Files
openfoam/src/postProcessing/functionObjects/field/streamLine/streamLineParticle.C
Henry Weller c4d5f65a10 Completed update ...ErrorIn -> ...ErrorInFunction
Avoids the clutter and maintenance effort associated with providing the
function signature string.
2015-11-11 09:03:39 +00:00

508 lines
12 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2015 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "streamLineParticle.H"
#include "vectorFieldIOField.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
// defineParticleTypeNameAndDebug(streamLineParticle, 0);
}
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
Foam::scalar Foam::streamLineParticle::calcSubCycleDeltaT
(
trackingData& td,
const scalar dt,
const vector& U
) const
{
particle testParticle(*this);
bool oldKeepParticle = td.keepParticle;
bool oldSwitchProcessor = td.switchProcessor;
scalar fraction = testParticle.trackToFace(position()+dt*U, td);
td.keepParticle = oldKeepParticle;
td.switchProcessor = oldSwitchProcessor;
// Adapt the dt to subdivide the trajectory into substeps.
return dt*fraction/td.nSubCycle_;
}
Foam::vector Foam::streamLineParticle::interpolateFields
(
const trackingData& td,
const point& position,
const label cellI,
const label faceI
)
{
if (cellI == -1)
{
FatalErrorInFunction
<< "Cell:" << cellI << abort(FatalError);
}
sampledScalars_.setSize(td.vsInterp_.size());
forAll(td.vsInterp_, scalarI)
{
sampledScalars_[scalarI].append
(
td.vsInterp_[scalarI].interpolate
(
position,
cellI,
faceI
)
);
}
sampledVectors_.setSize(td.vvInterp_.size());
forAll(td.vvInterp_, vectorI)
{
sampledVectors_[vectorI].append
(
td.vvInterp_[vectorI].interpolate
(
position,
cellI,
faceI
)
);
}
const DynamicList<vector>& U = sampledVectors_[td.UIndex_];
return U.last();
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::streamLineParticle::streamLineParticle
(
const polyMesh& mesh,
const vector& position,
const label cellI,
const label lifeTime
)
:
particle(mesh, position, cellI),
lifeTime_(lifeTime)
{}
Foam::streamLineParticle::streamLineParticle
(
const polyMesh& mesh,
Istream& is,
bool readFields
)
:
particle(mesh, is, readFields)
{
if (readFields)
{
//if (is.format() == IOstream::ASCII)
List<scalarList> sampledScalars;
List<vectorList> sampledVectors;
is >> lifeTime_ >> sampledPositions_ >> sampledScalars
>> sampledVectors;
sampledScalars_.setSize(sampledScalars.size());
forAll(sampledScalars, i)
{
sampledScalars_[i].transfer(sampledScalars[i]);
}
sampledVectors_.setSize(sampledVectors.size());
forAll(sampledVectors, i)
{
sampledVectors_[i].transfer(sampledVectors[i]);
}
}
// Check state of Istream
is.check
(
"streamLineParticle::streamLineParticle"
"(const Cloud<streamLineParticle>&, Istream&, bool)"
);
}
Foam::streamLineParticle::streamLineParticle
(
const streamLineParticle& p
)
:
particle(p),
lifeTime_(p.lifeTime_),
sampledPositions_(p.sampledPositions_),
sampledScalars_(p.sampledScalars_)
{}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
bool Foam::streamLineParticle::move
(
trackingData& td,
const scalar trackTime
)
{
streamLineParticle& p = static_cast<streamLineParticle&>(*this);
td.switchProcessor = false;
td.keepParticle = true;
scalar tEnd = (1.0 - stepFraction())*trackTime;
scalar maxDt = mesh_.bounds().mag();
while
(
td.keepParticle
&& !td.switchProcessor
&& lifeTime_ > 0
)
{
// set the lagrangian time-step
scalar dt = maxDt;
// Cross cell in steps:
// - at subiter 0 calculate dt to cross cell in nSubCycle steps
// - at the last subiter do all of the remaining track
for (label subIter = 0; subIter < td.nSubCycle_; subIter++)
{
--lifeTime_;
// Store current position and sampled velocity.
sampledPositions_.append(position());
vector U = interpolateFields(td, position(), cell(), face());
if (!td.trackForward_)
{
U = -U;
}
scalar magU = mag(U);
if (magU < SMALL)
{
// Stagnant particle. Might as well stop
lifeTime_ = 0;
break;
}
U /= magU;
if (td.trackLength_ < GREAT)
{
dt = td.trackLength_;
//Pout<< " subiteration " << subIter
// << " : fixed length: updated dt:" << dt << endl;
}
else if (subIter == 0 && td.nSubCycle_ > 1)
{
// Adapt dt to cross cell in a few steps
dt = calcSubCycleDeltaT(td, dt, U);
}
else if (subIter == td.nSubCycle_ - 1)
{
// Do full step on last subcycle
dt = maxDt;
}
scalar fraction = trackToFace(position() + dt*U, td);
dt *= fraction;
tEnd -= dt;
stepFraction() = 1.0 - tEnd/trackTime;
if (tEnd <= ROOTVSMALL)
{
// Force removal
lifeTime_ = 0;
}
if
(
face() != -1
|| !td.keepParticle
|| td.switchProcessor
|| lifeTime_ == 0
)
{
break;
}
}
}
if (!td.keepParticle || lifeTime_ == 0)
{
if (lifeTime_ == 0)
{
if (debug)
{
Pout<< "streamLineParticle : Removing stagnant particle:"
<< p.position()
<< " sampled positions:" << sampledPositions_.size()
<< endl;
}
td.keepParticle = false;
}
else
{
// Normal exit. Store last position and fields
sampledPositions_.append(position());
interpolateFields(td, position(), cell(), face());
if (debug)
{
Pout<< "streamLineParticle : Removing particle:"
<< p.position()
<< " sampled positions:" << sampledPositions_.size()
<< endl;
}
}
// Transfer particle data into trackingData.
