Files
openfoam/applications/utilities/mesh/manipulation/polyDualMesh/polyDualMeshApp.C
Mark Olesen bac943e6fc ENH: new bitSet class and improved PackedList class (closes #751)
- The bitSet class replaces the old PackedBoolList class.
  The redesign provides better block-wise access and reduced method
  calls. This helps both in cases where the bitSet may be relatively
  sparse, and in cases where advantage of contiguous operations can be
  made. This makes it easier to work with a bitSet as top-level object.

  In addition to the previously available count() method to determine
  if a bitSet is being used, now have simpler queries:

    - all()  - true if all bits in the addressable range are empty
    - any()  - true if any bits are set at all.
    - none() - true if no bits are set.

  These are faster than count() and allow early termination.

  The new test() method tests the value of a single bit position and
  returns a bool without any ambiguity caused by the return type
  (like the get() method), nor the const/non-const access (like
  operator[] has). The name corresponds to what std::bitset uses.

  The new find_first(), find_last(), find_next() methods provide a faster
  means of searching for bits that are set.

  This can be especially useful when using a bitSet to control an
  conditional:

  OLD (with macro):

      forAll(selected, celli)
      {
          if (selected[celli])
          {
              sumVol += mesh_.cellVolumes()[celli];
          }
      }

  NEW (with const_iterator):

      for (const label celli : selected)
      {
          sumVol += mesh_.cellVolumes()[celli];
      }

      or manually

      for
      (
          label celli = selected.find_first();
          celli != -1;
          celli = selected.find_next()
      )
      {
          sumVol += mesh_.cellVolumes()[celli];
      }

- When marking up contiguous parts of a bitset, an interval can be
  represented more efficiently as a labelRange of start/size.
  For example,

  OLD:

      if (isA<processorPolyPatch>(pp))
      {
          forAll(pp, i)
          {
              ignoreFaces.set(i);
          }
      }

  NEW:

      if (isA<processorPolyPatch>(pp))
      {
          ignoreFaces.set(pp.range());
      }
2018-03-07 11:21:48 +01:00

