Files
openfoam/src/OpenFOAM/fields/Fields/Field/FieldFunctions.C
Mark Olesen e1a710014c ENH: define lerp field functions
- defined for lerp between two fields,
  either with a constant or a field of interpolation factors.

  * plain Field, DimensionedField, FieldField, GeometricFields

- using a field to lerp between two constants is not currently
  supported
2023-02-21 10:05:27 +01:00

919 lines
29 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011-2016 OpenFOAM Foundation
Copyright (C) 2019-2023 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "PstreamReduceOps.H"
#include "FieldReuseFunctions.H"
#define TEMPLATE template<class Type>
#include "FieldFunctionsM.C"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
/* * * * * * * * * * * * * * * * Global Functions * * * * * * * * * * * * * */
template<class Type>
void component
(
Field<typename Field<Type>::cmptType>& result,
const UList<Type>& f1,
const direction d
)
{
typedef typename Field<Type>::cmptType resultType;
TFOR_ALL_F_OP_F_FUNC_S
(
resultType, result, =, Type, f1, .component, const direction, d
)
}
template<class Type>
void T(Field<Type>& result, const UList<Type>& f1)
{
TFOR_ALL_F_OP_F_FUNC(Type, result, =, Type, f1, T)
}
template<class Type, direction r>
void pow
(
Field<typename powProduct<Type, r>::type>& result,
const UList<Type>& f1
)
{
typedef typename powProduct<Type, r>::type resultType;
TFOR_ALL_F_OP_FUNC_F_S
(
resultType, result, =, pow, Type, f1, resultType,
pTraits<resultType>::zero
)
}
template<class Type, direction r>
tmp<Field<typename powProduct<Type, r>::type>>
pow
(
const UList<Type>& f1,
typename powProduct<Type, r>::type
)
{
typedef typename powProduct<Type, r>::type resultType;
auto tres = tmp<Field<resultType>>::New(f1.size());
pow<Type, r>(tres.ref(), f1);
return tres;
}
template<class Type, direction r>
tmp<Field<typename powProduct<Type, r>::type>>
pow
(
const tmp<Field<Type>>& tf1,
typename powProduct<Type, r>::type
)
{
typedef typename powProduct<Type, r>::type resultType;
auto tres = reuseTmp<resultType, Type>::New(tf1);
pow<Type, r>(tres.ref(), tf1());
tf1.clear();
return tres;
}
template<class Type>
void sqr
(
Field<typename outerProduct<Type, Type>::type>& result,
const UList<Type>& f1
)
{
typedef typename outerProduct<Type, Type>::type resultType;
TFOR_ALL_F_OP_FUNC_F(resultType, result, =, sqr, Type, f1)
}
template<class Type>
tmp<Field<typename outerProduct<Type, Type>::type>>
sqr(const UList<Type>& f1)
{
typedef typename outerProduct<Type, Type>::type resultType;
auto tres = tmp<Field<resultType>>::New(f1.size());
sqr(tres.ref(), f1);
return tres;
}
template<class Type>
tmp<Field<typename outerProduct<Type, Type>::type>>
sqr(const tmp<Field<Type>>& tf1)
{
typedef typename outerProduct<Type, Type>::type resultType;
auto tres = reuseTmp<resultType, Type>::New(tf1);
sqr(tres.ref(), tf1());
tf1.clear();
return tres;
}
template<class Type>
void magSqr
(
Field<typename typeOfMag<Type>::type>& result,
const UList<Type>& f1
)
{
typedef typename typeOfMag<Type>::type resultType;
TFOR_ALL_F_OP_FUNC_F(resultType, result, =, magSqr, Type, f1)
}
template<class Type>
tmp<Field<typename typeOfMag<Type>::type>>
magSqr(const UList<Type>& f1)
{
