Files
openfoam/src/OpenFOAM/containers/Bits/BitOps/BitOps.H
Mark Olesen bac943e6fc ENH: new bitSet class and improved PackedList class (closes #751)
- The bitSet class replaces the old PackedBoolList class.
  The redesign provides better block-wise access and reduced method
  calls. This helps both in cases where the bitSet may be relatively
  sparse, and in cases where advantage of contiguous operations can be
  made. This makes it easier to work with a bitSet as top-level object.

  In addition to the previously available count() method to determine
  if a bitSet is being used, now have simpler queries:

    - all()  - true if all bits in the addressable range are empty
    - any()  - true if any bits are set at all.
    - none() - true if no bits are set.

  These are faster than count() and allow early termination.

  The new test() method tests the value of a single bit position and
  returns a bool without any ambiguity caused by the return type
  (like the get() method), nor the const/non-const access (like
  operator[] has). The name corresponds to what std::bitset uses.

  The new find_first(), find_last(), find_next() methods provide a faster
  means of searching for bits that are set.

  This can be especially useful when using a bitSet to control an
  conditional:

  OLD (with macro):

      forAll(selected, celli)
      {
          if (selected[celli])
          {
              sumVol += mesh_.cellVolumes()[celli];
          }
      }

  NEW (with const_iterator):

      for (const label celli : selected)
      {
          sumVol += mesh_.cellVolumes()[celli];
      }

      or manually

      for
      (
          label celli = selected.find_first();
          celli != -1;
          celli = selected.find_next()
      )
      {
          sumVol += mesh_.cellVolumes()[celli];
      }

- When marking up contiguous parts of a bitset, an interval can be
  represented more efficiently as a labelRange of start/size.
  For example,

  OLD:

      if (isA<processorPolyPatch>(pp))
      {
          forAll(pp, i)
          {
              ignoreFaces.set(i);
          }
      }

  NEW:

      if (isA<processorPolyPatch>(pp))
      {
          ignoreFaces.set(pp.range());
      }
2018-03-07 11:21:48 +01:00

193 lines
5.0 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2018 OpenCFD Ltd.
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Namespace
Foam::BitOps
Description
Various bit-wise operations, etc.
The population count uses the Hamming weight
(http://en.wikipedia.org/wiki/Hamming_weight).
\*---------------------------------------------------------------------------*/
#ifndef BitOps_H
#define BitOps_H
#include "label.H"
#include "Ostream.H"
#include <limits>
#include <utility>
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
/*---------------------------------------------------------------------------*\
Namespace BitOps Declaration
\*---------------------------------------------------------------------------*/
namespace BitOps
{
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
//- Count arbitrary number of bits (of an integral type)
template<class UIntType>
inline unsigned int bit_count(UIntType x)
{
unsigned int n = 0u;
for (; x; ++n) { x &= (x-1); }
return n;
}
//- Count bits in a 32-bit value (Hamming weight method)
template<>
inline unsigned int bit_count(uint32_t x)
{
x -= (x >> 1) & 0x55555555;
x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
return ((((x + (x >> 4)) & 0x0F0F0F0F) * 0x01010101) >> 24);
}
//- Count bits in a 64-bit value (Hamming weight method)
template<>
inline unsigned int bit_count(uint64_t x)
{
x -= (x >> 1) & 0x5555555555555555;
x = (x & 0x3333333333333333) + ((x >> 2) & 0x3333333333333333);
return unsigned
((((x + (x >> 4)) & 0x0F0F0F0F0F0F0F0F) * 0x0101010101010101) >> 56);
}
//- Repeat a value of the given BitWidth into the destination output type.
template<class UIntType, unsigned BitWidth>
inline UIntType repeat_value(unsigned val)
{
static_assert
(
BitWidth && std::numeric_limits<UIntType>::digits >= BitWidth,
"BitWidth too large for target output"
);
// How many fit into the target
const unsigned nrepeat = (std::numeric_limits<UIntType>::digits / BitWidth);
// Max value for a single element
const unsigned mask = ((1u << BitWidth) - 1);
// The first occurance
UIntType fillval = ((val >= mask) ? mask : val);
// Repeated
for (unsigned i = 1; i < nrepeat; ++i)
{
fillval |= (fillval << BitWidth);
}
return fillval;
}
//- Print 0/1 bits in the (unsigned) integral type
template<class UIntType>
inline Ostream& print(Ostream& os, UIntType value, char off='0', char on='1')
{
if (os.format() == IOstream::BINARY)
{
// Perhaps not the most sensible, but the only thing we currently have.
os << label(value);
}
else
{
// Starting from most significant bit - makes for easy reading.
for
(
unsigned test = (1u << (std::numeric_limits<UIntType>::digits-1));
test;
test >>= 1u
)
{
os << ((value & test) ? on : off);
}
}
return os;
}
//- An (unsigned) integral type adapter, for output of bit values
template<class UIntType>
struct bitInfo
{
typedef UIntType value_type;
value_type value;
//- Null constructible as zero
bitInfo() : value(0) {}
//- Value construct
explicit bitInfo(UIntType val) : value(val) {}
//- Conversion to base type
operator UIntType () const { return value; }
//- Conversion to base type
operator UIntType& () { return value; }
};
} // End namespace BitOps
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
//- Print 0/1 bits of an (unsigned) integral type via an adapter
template<class UIntType>
inline Ostream& operator<<(Ostream& os, const BitOps::bitInfo<UIntType>& info)
{
BitOps::print(os, info.value);
return os;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace Foam
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#endif
// ************************************************************************* //