//td.allPositions_.append(sampledPositions_);
td.allPositions_.append(vectorList());
vectorList& top = td.allPositions_.last();
top.transfer(sampledPositions_);
forAll(sampledScalars_, i)
{
//td.allScalars_[i].append(sampledScalars_[i]);
td.allScalars_[i].append(scalarList());
scalarList& top = td.allScalars_[i].last();
top.transfer(sampledScalars_[i]);
}
forAll(sampledVectors_, i)
{
//td.allVectors_[i].append(sampledVectors_[i]);
td.allVectors_[i].append(vectorList());
vectorList& top = td.allVectors_[i].last();
top.transfer(sampledVectors_[i]);
}
}
return td.keepParticle;
}
bool Foam::streamLineParticle::hitPatch
(
const polyPatch&,
trackingData& td,
const label patchI,
const scalar trackFraction,
const tetIndices& tetIs
)
{
// Disable generic patch interaction
return false;
}
void Foam::streamLineParticle::hitWedgePatch
(
const wedgePolyPatch& pp,
trackingData& td
)
{
// Remove particle
td.keepParticle = false;
}
void Foam::streamLineParticle::hitSymmetryPlanePatch
(
const symmetryPlanePolyPatch& pp,
trackingData& td
)
{
// Remove particle
td.keepParticle = false;
}
void Foam::streamLineParticle::hitSymmetryPatch
(
const symmetryPolyPatch& pp,
trackingData& td
)
{
// Remove particle
td.keepParticle = false;
}
void Foam::streamLineParticle::hitCyclicPatch
(
const cyclicPolyPatch& pp,
trackingData& td
)
{
// Remove particle
td.keepParticle = false;
}
void Foam::streamLineParticle::hitProcessorPatch
(
const processorPolyPatch&,
trackingData& td
)
{
// Switch particle
td.switchProcessor = true;
}
void Foam::streamLineParticle::hitWallPatch
(
const wallPolyPatch& wpp,
trackingData& td,
const tetIndices&
)
{
// Remove particle
td.keepParticle = false;
}
void Foam::streamLineParticle::hitPatch
(
const polyPatch& wpp,
trackingData& td
)
{
// Remove particle
td.keepParticle = false;
}
void Foam::streamLineParticle::readFields(Cloud<streamLineParticle>& c)
{
if (!c.size())
{
return;
}
particle::readFields(c);
IOField<label> lifeTime
(
c.fieldIOobject("lifeTime", IOobject::MUST_READ)
);
c.checkFieldIOobject(c, lifeTime);
vectorFieldIOField sampledPositions
(
c.fieldIOobject("sampledPositions", IOobject::MUST_READ)
);
c.checkFieldIOobject(c, sampledPositions);
// vectorFieldIOField sampleVelocity
// (
// c.fieldIOobject("sampleVelocity", IOobject::MUST_READ)
// );
// c.checkFieldIOobject(c, sampleVelocity);
label i = 0;
forAllIter(Cloud<streamLineParticle>, c, iter)
{
iter().lifeTime_ = lifeTime[i];
iter().sampledPositions_.transfer(sampledPositions[i]);
// iter().sampleVelocity_.transfer(sampleVelocity[i]);
i++;
}
}
void Foam::streamLineParticle::writeFields(const Cloud<streamLineParticle>& c)
{
particle::writeFields(c);
label np = c.size();
IOField<label> lifeTime
(
c.fieldIOobject("lifeTime", IOobject::NO_READ),
np
);
vectorFieldIOField sampledPositions
(
c.fieldIOobject("sampledPositions", IOobject::NO_READ),
np
);
// vectorFieldIOField sampleVelocity
// (
// c.fieldIOobject("sampleVelocity", IOobject::NO_READ),
// np
// );
label i = 0;
forAllConstIter(Cloud<streamLineParticle>, c, iter)
{
lifeTime[i] = iter().lifeTime_;
sampledPositions[i] = iter().sampledPositions_;
// sampleVelocity[i] = iter().sampleVelocity_;
i++;
}
lifeTime.write();
sampledPositions.write();
// sampleVelocity.write();
}
// * * * * * * * * * * * * * * * IOstream Operators * * * * * * * * * * * * //
Foam::Ostream& Foam::operator<<(Ostream& os, const streamLineParticle& p)
{
os << static_cast<const particle&>(p)
<< token::SPACE << p.lifeTime_
<< token::SPACE << p.sampledPositions_
<< token::SPACE << p.sampledScalars_
<< token::SPACE << p.sampledVectors_;
// Check state of Ostream
os.check("Ostream& operator<<(Ostream&, const streamLineParticle&)");
return os;
}
// ************************************************************************* //