564 lines
16 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2016 OpenFOAM Foundation
\\/ M anipulation | Copyright (C) 2016 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
polyDualMesh
Group
grpMeshManipulationUtilities
Description
Calculates the dual of a polyMesh. Adheres to all the feature and patch
edges.
Usage
\b polyDualMesh featureAngle
Detects any boundary edge > angle and creates multiple boundary faces
for it. Normal behaviour is to have each point become a cell
(1.5 behaviour)
Options:
- \par -concaveMultiCells
Creates multiple cells for each point on a concave edge. Might limit
the amount of distortion on some meshes.
- \par -splitAllFaces
Normally only constructs a single face between two cells. This single
face might be too distorted. splitAllFaces will create a single face for
every original cell the face passes through. The mesh will thus have
multiple faces inbetween two cells! (so is not strictly upper-triangular
anymore - checkMesh will complain)
- \par -doNotPreserveFaceZones:
By default all faceZones are preserved by marking all faces, edges and
points on them as features. The -doNotPreserveFaceZones disables this
behaviour.
Note
It is just a driver for meshDualiser. Substitute your own simpleMarkFeatures
to have different behaviour.
\*---------------------------------------------------------------------------*/
#include "argList.H"
#include "Time.H"
#include "fvMesh.H"
#include "unitConversion.H"
#include "polyTopoChange.H"
#include "mapPolyMesh.H"
#include "bitSet.H"
#include "meshTools.H"
#include "OFstream.H"
#include "meshDualiser.H"
#include "ReadFields.H"
#include "volFields.H"
#include "surfaceFields.H"
#include "topoSet.H"
#include "processorMeshes.H"
using namespace Foam;
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
// Naive feature detection. All boundary edges with angle > featureAngle become
// feature edges. All points on feature edges become feature points. All
// boundary faces become feature faces.
void simpleMarkFeatures
(
const polyMesh& mesh,
const bitSet& isBoundaryEdge,
const scalar featureAngle,
const bool concaveMultiCells,
const bool doNotPreserveFaceZones,
labelList& featureFaces,
labelList& featureEdges,
labelList& singleCellFeaturePoints,
labelList& multiCellFeaturePoints
)
{
scalar minCos = Foam::cos(degToRad(featureAngle));
const polyBoundaryMesh& patches = mesh.boundaryMesh();
// Working sets
labelHashSet featureEdgeSet;
labelHashSet singleCellFeaturePointSet;
labelHashSet multiCellFeaturePointSet;
// 1. Mark all edges between patches
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
forAll(patches, patchi)
{
const polyPatch& pp = patches[patchi];
const labelList& meshEdges = pp.meshEdges();
// All patch corner edges. These need to be feature points & edges!
for (label edgeI = pp.nInternalEdges(); edgeI < pp.nEdges(); edgeI++)
{
label meshEdgeI = meshEdges[edgeI];
featureEdgeSet.insert(meshEdgeI);
singleCellFeaturePointSet.insert(mesh.edges()[meshEdgeI][0]);
singleCellFeaturePointSet.insert(mesh.edges()[meshEdgeI][1]);
}
}
// 2. Mark all geometric feature edges
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Make distinction between convex features where the boundary point becomes
// a single cell and concave features where the boundary point becomes
// multiple 'half' cells.
// Addressing for all outside faces
primitivePatch allBoundary
(
SubList<face>
(
mesh.faces(),
mesh.nFaces()-mesh.nInternalFaces(),
mesh.nInternalFaces()
),
mesh.points()
);
// Check for non-manifold points (surface pinched at point)
allBoundary.checkPointManifold(false, &singleCellFeaturePointSet);
// Check for non-manifold edges (surface pinched at edge)
const labelListList& edgeFaces = allBoundary.edgeFaces();
const labelList& meshPoints = allBoundary.meshPoints();
forAll(edgeFaces, edgeI)
{
const labelList& eFaces = edgeFaces[edgeI];
if (eFaces.size() > 2)
{
const edge& e = allBoundary.edges()[edgeI];
//Info<< "Detected non-manifold boundary edge:" << edgeI
// << " coords:"
// << allBoundary.points()[meshPoints[e[0]]]
// << allBoundary.points()[meshPoints[e[1]]] << endl;
singleCellFeaturePointSet.insert(meshPoints[e[0]]);
singleCellFeaturePointSet.insert(meshPoints[e[1]]);
}
