotionU_);
vectorField newPoints
(
mesh().points() + pointMotionU_.primitiveFieldRef()
);
// Move points and check mesh
fvMesh_.movePoints(newPoints);
fvMesh_.checkMesh(true);
if (debug)
{
Info<< " Writing new mesh points " << endl;
pointIOField points
(
IOobject
(
"points",
mesh().pointsInstance(),
mesh().meshSubDir,
mesh(),
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh().points()
);
points.write();
}
}
}
void Foam::elasticityMotionSolver::movePoints(const pointField&)
{
// Do nothing
}
void Foam::elasticityMotionSolver::updateMesh(const mapPolyMesh&)
{
// Do nothing
}
// ************************************************************************* //