Files
openfoam/applications/solvers/multiphase/icoReactingMultiphaseInterFoam/phasesSystem/phaseSystem/phaseSystem.H
Sergio Ferraris 8170f2ad92 INT: Org integration of VOF, Euler phase solvers and models.
Integration of VOF MULES new interfaces. Update of VOF solvers and all instances
of MULES in the code.
Integration of reactingTwoPhaseEuler and reactingMultiphaseEuler solvers and sub-models
Updating reactingEuler tutorials accordingly (most of them tested)

New eRefConst thermo used in tutorials. Some modifications at thermo specie level
affecting mostly eThermo. hThermo mostly unaffected

New chtMultiRegionTwoPhaseEulerFoam solver for quenching and tutorial.

Phases sub-models for reactingTwoPhaseEuler and reactingMultiphaseEuler were moved
to src/phaseSystemModels/reactingEulerFoam in order to be used by BC for
chtMultiRegionTwoPhaseEulerFoam.

Update of interCondensatingEvaporatingFoam solver.
2019-06-07 09:38:35 +01:00

636 lines
17 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2017 OpenCFD Ltd.
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Class
Foam::phaseSystem
Description
SourceFiles
phaseSystem.C
\*---------------------------------------------------------------------------*/
#ifndef phaseSystem_H
#define phaseSystem_H
#include "basicThermo.H"
#include "phaseModel.H"
#include "phasePair.H"
#include "orderedPhasePair.H"
#include "volFields.H"
#include "surfaceFields.H"
#include "fvMatricesFwd.H"
#include "compressibleTransportModel.H"
#include "localMin.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
class surfaceTensionModel;
class porousModel;
/*---------------------------------------------------------------------------*\
Class phaseSystem Declaration
\*---------------------------------------------------------------------------*/
class phaseSystem
:
public basicThermo,
public compressibleTransportModel
{
public:
// Public typedefs
typedef
HashTable
<
autoPtr<phasePair>, phasePairKey, phasePairKey::hash
>
phasePairTable;
typedef HashTable<autoPtr<phaseModel>> phaseModelTable;
protected:
// Protected typedefs
typedef
HashTable<dictionary, phasePairKey, phasePairKey::hash> dictTable;
typedef
HashTable
<
autoPtr<surfaceTensionModel>,
phasePairKey,
phasePairKey::hash
>
surfaceTensionModelTable;
typedef
HashTable
<
autoPtr<porousModel>,
phasePairKey,
phasePairKey::hash
>
interfacePorousModelTable;
// Protected data
//- Reference to the mesh
const fvMesh& mesh_;
//- Phase names
wordList phaseNames_;
//- Mixture total volumetric flux
surfaceScalarField phi_;
//- Mixture total mass flux
surfaceScalarField rhoPhi_;
//- Phase models
phaseModelTable phaseModels_;
//- Phase pairs
phasePairTable phasePairs_;
//- Total ordered phase pairs in the system
phasePairTable totalPhasePairs_;
//- Turbulent Prandt number
dimensionedScalar Prt_;
// Sub Models
//- Surface tension models
surfaceTensionModelTable surfaceTensionModels_;
//- Interface porous models
interfacePorousModelTable interfacePorousModelTable_;
// Protected member functions
//- Generate the phases
HashTable<autoPtr<phaseModel>> generatePhaseModels
(
const wordList& names
) const;
//- Generate the mixture flux
tmp<surfaceScalarField> generatePhi
(
const HashTable<autoPtr<phaseModel>>& phaseModels
) const;
//- Generate pairs
void generatePairs(const dictTable& modelDicts);
//- Generate pair table
void generatePairsTable();
//- Generate pairs and sub-model tables using pair keys
template<class modelType>
void createSubModels
(
const dictTable& modelDicts,
HashTable
<
autoPtr<modelType>,
phasePairKey,
phasePairKey::hash
>& models
);
//- Generate pairs and sub-model tables using mesh
template<class modelType>
void createSubModels
(
const dictTable& modelDicts,
const fvMesh& mesh,
HashTable
<
autoPtr<modelType>,
phasePairKey,
phasePairKey::hash
>& models
);
//- Generate pairs and sub-model tables
template<class modelType>
void generatePairsAndSubModels
(
const word& modelName,
HashTable
<
autoPtr<modelType>,
phasePairKey,
phasePairKey::hash
>& models
);
//- Generate pairs and per-phase sub-model tables with mesh ref
template<class modelType>
void generatePairsAndSubModels
(
const word& modelName,
const fvMesh& mesh,
HashTable
<
autoPtr<modelType>,
phasePairKey,
phasePairKey::hash
>& models
);
//- Generate pairs and per-phase sub-model tables