}
// Check for features.
forAll(edgeFaces, edgeI)
{
const labelList& eFaces = edgeFaces[edgeI];
if (eFaces.size() == 2)
{
label f0 = eFaces[0];
label f1 = eFaces[1];
// check angle
const vector& n0 = allBoundary.faceNormals()[f0];
const vector& n1 = allBoundary.faceNormals()[f1];
if ((n0 & n1) < minCos)
{
const edge& e = allBoundary.edges()[edgeI];
label v0 = meshPoints[e[0]];
label v1 = meshPoints[e[1]];
label meshEdgeI = meshTools::findEdge(mesh, v0, v1);
featureEdgeSet.insert(meshEdgeI);
// Check if convex or concave by looking at angle
// between face centres and normal
vector c1c0
(
allBoundary[f1].centre(allBoundary.points())
- allBoundary[f0].centre(allBoundary.points())
);
if (concaveMultiCells && (c1c0 & n0) > SMALL)
{
// Found concave edge. Make into multiCell features
Info<< "Detected concave feature edge:" << edgeI
<< " cos:" << (c1c0 & n0)
<< " coords:"
<< allBoundary.points()[v0]
<< allBoundary.points()[v1]
<< endl;
singleCellFeaturePointSet.erase(v0);
multiCellFeaturePointSet.insert(v0);
singleCellFeaturePointSet.erase(v1);
multiCellFeaturePointSet.insert(v1);
}
else
{
// Convex. singleCell feature.
if (!multiCellFeaturePointSet.found(v0))
{
singleCellFeaturePointSet.insert(v0);
}
if (!multiCellFeaturePointSet.found(v1))
{
singleCellFeaturePointSet.insert(v1);
}
}
}
}
}
// 3. Mark all feature faces
// ~~~~~~~~~~~~~~~~~~~~~~~~~
// Face centres that need inclusion in the dual mesh
labelHashSet featureFaceSet(mesh.nFaces()-mesh.nInternalFaces());
// A. boundary faces.
for (label facei = mesh.nInternalFaces(); facei < mesh.nFaces(); facei++)
{
featureFaceSet.insert(facei);
}
// B. face zones.
const faceZoneMesh& faceZones = mesh.faceZones();
if (doNotPreserveFaceZones)
{
if (faceZones.size() > 0)
{
WarningInFunction
<< "Detected " << faceZones.size()
<< " faceZones. These will not be preserved."
<< endl;
}
}
else
{
if (faceZones.size() > 0)
{
Info<< "Detected " << faceZones.size()
<< " faceZones. Preserving these by marking their"
<< " points, edges and faces as features." << endl;
}
forAll(faceZones, zoneI)
{
const faceZone& fz = faceZones[zoneI];
Info<< "Inserting all faces in faceZone " << fz.name()
<< " as features." << endl;
forAll(fz, i)
{
label facei = fz[i];
const face& f = mesh.faces()[facei];
const labelList& fEdges = mesh.faceEdges()[facei];
featureFaceSet.insert(facei);
forAll(f, fp)
{
// Mark point as multi cell point (since both sides of
// face should have different cells)
singleCellFeaturePointSet.erase(f[fp]);
multiCellFeaturePointSet.insert(f[fp]);
// Make sure there are points on the edges.
featureEdgeSet.insert(fEdges[fp]);
}
}
}
}
// Transfer to arguments
featureFaces = featureFaceSet.toc();
featureEdges = featureEdgeSet.toc();
singleCellFeaturePoints = singleCellFeaturePointSet.toc();
multiCellFeaturePoints = multiCellFeaturePointSet.toc();
}
// Dump features to .obj files
void dumpFeatures
(
const polyMesh& mesh,
const labelList& featureFaces,
const labelList& featureEdges,
const labelList& singleCellFeaturePoints,
const labelList& multiCellFeaturePoints
)
{
{
OFstream str("featureFaces.obj");
Info<< "Dumping centres of featureFaces to obj file " << str.name()
<< endl;
forAll(featureFaces, i)
{
meshTools::writeOBJ(str, mesh.faceCentres()[featureFaces[i]]);
}
}
{
OFstream str("featureEdges.obj");
Info<< "Dumping featureEdges to obj file " << str.name() << endl;
label vertI = 0;
forAll(featureEdges, i)
{
const edge& e = mesh.edges()[featureEdges[i]];
meshTools::writeOBJ(str, mesh.points()[e[0]]);
vertI++;
meshTools::writeOBJ(str, mesh.points()[e[1]]);
vertI++;
str<< "l " << vertI-1 << ' ' << vertI << nl;
}
}
{
OFstream str("singleCellFeaturePoints.obj");
Info<< "Dumping featurePoints that become a single cell to obj file "
<< str.name() << endl;
forAll(singleCellFeaturePoints, i)
{
meshTools::writeOBJ(str, mesh.points()[singleCellFeaturePoints[i]]);
}
}
{
OFstream str("multiCellFeaturePoints.obj");
Info<< "Dumping featurePoints that become multiple cells to obj file "
<< str.name() << endl;
forAll(multiCellFeaturePoints, i)
{
meshTools::writeOBJ(str, mesh.points()[multiCellFeaturePoints[i]]);
}
}
}
int main(int argc, char *argv[])
{
#include "addOverwriteOption.H"
argList::noParallel();
