Files
openfoam/src/regionModels/thermoBaffleModels/thermoBaffle2D/thermoBaffle2D.C
Henry ca2ad8032e Thermodynamics: Completed dictionary based selection mechanisms for all thermodynamic packages
Rationalised "make" macros to reduce code duplication
Removed solid phase radiation properties
Updated tutorials appropriately
2012-10-03 22:43:50 +01:00

381 lines
8.9 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2012 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
\*---------------------------------------------------------------------------*/
#include "thermoBaffle2D.H"
#include "fvm.H"
#include "fvcDiv.H"
#include "addToRunTimeSelectionTable.H"
#include "zeroGradientFvPatchFields.H"
#include "fvMatrices.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
namespace regionModels
{
namespace thermoBaffleModels
{
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
defineTypeNameAndDebug(thermoBaffle2D, 0);
addToRunTimeSelectionTable(thermoBaffleModel, thermoBaffle2D, mesh);
addToRunTimeSelectionTable(thermoBaffleModel, thermoBaffle2D, dictionary);
// * * * * * * * * * * * * Protected Member Functions * * * * * * * * * * * //
bool thermoBaffle2D::read()
{
this->solution().lookup("nNonOrthCorr") >> nNonOrthCorr_;
return regionModel1D::read();
}
bool thermoBaffle2D::read(const dictionary& dict)
{
this->solution().lookup("nNonOrthCorr") >> nNonOrthCorr_;
return regionModel1D::read(dict);
}
void thermoBaffle2D::solveEnergy()
{
if (debug)
{
Info<< "thermoBaffle2D::solveEnergy()" << endl;
}
const polyBoundaryMesh& rbm = regionMesh().boundaryMesh();
tmp<volScalarField> tQ
(
new volScalarField
(
IOobject
(
"tQ",
regionMesh().time().timeName(),
regionMesh(),
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
regionMesh(),
dimensionedScalar("zero", dimEnergy/dimVolume/dimTime, 0.0)
)
);
volScalarField& Q = tQ();
volScalarField rho("rho", thermo_->rho());
volScalarField alpha("alpha", thermo_->alpha());
//If region is one-dimension variable thickness
if (oneD_ && !constantThickness_)
{
// Scale K and rhoCp and fill Q in the internal baffle region.
const label patchI = intCoupledPatchIDs_[0];
const polyPatch& ppCoupled = rbm[patchI];
forAll(ppCoupled, localFaceI)
{
const labelList& cells = boundaryFaceCells_[localFaceI];
forAll (cells, i)
{
const label cellId = cells[i];
Q[cellId] =
Qs_.boundaryField()[patchI][localFaceI]
/thickness_[localFaceI];
rho[cellId] *= delta_.value()/thickness_[localFaceI];
alpha[cellId] *= delta_.value()/thickness_[localFaceI];
}
}
}
else
{
Q = Q_;
}
fvScalarMatrix hEqn
(
fvm::ddt(rho, h_)
- fvm::laplacian(alpha, h_)
==
Q
);
if (moveMesh_)
{
surfaceScalarField phiMesh
(
fvc::interpolate(rho*h_)*regionMesh().phi()
);
hEqn -= fvc::div(phiMesh);
}
hEqn.relax();
hEqn.solve();
thermo_->correct();
Info<< "T min/max = " << min(thermo_->T()) << ", "
<< max(thermo_->T()) << endl;
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
thermoBaffle2D::thermoBaffle2D
(
const word& modelType,
const fvMesh& mesh,
const dictionary& dict
)
:
thermoBaffleModel(modelType, mesh, dict),
nNonOrthCorr_(readLabel(solution().lookup("nNonOrthCorr"))),
thermo_(solidThermo::New(regionMesh(), dict)),
h_(thermo_->he()),
Qs_
(
IOobject
(
"Qs",
regionMesh().time().timeName(),
regionMesh(),
IOobject::READ_IF_PRESENT,
IOobject::NO_WRITE
),
regionMesh(),
dimensionedScalar
(
"zero",
dimEnergy/dimArea/dimTime,
pTraits<scalar>::zero
)
),
Q_
(
IOobject
(
"Q",
regionMesh().time().timeName(),
regionMesh(),
IOobject::READ_IF_PRESENT,
IOobject::NO_WRITE
),
regionMesh(),
dimensionedScalar
(
"zero",
dimEnergy/dimVolume/dimTime,
pTraits<scalar>::zero
)
)
{
init();
thermo_->correct();
}
thermoBaffle2D::thermoBaffle2D
(
const word& modelType,
const fvMesh& mesh
)
:
thermoBaffleModel(modelType, mesh),
nNonOrthCorr_(readLabel(solution().lookup("nNonOrthCorr"))),
thermo_(solidThermo::New(regionMesh())),
h_(thermo_->he()),
Qs_
(
IOobject
(
"Qs",
regionMesh().time().timeName(),
regionMesh(),
IOobject::READ_IF_PRESENT,
IOobject::NO_WRITE
),
regionMesh(),
dimensionedScalar
(
"zero",
dimEnergy/dimArea/dimTime,
pTraits<scalar>::zero
)
),
Q_
(
IOobject
(
"Q",
regionMesh().time().timeName(),
regionMesh(),
IOobject::READ_IF_PRESENT,
IOobject::NO_WRITE
),
regionMesh(),
dimensionedScalar
(
"zero",
dimEnergy/dimVolume/dimTime,
pTraits<scalar>::zero
)
)
{
init();
thermo_->correct();
}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
thermoBaffle2D::~thermoBaffle2D()
{}
// * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //
void thermoBaffle2D::init()
{
if (oneD_ && !constantThickness_)
{
label patchI = intCoupledPatchIDs_[0];
const label Qsb = Qs_.boundaryField()[patchI].size();
if (Qsb!= thickness_.size())
{
FatalErrorIn
(
"thermoBaffle2D::thermoBaffle2D"
"("
" const word& modelType,"
" const fvMesh& mesh,"
" const dictionary& dict"
")"
) << "the boundary field of Qs is "
<< Qsb << " and " << nl
<< "the field 'thickness' is " << thickness_.size() << nl
<< exit(FatalError);
}
}
}
void thermoBaffle2D::preEvolveRegion()
{}
void thermoBaffle2D::evolveRegion()
{
for (int nonOrth=0; nonOrth<=nNonOrthCorr_; nonOrth++)
{
solveEnergy();
}
}
const tmp<volScalarField> thermoBaffle2D::Cp() const
{
return thermo_->Cp();
}
const volScalarField& thermoBaffle2D::kappaRad() const
{
// ***HGW return thermo_->kappaRad();
FatalErrorIn
(
"thermoBaffle2D::kappaRad()"
) << "not currently supported"
<< exit(FatalError);
return volScalarField::null();
}
const volScalarField& thermoBaffle2D::rho() const
{
return thermo_->rho();
}
const volScalarField& thermoBaffle2D::kappa() const
{
return thermo_->kappa();
}
const volScalarField& thermoBaffle2D::T() const
{
return thermo_->T();
}
const solidThermo& thermoBaffle2D::thermo() const
{
return thermo_;
}
void thermoBaffle2D::info() const
{
const labelList& coupledPatches = intCoupledPatchIDs();
forAll (coupledPatches, i)
{
const label patchI = coupledPatches[i];
const fvPatchScalarField& ph = h_.boundaryField()[patchI];
const word patchName = regionMesh().boundary()[patchI].name();
Info << indent << "Q : " << patchName << indent <<
gSum
(
mag(regionMesh().Sf().boundaryField()[patchI])
* ph.snGrad()
* thermo_->alpha().boundaryField()[patchI]
) << endl;
}
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // end namespace thermoBaffleModels
} // end namespace regionModels
} // end namespace Foam
// ************************************************************************* //