typedef typename typeOfMag<Type>::type resultType;
auto tres = tmp<Field<resultType>>::New(f1.size());
magSqr(tres.ref(), f1);
return tres;
}
template<class Type>
tmp<Field<typename typeOfMag<Type>::type>>
magSqr(const tmp<Field<Type>>& tf1)
{
typedef typename typeOfMag<Type>::type resultType;
auto tres = reuseTmp<resultType, Type>::New(tf1);
magSqr(tres.ref(), tf1());
tf1.clear();
return tres;
}
template<class Type>
void mag
(
Field<typename typeOfMag<Type>::type>& result,
const UList<Type>& f1
)
{
typedef typename typeOfMag<Type>::type resultType;
TFOR_ALL_F_OP_FUNC_F(resultType, result, =, mag, Type, f1)
}
template<class Type>
tmp<Field<typename typeOfMag<Type>::type>>
mag(const UList<Type>& f1)
{
typedef typename typeOfMag<Type>::type resultType;
auto tres = tmp<Field<resultType>>::New(f1.size());
mag(tres.ref(), f1);
return tres;
}
template<class Type>
tmp<Field<typename typeOfMag<Type>::type>>
mag(const tmp<Field<Type>>& tf1)
{
typedef typename typeOfMag<Type>::type resultType;
auto tres = reuseTmp<resultType, Type>::New(tf1);
mag(tres.ref(), tf1());
tf1.clear();
return tres;
}
template<class Type>
void cmptMax
(
Field<typename Field<Type>::cmptType>& result,
const UList<Type>& f1
)
{
typedef typename Field<Type>::cmptType resultType;
TFOR_ALL_F_OP_FUNC_F(resultType, result, =, cmptMax, Type, f1)
}
template<class Type>
tmp<Field<typename Field<Type>::cmptType>> cmptMax(const UList<Type>& f1)
{
typedef typename Field<Type>::cmptType resultType;
auto tres = tmp<Field<resultType>>::New(f1.size());
cmptMax(tres.ref(), f1);
return tres;
}
template<class Type>
tmp<Field<typename Field<Type>::cmptType>> cmptMax(const tmp<Field<Type>>& tf1)
{
typedef typename Field<Type>::cmptType resultType;
auto tres = reuseTmp<resultType, Type>::New(tf1);
cmptMax(tres.ref(), tf1());
tf1.clear();
return tres;
}
template<class Type>
void cmptMin
(
Field<typename Field<Type>::cmptType>& result,
const UList<Type>& f1
)
{
typedef typename Field<Type>::cmptType resultType;
TFOR_ALL_F_OP_FUNC_F(resultType, result, =, cmptMin, Type, f1)
}
template<class Type>
tmp<Field<typename Field<Type>::cmptType>> cmptMin(const UList<Type>& f1)
{
typedef typename Field<Type>::cmptType resultType;
auto tres = tmp<Field<resultType>>::New(f1.size());
cmptMin(tres.ref(), f1);
return tres;
}
template<class Type>
tmp<Field<typename Field<Type>::cmptType>> cmptMin(const tmp<Field<Type>>& tf1)
{
typedef typename Field<Type>::cmptType resultType;
auto tres = reuseTmp<resultType, Type>::New(tf1);
cmptMin(tres.ref(), tf1());
tf1.clear();
return tres;
}
template<class Type>
void cmptAv
(
Field<typename Field<Type>::cmptType>& result,
const UList<Type>& f1
)
{
typedef typename Field<Type>::cmptType resultType;
TFOR_ALL_F_OP_FUNC_F(resultType, result, =, cmptAv, Type, f1)
}
template<class Type>
tmp<Field<typename Field<Type>::cmptType>> cmptAv(const UList<Type>& f1)
{
typedef typename Field<Type>::cmptType resultType;
auto tres = tmp<Field<resultType>>::New(f1.size());
cmptAv(tres.ref(), f1);
return tres;
}
template<class Type>
tmp<Field<typename Field<Type>::cmptType>> cmptAv(const tmp<Field<Type>>& tf1)
{
typedef typename Field<Type>::cmptType resultType;
auto tres = reuseTmp<resultType, Type>::New(tf1);
cmptAv(tres.ref(), tf1());
tf1.clear();
return tres;
}
template<class Type>
void cmptMag(Field<Type>& result, const UList<Type>& f1)
{
TFOR_ALL_F_OP_FUNC_F(Type, result, =, cmptMag, Type, f1)
}
template<class Type>
tmp<Field<Type>> cmptMag(const UList<Type>& f1)
{
auto tres = tmp<Field<Type>>::New(f1.size());
cmptMag(tres.ref(), f1);
return tres;
}
template<class Type>
tmp<Field<Type>> cmptMag(const tmp<Field<Type>>& tf1)
{
auto tres = New(tf1);
cmptMag(tres.ref(), tf1());
tf1.clear();
return tres;
}
template<class Type>
void cmptMagSqr(Field<Type>& result, const UList<Type>& f1)
{
TFOR_ALL_F_OP_FUNC_F(Type, result, =, cmptMagSqr, Type, f1)
}
template<class Type>
tmp<Field<Type>> cmptMagSqr(const UList<Type>& f1)
{
auto tres = tmp<Field<Type>>::New(f1.size());
cmptMagSqr(tres.ref(), f1);
return tres;
}
template<class Type>
tmp<Field<Type>> cmptMagSqr(const tmp<Field<Type>>& tf1)
{
auto tres = New(tf1);
cmptMagSqr(tres.ref(), tf1());
tf1.clear();
return tres;
}
#define TMP_UNARY_FUNCTION(ReturnType, Func) \
\
template<class Type> \
ReturnType Func(const tmp<Field<Type>>& tf1) \
{ \
ReturnType res = Func(tf1()); \
tf1.clear(); \
return res; \
}
template<class Type>
Type max(const UList<Type>& f1)
{
if (f1.size())
{
Type result(f1[0]);
TFOR_ALL_S_OP_FUNC_F_S(Type, result, =, max, Type, f1, Type, result)
return result;
}
return pTraits<Type>::min;
}
TMP_UNARY_FUNCTION(Type, max)
template<class Type>
Type min(const UList<Type>& f1)
{
if (f1.size())
{
Type result(f1[0]);
TFOR_ALL_S_OP_FUNC_F_S(Type, result, =, min, Type, f1, Type, result)
return result;
}
return pTraits<Type>::max;
}
TMP_UNARY_FUNCTION(Type, min)
template<class Type>
Type sum(const UList<Type>& f1)
{
typedef typename Foam::typeOfSolve<Type>::type resultType;
resultType result = Zero;
if (f1.size())
{
// Use resultType() as functional cast
TFOR_ALL_S_OP_FUNC_F(resultType, result, +=, resultType, Type, f1)
}
return Type(result);
}
TMP_UNARY_FUNCTION(Type, sum)
// From MinMaxOps.H:
// - Foam::minMax(const UList<Type>&)
// - Foam::minMaxMag(const UList<Type>&)
TMP_UNARY_FUNCTION(MinMax<Type>, minMax)
TMP_UNARY_FUNCTION(scalarMinMax, minMaxMag)
template<class Type>
Type maxMagSqr(const UList<Type>& f1)
{
if (f1.size())
{
Type result(f1[0]);
TFOR_ALL_S_OP_FUNC_F_S
(
Type,
result,
=,
maxMagSqrOp<Type>(),
Type,
f1,
Type,
result
)
return result;
}
return Zero;
}
TMP_UNARY_FUNCTION(Type, maxMagSqr)
template<class Type>
Type minMagSqr(const UList<Type>& f1)
{
if (f1.size())
{
Type result(f1[0]);
TFOR_ALL_S_OP_FUNC_F_S
(
Type,
result,
=,
minMagSqrOp<Type>(),
Type,
f1,
Type,
result
)
return result;
}
return pTraits<Type>::rootMax;
}
TMP_UNARY_FUNCTION(Type, minMagSqr)
template<class Type>
typename scalarProduct<Type, Type>::type
sumProd(const UList<Type>& f1, const UList<Type>& f2)
{
typedef typename scalarProduct<Type, Type>::type resultType;
resultType result = Zero;
if (f1.size() && (f1.size() == f2.size()))
{
TFOR_ALL_S_OP_F_OP_F(resultType, result, +=, Type, f1, &&, Type, f2)
}
return result;
}
template<class Type>
Type sumCmptProd(const UList<Type>& f1, const UList<Type>& f2)
{
Type result = Zero;
if (f1.size() && (f1.size() == f2.size()))
{
TFOR_ALL_S_OP_FUNC_F_F
(
Type,
result,
+=,