argList::addArgument("featureAngle [0-180]");
argList::addBoolOption
(
"splitAllFaces",
"have multiple faces inbetween cells"
);
argList::addBoolOption
(
"concaveMultiCells",
"split cells on concave boundary edges into multiple cells"
);
argList::addBoolOption
(
"doNotPreserveFaceZones",
"disable the default behaviour of preserving faceZones by having"
" multiple faces inbetween cells"
);
#include "setRootCase.H"
#include "createTime.H"
#include "createMesh.H"
const word oldInstance = mesh.pointsInstance();
// Mark boundary edges and points.
// (Note: in 1.4.2 we can use the built-in mesh point ordering
// facility instead)
bitSet isBoundaryEdge(mesh.nEdges());
for (label facei = mesh.nInternalFaces(); facei < mesh.nFaces(); facei++)
{
const labelList& fEdges = mesh.faceEdges()[facei];
forAll(fEdges, i)
{
isBoundaryEdge.set(fEdges[i]);
}
}
const scalar featureAngle = args.read<scalar>(1);
const scalar minCos = Foam::cos(degToRad(featureAngle));
Info<< "Feature:" << featureAngle << endl
<< "minCos :" << minCos << endl
<< endl;
const bool splitAllFaces = args.found("splitAllFaces");
if (splitAllFaces)
{
Info<< "Splitting all internal faces to create multiple faces"
<< " between two cells." << nl
<< endl;
}
const bool overwrite = args.found("overwrite");
const bool doNotPreserveFaceZones = args.found("doNotPreserveFaceZones");
const bool concaveMultiCells = args.found("concaveMultiCells");
if (concaveMultiCells)
{
Info<< "Generating multiple cells for points on concave feature edges."
<< nl << endl;
}
// Face(centre)s that need inclusion in the dual mesh
labelList featureFaces;
// Edge(centre)s ,,
labelList featureEdges;
// Points (that become a single cell) that need inclusion in the dual mesh
labelList singleCellFeaturePoints;
// Points (that become a multiple cells) ,,
labelList multiCellFeaturePoints;
// Sample implementation of feature detection.
simpleMarkFeatures
(
mesh,
isBoundaryEdge,
featureAngle,
concaveMultiCells,
doNotPreserveFaceZones,
featureFaces,
featureEdges,
singleCellFeaturePoints,
multiCellFeaturePoints
);
// If we want to split all polyMesh faces into one dualface per cell
// we are passing through we also need a point
// at the polyMesh facecentre and edgemid of the faces we want to
// split.
if (splitAllFaces)
{
featureEdges = identity(mesh.nEdges());
featureFaces = identity(mesh.nFaces());
}
// Write obj files for debugging
dumpFeatures
(
mesh,
featureFaces,
featureEdges,
singleCellFeaturePoints,
multiCellFeaturePoints
);
// Read objects in time directory
IOobjectList objects(mesh, runTime.timeName());
// Read vol fields.
PtrList<volScalarField> vsFlds;
ReadFields(mesh, objects, vsFlds);
PtrList<volVectorField> vvFlds;
ReadFields(mesh, objects, vvFlds);
PtrList<volSphericalTensorField> vstFlds;
ReadFields(mesh, objects, vstFlds);
PtrList<volSymmTensorField> vsymtFlds;
ReadFields(mesh, objects, vsymtFlds);
PtrList<volTensorField> vtFlds;
ReadFields(mesh, objects, vtFlds);
// Read surface fields.
PtrList<surfaceScalarField> ssFlds;
ReadFields(mesh, objects, ssFlds);
PtrList<surfaceVectorField> svFlds;
ReadFields(mesh, objects, svFlds);
PtrList<surfaceSphericalTensorField> sstFlds;
ReadFields(mesh, objects, sstFlds);
PtrList<surfaceSymmTensorField> ssymtFlds;
ReadFields(mesh, objects, ssymtFlds);
PtrList<surfaceTensorField> stFlds;
ReadFields(mesh, objects, stFlds);
// Topo change container
polyTopoChange meshMod(mesh.boundaryMesh().size());
// Mesh dualiser engine
meshDualiser dualMaker(mesh);
// Insert all commands into polyTopoChange to create dual of mesh. This does
// all the hard work.
dualMaker.setRefinement
(
splitAllFaces,
featureFaces,
featureEdges,
singleCellFeaturePoints,
multiCellFeaturePoints,
meshMod
);
// Create mesh, return map from old to new mesh.
autoPtr<mapPolyMesh> map = meshMod.changeMesh(mesh, false);
// Update fields
mesh.updateMesh(map());
// Optionally inflate mesh
if (map().hasMotionPoints())
{
mesh.movePoints(map().preMotionPoints());
}
if (!overwrite)
{
runTime++;
}
else
{
mesh.setInstance(oldInstance);
}
Info<< "Writing dual mesh to " << runTime.timeName() << endl;
mesh.write();
topoSet::removeFiles(mesh);
processorMeshes::removeFiles(mesh);
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //