Files
openfoam/tutorials/resources/dataset/atm-HargreavesWright-2007/mut-RH-Fig6d
Kutalmis Bercin 336fb3bddf ENH: improve/verify atmBoundaryLayerInlet conditions
ENH: add generalised log-law type ground-normal inflow boundary conditions for
  wind velocity and turbulence quantities for homogeneous, two-dimensional,
  dry-air, equilibrium and neutral atmospheric boundary layer (ABL) modelling

  ENH: remove `zGround` entry, which is now automatically computed

  ENH: add `displacement height` entry, `d`

  ENH: add generalised atmBoundaryLayerInletOmega boundary condition

  ENH: add a verification case for atmBoundaryLayerInlet BCs

  DOC: improve atmBoundaryLayerInlet header documentation

  BUG: fix value-entry behaviour in atmBoundaryLayerInlet (fixes #1578)
  Without this change:
  - for serial-parallel computations, if `value` entry is available in
    an `atmBoundaryLayerInlet` BC, the theoretical ABL profile expressions
    are not computed, and the `value` entry content is used as a profile data
  - for parallel computations, if `value` entry is not available, `decomposePar`
    could not be executed.
  With this change:
  - assuming `value` entry is always be present, the use of `value` entry for
    the ABL profile specification is determined by a flag `initABL`
  - the default value of the optional flag `initABL` is `true`, but whenever
    `initABL=true` is executed, `initABL` is overwritten as `false` for the
    subsequent runs, so that `value` entry can be safely used.
  Thanks Per Jørgensen for the bug report.

  BUG: ensure atmBoundaryInlet conditions are Galilean-invariant (fixes #1692)

  Related references:

      The ground-normal profile expressions (tag:RH):
        Richards, P. J., & Hoxey, R. P. (1993).
        Appropriate boundary conditions for computational wind
        engineering models using the k-ε turbulence model.
        In Computational Wind Engineering 1 (pp. 145-153).
        DOI:10.1016/B978-0-444-81688-7.50018-8

    Modifications to preserve the profiles downstream (tag:HW):
        Hargreaves, D. M., & Wright, N. G. (2007).
        On the use of the k–ε model in commercial CFD software
        to model the neutral atmospheric boundary layer.
        Journal of wind engineering and
        industrial aerodynamics, 95(5), 355-369.
        DOI:10.1016/j.jweia.2006.08.002

    Expression generalisations to allow height
    variation for turbulence quantities (tag:YGCJ):
        Yang, Y., Gu, M., Chen, S., & Jin, X. (2009).
        New inflow boundary conditions for modelling the neutral equilibrium
        atmospheric boundary layer in computational wind engineering.
        J. of Wind Engineering and Industrial Aerodynamics, 97(2), 88-95.
        DOI:10.1016/j.jweia.2008.12.001

    The generalised ground-normal profile expression for omega (tag:YGJ):
        Yang, Y., Gu, M., & Jin, X., (2009).
        New inflow boundary conditions for modelling the
        neutral equilibrium atmospheric boundary layer in SST k-ω model.
        In: The Seventh Asia-Pacific Conference on Wind Engineering,
        November 8-12, Taipei, Taiwan.

  Reproduced benchmark:
      Rectangular prism shown in FIG 1 of
        Hargreaves, D. M., & Wright, N. G. (2007).
        On the use of the k–ε model in commercial CFD software
        to model the neutral atmospheric boundary layer.
        Journal of wind engineering and
        industrial aerodynamics, 95(5), 355-369.
        DOI:10.1016/j.jweia.2006.08.002
  Benchmark data:
      HW, 2007 FIG 6

  TUT: update simpleFoam/turbineSiting tutorial accordingly
2020-06-05 14:40:53 +01:00

43 lines
1.6 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Hargreaves, D. M., & Wright, N. G. (2007).
# On the use of the kε model in commercial CFD software
# to model the neutral atmospheric boundary layer.
# Journal of wind engineering and
# industrial aerodynamics, 95(5), 355-369.
# DOI:10.1016/j.jweia.2006.08.002
# Fig. 6d
1.2063188128291067, 0.6453804347826093
3.6189564384873165, 1.936141304347828
5.801819052178079, 3.0910326086956488
8.099569171852565, 4.449728260869563
10.741981809478219, 5.842391304347821
13.097175682144567, 7.1331521739130395
15.165150789851609, 8.254076086956516
17.46290090952609, 9.544836956521735
19.932982288176163, 10.835597826086953
22.805169937769264, 12.398097826086953
25.67735758736238, 13.960597826086953
28.319770224988034, 15.455163043478258
30.962182862613687, 16.813858695652172
33.489707994255625, 18.24048913043478
35.67257060794638, 19.39538043478261
37.97032072762087, 20.686141304347824
40.26807084729536, 21.976902173913043
42.967927237912875, 23.403532608695652
45.55289612254667, 24.728260869565215
47.7932024892293, 26.05298913043478
50.20584011488751, 27.377717391304348
52.7908089995213, 28.77038043478261
55.72044040210628, 30.4008152173913
59.052178075634274, 32.13315217391304
61.86692197223552, 33.661684782608695
64.73910962182862, 35.224184782608695
67.32407850646241, 36.71875
70.02393489707994, 38.17934782608695
72.43657252273816, 39.43614130434783
74.61943513642892, 40.692934782608695
77.14696026807086, 42.08559782608695
79.90426041168023, 43.58016304347826
82.77644806127334, 45.14266304347826
85.99329822881762, 46.908967391304344
88.75059837242699, 48.40353260869565
91.16323599808521, 49.69429347826087