cmptMultiply,
Type,
f1,
Type,
f2
)
}
return result;
}
template<class Type>
typename outerProduct1<Type>::type
sumSqr(const UList<Type>& f1)
{
typedef typename outerProduct1<Type>::type resultType;
resultType result = Zero;
if (f1.size())
{
TFOR_ALL_S_OP_FUNC_F(resultType, result, +=, sqr, Type, f1)
}
return result;
}
template<class Type>
typename outerProduct1<Type>::type
sumSqr(const tmp<Field<Type>>& tf1)
{
typedef typename outerProduct1<Type>::type resultType;
resultType result = sumSqr(tf1());
tf1.clear();
return result;
}
template<class Type>
typename typeOfMag<Type>::type
sumMag(const UList<Type>& f1)
{
typedef typename typeOfMag<Type>::type resultType;
resultType result = Zero;
if (f1.size())
{
TFOR_ALL_S_OP_FUNC_F(resultType, result, +=, mag, Type, f1)
}
return result;
}
TMP_UNARY_FUNCTION(typename typeOfMag<Type>::type, sumMag)
template<class Type>
Type sumCmptMag(const UList<Type>& f1)
{
Type result = Zero;
if (f1.size())
{
TFOR_ALL_S_OP_FUNC_F(Type, result, +=, cmptMag, Type, f1)
}
return result;
}
TMP_UNARY_FUNCTION(Type, sumCmptMag)
template<class Type>
Type average(const UList<Type>& f1)
{
if (f1.size())
{
Type result = sum(f1)/f1.size();
return result;
}
WarningInFunction
<< "empty field, returning zero" << endl;
return Zero;
}
TMP_UNARY_FUNCTION(Type, average)
// With reduction on ReturnType
#define G_UNARY_FUNCTION(ReturnType, gFunc, Func, rFunc) \
\
template<class Type> \
ReturnType gFunc(const UList<Type>& f, const label comm) \
{ \
ReturnType res = Func(f); \
reduce(res, rFunc##Op<ReturnType>(), UPstream::msgType(), comm); \
return res; \
} \
TMP_UNARY_FUNCTION(ReturnType, gFunc)
G_UNARY_FUNCTION(Type, gMax, max, max)
G_UNARY_FUNCTION(Type, gMin, min, min)
G_UNARY_FUNCTION(Type, gSum, sum, sum)
G_UNARY_FUNCTION(Type, gMaxMagSqr, maxMagSqr, maxMagSqr)
G_UNARY_FUNCTION(Type, gMinMagSqr, minMagSqr, minMagSqr)
G_UNARY_FUNCTION(Type, gSumCmptMag, sumCmptMag, sum)
G_UNARY_FUNCTION(MinMax<Type>, gMinMax, minMax, sum)
G_UNARY_FUNCTION(scalarMinMax, gMinMaxMag, minMaxMag, sum)
G_UNARY_FUNCTION(typename outerProduct1<Type>::type, gSumSqr, sumSqr, sum)
G_UNARY_FUNCTION(typename typeOfMag<Type>::type, gSumMag, sumMag, sum)
#undef G_UNARY_FUNCTION
template<class Type>
typename scalarProduct<Type, Type>::type gSumProd
(
const UList<Type>& f1,
const UList<Type>& f2,
const label comm
)
{
typedef typename scalarProduct<Type, Type>::type resultType;
resultType result = sumProd(f1, f2);
reduce(result, sumOp<resultType>(), UPstream::msgType(), comm);
return result;
}
template<class Type>
Type gSumCmptProd
(
const UList<Type>& f1,
const UList<Type>& f2,
const label comm
)
{
Type result = sumCmptProd(f1, f2);
reduce(result, sumOp<Type>(), UPstream::msgType(), comm);
return result;
}
template<class Type>
Type gAverage
(
const UList<Type>& f1,
const label comm
)
{
label n = f1.size();
Type s = sum(f1);
sumReduce(s, n, UPstream::msgType(), comm);
if (n > 0)
{
Type result = s/n;
return result;
}
WarningInFunction
<< "empty field, returning zero." << endl;
return Zero;
}
TMP_UNARY_FUNCTION(Type, gAverage)
#undef TMP_UNARY_FUNCTION
// Implement BINARY_FUNCTION_TRANSFORM_FS for clamp
template<class Type>
void clamp
(
Field<Type>& result,
const UList<Type>& f1,
