Files
openfoam/src/OpenFOAM/meshes/primitiveMesh/primitiveMeshCheck/primitiveMeshTools.C
Mark Olesen bac943e6fc ENH: new bitSet class and improved PackedList class (closes #751)
- The bitSet class replaces the old PackedBoolList class.
  The redesign provides better block-wise access and reduced method
  calls. This helps both in cases where the bitSet may be relatively
  sparse, and in cases where advantage of contiguous operations can be
  made. This makes it easier to work with a bitSet as top-level object.

  In addition to the previously available count() method to determine
  if a bitSet is being used, now have simpler queries:

    - all()  - true if all bits in the addressable range are empty
    - any()  - true if any bits are set at all.
    - none() - true if no bits are set.

  These are faster than count() and allow early termination.

  The new test() method tests the value of a single bit position and
  returns a bool without any ambiguity caused by the return type
  (like the get() method), nor the const/non-const access (like
  operator[] has). The name corresponds to what std::bitset uses.

  The new find_first(), find_last(), find_next() methods provide a faster
  means of searching for bits that are set.

  This can be especially useful when using a bitSet to control an
  conditional:

  OLD (with macro):

      forAll(selected, celli)
      {
          if (selected[celli])
          {
              sumVol += mesh_.cellVolumes()[celli];
          }
      }

  NEW (with const_iterator):

      for (const label celli : selected)
      {
          sumVol += mesh_.cellVolumes()[celli];
      }

      or manually

      for
      (
          label celli = selected.find_first();
          celli != -1;
          celli = selected.find_next()
      )
      {
          sumVol += mesh_.cellVolumes()[celli];
      }

- When marking up contiguous parts of a bitset, an interval can be
  represented more efficiently as a labelRange of start/size.
  For example,

  OLD:

      if (isA<processorPolyPatch>(pp))
      {
          forAll(pp, i)
          {
              ignoreFaces.set(i);
          }
      }

  NEW:

      if (isA<processorPolyPatch>(pp))
      {
          ignoreFaces.set(pp.range());
      }
2018-03-07 11:21:48 +01:00