template<class modelType>
void generatePairsAndSubModels
(
const word& modelName,
HashTable
<
HashTable<autoPtr<modelType>>,
phasePairKey,
phasePairKey::hash
>& models
);
public:
//- Runtime type information
TypeName("phaseSystem");
//- Default name of the phase properties dictionary
static const word phasePropertiesName;
// Constructors
//- Construct from fvMesh
phaseSystem(const fvMesh& mesh);
//- Destructor
virtual ~phaseSystem();
// Energy related thermo functionaliy functions
//- Return access to the inernal energy field [J/Kg]
// NOTE: this mixture thermo is prepared to to work with T
virtual volScalarField& he()
{
NotImplemented;
return const_cast<volScalarField&>(volScalarField::null());
}
//- Return access to the inernal energy field [J/Kg]
// NOTE: this mixture thermo is prepared to to work with T
virtual const volScalarField& he() const
{
NotImplemented;
return volScalarField::null();
}
//- Enthalpy/Internal energy
// for given pressure and temperature [J/kg]
virtual tmp<volScalarField> he
(
const volScalarField& p,
const volScalarField& T
) const;
//- Enthalpy/Internal energy for cell-set [J/kg]
virtual tmp<scalarField> he
(
const scalarField& p,
const scalarField& T,
const labelList& cells
) const;
//- Enthalpy/Internal energy for patch [J/kg]
virtual tmp<scalarField> he
(
const scalarField& p,
const scalarField& T,
const label patchi
) const;
//- Chemical enthalpy of the mixture [J/kg]
virtual tmp<volScalarField> hc() const;
//- Temperature from enthalpy/internal energy for cell-set
virtual tmp<scalarField> THE
(
const scalarField& h,
const scalarField& p,
const scalarField& T0,
const labelList& cells
) const;
//- Temperature from enthalpy/internal energy for patch
virtual tmp<scalarField> THE
(
const scalarField& h,
const scalarField& p,
const scalarField& T0,
const label patchi
) const;
// Thermo
//- Return the mixture density
virtual tmp<volScalarField> rho() const;
//- Return the mixture density on a patch
virtual tmp<scalarField> rho(const label patchi) const;
//- Return Cp of the mixture
virtual tmp<volScalarField> Cp() const;
//- Heat capacity at constant pressure for patch [J/kg/K]
virtual tmp<scalarField> Cp
(
const scalarField& p,
const scalarField& T,
const label patchi
) const;
//- Return Cv of the mixture
virtual tmp<volScalarField> Cv() const;
//- Heat capacity at constant volume for patch [J/kg/K]
virtual tmp<scalarField> Cv
(
const scalarField& p,
const scalarField& T,
const label patchI
) const;
//- Gamma = Cp/Cv []
virtual tmp<volScalarField> gamma() const;
//- Gamma = Cp/Cv for patch []
virtual tmp<scalarField> gamma
(
const scalarField& p,
const scalarField& T,
const label patchi
) const;
//- Heat capacity at constant pressure/volume [J/kg/K]
virtual tmp<volScalarField> Cpv() const;
//- Heat capacity at constant pressure/volume for patch [J/kg/K]
virtual tmp<scalarField> Cpv
(
const scalarField& p,
const scalarField& T,
const label patchi
) const;
//- Heat capacity ratio []
virtual tmp<volScalarField> CpByCpv() const;
//- Heat capacity ratio for patch []
virtual tmp<scalarField> CpByCpv
(
const scalarField& p,
const scalarField& T,
const label patchi
) const;
//- Molecular weight [kg/kmol] of the mixture
virtual tmp<volScalarField> W() const;
// Transport
//- Thermal diffusivity for temperature of mixture [J/m/s/K]
virtual tmp<volScalarField> kappa() const;
//- Thermal diffusivity for temperature
// of mixture for patch [J/m/s/K]
virtual tmp<scalarField> kappa
(
const label patchi
) const;
//- Thermal diffusivity for energy of mixture [kg/m/s]
virtual tmp<volScalarField> alphahe() const;
//- Thermal diffusivity for energy of mixture for patch [kg/m/s]
virtual tmp<scalarField> alphahe(const label patchi) const;
//- Effective thermal diffusivity for temperature
// of mixture [J/m/s/K]
virtual tmp<volScalarField> kappaEff
(
const volScalarField& kappat
) const;
//- Effective thermal diffusivity for temperature
// of mixture for patch [J/m/s/K]
virtual tmp<scalarField> kappaEff
(
const scalarField& alphat,
const label patchi
) const;
//- Effective thermal diffusivity of mixture [kg/m/s]
virtual tmp<volScalarField> alphaEff
(
const volScalarField& alphat
) const;
//- Effective thermal diffusivity of mixture for patch [kg/m/s]
virtual tmp<scalarField> alphaEff
(
const scalarField& alphat,