const MinMax<Type>& range
)
{
// Note: no checks for bad/invalid clamping ranges
if (result.cdata() == f1.cdata())
{
// Apply in-place
result.clamp_range(range);
}
else
{
std::transform
(
f1.cbegin(),
f1.cbegin(result.size()),
result.begin(),
clampOp<Type>(range)
);
}
}
template<class Type>
void clamp
(
Field<Type>& result,
const UList<Type>& f1,
const Foam::zero_one& // Note: macros generate a const reference
)
{
if (result.cdata() == f1.cdata())
{
// Apply in-place
result.clamp_range(Foam::zero_one{});
}
else
{
std::transform
(
f1.cbegin(),
f1.cbegin(result.size()),
result.begin(),
clampOp<Type>(Foam::zero_one{})
);
}
}
BINARY_FUNCTION_INTERFACE_FS(Type, Type, MinMax<Type>, clamp)
BINARY_FUNCTION_INTERFACE_FS(Type, Type, Foam::zero_one, clamp)
BINARY_FUNCTION(Type, Type, Type, max)
BINARY_FUNCTION(Type, Type, Type, min)
BINARY_FUNCTION(Type, Type, Type, cmptMultiply)
BINARY_FUNCTION(Type, Type, Type, cmptDivide)
BINARY_TYPE_FUNCTION(Type, Type, Type, max)
BINARY_TYPE_FUNCTION(Type, Type, Type, min)
BINARY_TYPE_FUNCTION(Type, Type, Type, cmptMultiply)
BINARY_TYPE_FUNCTION(Type, Type, Type, cmptDivide)
BINARY_TYPE_FUNCTION_FS(Type, Type, MinMax<Type>, clip) // Same as clamp
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * */
TERNARY_FUNCTION(Type, Type, Type, scalar, lerp)
TERNARY_TYPE_FUNCTION_FFS(Type, Type, Type, scalar, lerp)
/* * * * * * * * * * * * * * * * Global Operators * * * * * * * * * * * * * */
UNARY_OPERATOR(Type, Type, -, negate)
BINARY_OPERATOR(Type, Type, scalar, *, multiply)
BINARY_OPERATOR(Type, scalar, Type, *, multiply)
BINARY_OPERATOR(Type, Type, scalar, /, divide)
BINARY_TYPE_OPERATOR_SF(Type, scalar, Type, *, multiply)
BINARY_TYPE_OPERATOR_FS(Type, Type, scalar, *, multiply)
BINARY_TYPE_OPERATOR_FS(Type, Type, scalar, /, divide)
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#define PRODUCT_OPERATOR(product, Op, OpFunc) \
\
template<class Type1, class Type2> \
void OpFunc \
( \
Field<typename product<Type1, Type2>::type>& result, \
const UList<Type1>& f1, \
const UList<Type2>& f2 \
) \
{ \
typedef typename product<Type1, Type2>::type resultType; \
TFOR_ALL_F_OP_F_OP_F(resultType, result, =, Type1, f1, Op, Type2, f2) \
} \
\
template<class Type1, class Type2> \
tmp<Field<typename product<Type1, Type2>::type>> \
operator Op(const UList<Type1>& f1, const UList<Type2>& f2) \
{ \
typedef typename product<Type1, Type2>::type resultType; \
auto tres = tmp<Field<resultType>>::New(f1.size()); \
OpFunc(tres.ref(), f1, f2); \
return tres; \
} \
\
template<class Type1, class Type2> \
tmp<Field<typename product<Type1, Type2>::type>> \
operator Op(const UList<Type1>& f1, const tmp<Field<Type2>>& tf2) \
{ \
typedef typename product<Type1, Type2>::type resultType; \
auto tres = reuseTmp<resultType, Type2>::New(tf2); \
OpFunc(tres.ref(), f1, tf2()); \
tf2.clear(); \
return tres; \
} \
\
template<class Type1, class Type2> \
tmp<Field<typename product<Type1, Type2>::type>> \
operator Op(const tmp<Field<Type1>>& tf1, const UList<Type2>& f2) \
{ \
typedef typename product<Type1, Type2>::type resultType; \
auto tres = reuseTmp<resultType, Type1>::New(tf1); \
OpFunc(tres.ref(), tf1(), f2); \
tf1.clear(); \
return tres; \
} \
\