560 lines
14 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2012-2016 OpenFOAM Foundation
\\/ M anipulation | Copyright (C) 2017 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "primitiveMeshTools.H"
#include "syncTools.H"
#include "pyramidPointFaceRef.H"
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
Foam::scalar Foam::primitiveMeshTools::faceSkewness
(
const primitiveMesh& mesh,
const pointField& p,
const vectorField& fCtrs,
const vectorField& fAreas,
const label facei,
const point& ownCc,
const point& neiCc
)
{
vector Cpf = fCtrs[facei] - ownCc;
vector d = neiCc - ownCc;
// Skewness vector
vector sv =
Cpf
- ((fAreas[facei] & Cpf)/((fAreas[facei] & d) + ROOTVSMALL))*d;
vector svHat = sv/(mag(sv) + ROOTVSMALL);
// Normalisation distance calculated as the approximate distance
// from the face centre to the edge of the face in the direction
// of the skewness
scalar fd = 0.2*mag(d) + ROOTVSMALL;
const face& f = mesh.faces()[facei];
forAll(f, pi)
{
fd = max(fd, mag(svHat & (p[f[pi]] - fCtrs[facei])));
}
// Normalised skewness
return mag(sv)/fd;
}
Foam::scalar Foam::primitiveMeshTools::boundaryFaceSkewness
(
const primitiveMesh& mesh,
const pointField& p,
const vectorField& fCtrs,
const vectorField& fAreas,
const label facei,
const point& ownCc
)
{
vector Cpf = fCtrs[facei] - ownCc;
vector normal = fAreas[facei];
normal /= mag(normal) + ROOTVSMALL;
vector d = normal*(normal & Cpf);
// Skewness vector
vector sv =
Cpf
- ((fAreas[facei] & Cpf)/((fAreas[facei] & d) + ROOTVSMALL))*d;
vector svHat = sv/(mag(sv) + ROOTVSMALL);
// Normalisation distance calculated as the approximate distance
// from the face centre to the edge of the face in the direction
// of the skewness
scalar fd = 0.4*mag(d) + ROOTVSMALL;
const face& f = mesh.faces()[facei];
forAll(f, pi)
{
fd = max(fd, mag(svHat & (p[f[pi]] - fCtrs[facei])));
}
// Normalised skewness
return mag(sv)/fd;
}
Foam::scalar Foam::primitiveMeshTools::faceOrthogonality
(
const point& ownCc,
const point& neiCc,
const vector& s
)
{
vector d = neiCc - ownCc;
return (d & s)/(mag(d)*mag(s) + ROOTVSMALL);
}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
Foam::tmp<Foam::scalarField> Foam::primitiveMeshTools::faceOrthogonality
(
const primitiveMesh& mesh,
const vectorField& areas,
const vectorField& cc
)
{
const labelList& own = mesh.faceOwner();
const labelList& nei = mesh.faceNeighbour();
tmp<scalarField> tortho(new scalarField(mesh.nInternalFaces()));
scalarField& ortho = tortho.ref();
// Internal faces
forAll(nei, facei)
{
ortho[facei] = faceOrthogonality
(
cc[own[facei]],
cc[nei[facei]],
areas[facei]
);
}
return tortho;
}
Foam::tmp<Foam::scalarField> Foam::primitiveMeshTools::faceSkewness
(
const primitiveMesh& mesh,
const pointField& p,
const vectorField& fCtrs,
const vectorField& fAreas,
const vectorField& cellCtrs
)
{
const labelList& own = mesh.faceOwner();
const labelList& nei = mesh.faceNeighbour();
tmp<scalarField> tskew(new scalarField(mesh.nFaces()));
scalarField& skew = tskew.ref();
forAll(nei, facei)
{
skew[facei] = faceSkewness
(
mesh,
p,
fCtrs,
fAreas,
facei,
cellCtrs[own[facei]],
cellCtrs[nei[facei]]
);
}
// Boundary faces: consider them to have only skewness error.
// (i.e. treat as if mirror cell on other side)
for (label facei = mesh.nInternalFaces(); facei < mesh.nFaces(); facei++)
{
skew[facei] = boundaryFaceSkewness
(
mesh,
p,
fCtrs,
fAreas,
facei,
cellCtrs[own[facei]]
);
}
return tskew;
}
void Foam::primitiveMeshTools::facePyramidVolume
(
const primitiveMesh& mesh,
const pointField& points,
const vectorField& ctrs,
scalarField& ownPyrVol,
scalarField& neiPyrVol
)
{
const labelList& own = mesh.faceOwner();
const labelList& nei = mesh.faceNeighbour();
const faceList& f = mesh.faces();
ownPyrVol.setSize(mesh.nFaces());
neiPyrVol.setSize(mesh.nInternalFaces());
forAll(f, facei)
{
// Create the owner pyramid
ownPyrVol[facei] = -pyramidPointFaceRef
(
f[facei],
ctrs[own[facei]]
).mag(points);
if (mesh.isInternalFace(facei))
{
// Create the neighbour pyramid - it will have positive volume
neiPyrVol[facei] = pyramidPointFaceRef
(
f[facei],
ctrs[nei[facei]]
).mag(points);
}
}
}
void Foam::primitiveMeshTools::cellClosedness
(
const primitiveMesh& mesh,
const Vector<label>& meshD,
const vectorField& areas,
const scalarField& vols,
scalarField& openness,
scalarField& aratio
)
{
const labelList& own = mesh.faceOwner();
const labelList& nei = mesh.faceNeighbour();
// Loop through cell faces and sum up the face area vectors for each cell.
// This should be zero in all vector components
vectorField sumClosed(mesh.nCells(), Zero);
vectorField sumMagClosed(mesh.nCells(), Zero);
forAll(own, facei)
{
// Add to owner
sumClosed[own[facei]] += areas[facei];
sumMagClosed[own[facei]] += cmptMag(areas[facei]);
}
forAll(nei, facei)
{
// Subtract from neighbour
sumClosed[nei[facei]] -= areas[facei];
sumMagClosed[nei[facei]] += cmptMag(areas[facei]);
}
label nDims = 0;
for (direction dir = 0; dir < vector::nComponents; dir++)
{
if (meshD[dir] == 1)
{
nDims++;
}
}
// Check the sums
openness.setSize(mesh.nCells());