const label patchi
) const;
//- Return Prandt number
const dimensionedScalar& Prt() const;
// Access to transport state variables
//- Dynamic viscosity of mixture [kg/m/s]
virtual tmp<volScalarField> mu() const;
//- Dynamic viscosity of mixture for patch [kg/m/s]
virtual tmp<scalarField> mu(const label patchi) const;
//- Kinematic viscosity of mixture [m^2/s]
virtual tmp<volScalarField> nu() const;
//- Kinematic viscosity of mixture for patch [m^2/s]
virtual tmp<scalarField> nu(const label patchi) const;
// Phase fluxes
//- Constant access to the total flux
const surfaceScalarField& phi() const;
//- Access to the total mixture flux
surfaceScalarField& phi();
//- Constant access to the mixture mass flux
const surfaceScalarField& rhoPhi() const;
//- Access to the total mixture mass flux
surfaceScalarField& rhoPhi();
//- Mixture U
tmp<volVectorField> U() const;
// Surface tension
//- Calculate surface tension of the mixture
tmp<surfaceScalarField> surfaceTensionForce() const;
//- Return the surface tension coefficient
virtual tmp<volScalarField> surfaceTensionCoeff
(
const phasePairKey& key
) const;
//- Return coefficients (1/rho)
virtual tmp<volScalarField> coeffs(const word& key) const;
// Interface porous between solid/fluid phases
//- Add interface porosity on phasePair
void addInterfacePorosity(fvVectorMatrix& UEqn);
// Inter-Phase mass and heat transfe
//- Return interfacial source mass rate per phase pair
virtual tmp<volScalarField> dmdt(const phasePairKey& key) const = 0;
//- Return the heat transfer matrices
virtual tmp<fvScalarMatrix> heatTransfer
(
const volScalarField& T
) = 0;
//- Calculate mass transfer
//virtual void massTransfer(const volScalarField& T) = 0;
//- Calculate mass transfer for species
virtual void massSpeciesTransfer
(
const phaseModel& phase,
volScalarField::Internal& Su,
volScalarField::Internal& Sp,
const word speciesName
) = 0;
// Solve phases and correct models
//- Solve for the phase transport equations
virtual void solve() = 0;
//- Correct the mixture thermos
virtual void correct();
//- Return the name of the thermo physics
virtual word thermoName() const
{
NotImplemented
return word();
}
//- Correct the turbulence
// (NOTE: Each phase could help its own turbulence)
virtual void correctTurbulence();
//- Read base phaseProperties dictionary
virtual bool read();
// Access to phases models
//- Constant access the total phase pairs
const phasePairTable& totalPhasePairs() const;
//- Non-constant access the total phase pairs
phasePairTable& totalPhasePairs();
//- Constant access the phases
const phaseModelTable& phases() const;
//- Access the phases
phaseModelTable& phases();
//- Access a sub model between a phase pair
template <class modelType>
const modelType& lookupSubModel(const phasePair& key) const;
//- Access a sub model between two phases
template <class modelType>
const modelType& lookupSubModel
(
const phaseModel& from,
const phaseModel& to
) const;
// Query phase thermo information
//- Return true if the equation of state is incompressible for all
// phases
virtual bool incompressible() const;
//- Return true if a phase is incompressible
virtual bool incompressible(const word) const;
//- Return true if the equation of state is isochoric for all phasses
// i.e. rho = const
virtual bool isochoric() const;
//- Return mesh
const fvMesh& mesh() const;
// Help functions for the interfaces
//- Interface normal surface vector
tmp<surfaceVectorField> nHatfv
(
const volScalarField& alpha1,
const volScalarField& alpha2
) const;
//- Interface normal volume vector
tmp<surfaceScalarField> nHatf
(
const volScalarField& alpha1,
const volScalarField& alpha2
) const;
//- Interface curvature
tmp<volScalarField> K
(
const volScalarField& alpha1,
const volScalarField& alpha2
) const;
//- Near Interface of alpha1 and alpha2
tmp<volScalarField> nearInterface
(
const volScalarField& alpha1,
const volScalarField& alpha2
) const;
//- Near Interface of alpha'n
tmp<volScalarField> nearInterface() const;
};
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace Foam
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#ifdef NoRepository
# include "phaseSystemTemplates.H"
#endif
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#endif
// ************************************************************************* //