template<class Type1, class Type2> \
tmp<Field<typename product<Type1, Type2>::type>> \
operator Op(const tmp<Field<Type1>>& tf1, const tmp<Field<Type2>>& tf2) \
{ \
typedef typename product<Type1, Type2>::type resultType; \
auto tres = reuseTmpTmp<resultType, Type1, Type1, Type2>::New(tf1, tf2); \
OpFunc(tres.ref(), tf1(), tf2()); \
tf1.clear(); \
tf2.clear(); \
return tres; \
} \
\
template<class Type, class Form, class Cmpt, direction nCmpt> \
void OpFunc \
( \
Field<typename product<Type, Form>::type>& result, \
const UList<Type>& f1, \
const VectorSpace<Form,Cmpt,nCmpt>& vs \
) \
{ \
typedef typename product<Type, Form>::type resultType; \
TFOR_ALL_F_OP_F_OP_S \
(resultType, result, =,Type, f1, Op, Form, static_cast<const Form&>(vs))\
} \
\
template<class Type, class Form, class Cmpt, direction nCmpt> \
tmp<Field<typename product<Type, Form>::type>> \
operator Op(const UList<Type>& f1, const VectorSpace<Form,Cmpt,nCmpt>& vs) \
{ \
typedef typename product<Type, Form>::type resultType; \
auto tres = tmp<Field<resultType>>::New(f1.size()); \
OpFunc(tres.ref(), f1, static_cast<const Form&>(vs)); \
return tres; \
} \
\
template<class Type, class Form, class Cmpt, direction nCmpt> \
tmp<Field<typename product<Type, Form>::type>> \
operator Op \
( \
const tmp<Field<Type>>& tf1, \
const VectorSpace<Form,Cmpt,nCmpt>& vs \
) \
{ \
typedef typename product<Type, Form>::type resultType; \
auto tres = reuseTmp<resultType, Type>::New(tf1); \
OpFunc(tres.ref(), tf1(), static_cast<const Form&>(vs)); \
tf1.clear(); \
return tres; \
} \
\
template<class Form, class Cmpt, direction nCmpt, class Type> \
void OpFunc \
( \
Field<typename product<Form, Type>::type>& result, \
const VectorSpace<Form,Cmpt,nCmpt>& vs, \
const UList<Type>& f1 \
) \
{ \
typedef typename product<Form, Type>::type resultType; \
TFOR_ALL_F_OP_S_OP_F \
(resultType, result, =,Form,static_cast<const Form&>(vs), Op, Type, f1)\
} \
\
template<class Form, class Cmpt, direction nCmpt, class Type> \
tmp<Field<typename product<Form, Type>::type>> \
operator Op(const VectorSpace<Form,Cmpt,nCmpt>& vs, const UList<Type>& f1) \
{ \
typedef typename product<Form, Type>::type resultType; \
auto tres = tmp<Field<resultType>>::New(f1.size()); \
OpFunc(tres.ref(), static_cast<const Form&>(vs), f1); \
return tres; \
} \
\
template<class Form, class Cmpt, direction nCmpt, class Type> \
tmp<Field<typename product<Form, Type>::type>> \
operator Op \
( \
const VectorSpace<Form,Cmpt,nCmpt>& vs, const tmp<Field<Type>>& tf1 \
) \
{ \
typedef typename product<Form, Type>::type resultType; \
auto tres = reuseTmp<resultType, Type>::New(tf1); \
OpFunc(tres.ref(), static_cast<const Form&>(vs), tf1()); \
tf1.clear(); \
return tres; \
}
PRODUCT_OPERATOR(typeOfSum, +, add)
PRODUCT_OPERATOR(typeOfSum, -, subtract)
PRODUCT_OPERATOR(outerProduct, *, outer)
PRODUCT_OPERATOR(crossProduct, ^, cross)
PRODUCT_OPERATOR(innerProduct, &, dot)
PRODUCT_OPERATOR(scalarProduct, &&, dotdot)
#undef PRODUCT_OPERATOR
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace Foam
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#include "undefFieldFunctionsM.H"
// ************************************************************************* //