aratio.setSize(mesh.nCells());
forAll(sumClosed, celli)
{
scalar maxOpenness = 0;
for (direction cmpt=0; cmpt<vector::nComponents; cmpt++)
{
maxOpenness = max
(
maxOpenness,
mag(sumClosed[celli][cmpt])
/(sumMagClosed[celli][cmpt] + ROOTVSMALL)
);
}
openness[celli] = maxOpenness;
// Calculate the aspect ration as the maximum of Cartesian component
// aspect ratio to the total area hydraulic area aspect ratio
scalar minCmpt = VGREAT;
scalar maxCmpt = -VGREAT;
for (direction dir = 0; dir < vector::nComponents; dir++)
{
if (meshD[dir] == 1)
{
minCmpt = min(minCmpt, sumMagClosed[celli][dir]);
maxCmpt = max(maxCmpt, sumMagClosed[celli][dir]);
}
}
scalar aspectRatio = maxCmpt/(minCmpt + ROOTVSMALL);
if (nDims == 3)
{
scalar v = max(ROOTVSMALL, vols[celli]);
aspectRatio = max
(
aspectRatio,
1.0/6.0*cmptSum(sumMagClosed[celli])/pow(v, 2.0/3.0)
);
}
aratio[celli] = aspectRatio;
}
}
Foam::tmp<Foam::scalarField> Foam::primitiveMeshTools::faceConcavity
(
const scalar maxSin,
const primitiveMesh& mesh,
const pointField& p,
const vectorField& faceAreas
)
{
const faceList& fcs = mesh.faces();
vectorField faceNormals(faceAreas);
faceNormals /= mag(faceNormals) + ROOTVSMALL;
tmp<scalarField> tfaceAngles(new scalarField(mesh.nFaces()));
scalarField& faceAngles = tfaceAngles.ref();
forAll(fcs, facei)
{
const face& f = fcs[facei];
// Get edge from f[0] to f[size-1];
vector ePrev(p[f.first()] - p[f.last()]);
scalar magEPrev = mag(ePrev);
ePrev /= magEPrev + ROOTVSMALL;
scalar maxEdgeSin = 0.0;
forAll(f, fp0)
{
// Get vertex after fp
label fp1 = f.fcIndex(fp0);
// Normalized vector between two consecutive points
vector e10(p[f[fp1]] - p[f[fp0]]);
scalar magE10 = mag(e10);
e10 /= magE10 + ROOTVSMALL;
if (magEPrev > SMALL && magE10 > SMALL)
{
vector edgeNormal = ePrev ^ e10;
scalar magEdgeNormal = mag(edgeNormal);
if (magEdgeNormal < maxSin)
{
// Edges (almost) aligned -> face is ok.
}
else
{
// Check normal
edgeNormal /= magEdgeNormal;
if ((edgeNormal & faceNormals[facei]) < SMALL)
{
maxEdgeSin = max(maxEdgeSin, magEdgeNormal);
}
}
}
ePrev = e10;
magEPrev = magE10;
}
faceAngles[facei] = maxEdgeSin;
}
return tfaceAngles;
}
Foam::tmp<Foam::scalarField> Foam::primitiveMeshTools::faceFlatness
(
const primitiveMesh& mesh,
const pointField& p,
const vectorField& fCtrs,
const vectorField& faceAreas
)
{
const faceList& fcs = mesh.faces();
// Areas are calculated as the sum of areas. (see
// primitiveMeshFaceCentresAndAreas.C)
scalarField magAreas(mag(faceAreas));
tmp<scalarField> tfaceFlatness(new scalarField(mesh.nFaces(), 1.0));
scalarField& faceFlatness = tfaceFlatness.ref();
forAll(fcs, facei)
{
const face& f = fcs[facei];
if (f.size() > 3 && magAreas[facei] > ROOTVSMALL)
{
const point& fc = fCtrs[facei];
// Calculate the sum of magnitude of areas and compare to magnitude
// of sum of areas.
scalar sumA = 0.0;
forAll(f, fp)
{
const point& thisPoint = p[f[fp]];
const point& nextPoint = p[f.nextLabel(fp)];
// Triangle around fc.
vector n = 0.5*((nextPoint - thisPoint)^(fc - thisPoint));
sumA += mag(n);
}
faceFlatness[facei] = magAreas[facei]/(sumA + ROOTVSMALL);
}
}
return tfaceFlatness;
}
Foam::tmp<Foam::scalarField> Foam::primitiveMeshTools::cellDeterminant
(
const primitiveMesh& mesh,
const Vector<label>& meshD,
const vectorField& faceAreas,
const bitSet& internalOrCoupledFace
)
{
// Determine number of dimensions and (for 2D) missing dimension
label nDims = 0;
label twoD = -1;
for (direction dir = 0; dir < vector::nComponents; dir++)
{
if (meshD[dir] == 1)
{
nDims++;
}
else
{
twoD = dir;
}
}
tmp<scalarField> tcellDeterminant(new scalarField(mesh.nCells()));
scalarField& cellDeterminant = tcellDeterminant.ref();
const cellList& c = mesh.cells();
if (nDims == 1)
{
cellDeterminant = 1.0;
}
else
{
forAll(c, celli)
{
const labelList& curFaces = c[celli];
// Calculate local normalization factor
scalar avgArea = 0;
label nInternalFaces = 0;
forAll(curFaces, i)
{
if (internalOrCoupledFace.test(curFaces[i]))
{
avgArea += mag(faceAreas[curFaces[i]]);
nInternalFaces++;
}
}
if (nInternalFaces == 0)
{
cellDeterminant[celli] = 0;
}
else
{
avgArea /= nInternalFaces;
symmTensor areaTensor(Zero);
forAll(curFaces, i)
{
if (internalOrCoupledFace.test(curFaces[i]))
{
areaTensor += sqr(faceAreas[curFaces[i]]/avgArea);
}
}
if (nDims == 2)
{
// Add the missing eigenvector (such that it does not
// affect the determinant)
if (twoD == 0)
{
areaTensor.xx() = 1;
}
else if (twoD == 1)
{
areaTensor.yy() = 1;
}
else
{
areaTensor.zz() = 1;
}
}
// Note:
// - normalise to be 0..1 (since cube has eigenvalues 2 2 2)
// - we use the determinant (i.e. 3rd invariant) and not e.g.
// condition number (= max ev / min ev) since we are
// interested in the minimum connectivity and not the
// uniformity. Using the condition number on corner cells
// leads to uniformity 1 i.e. equally bad in all three
// directions which is not what we want.
cellDeterminant[celli] = mag(det(areaTensor))/8.0;
}
}
}
return tcellDeterminant;
}
// ************************************************************************* //