Files
openfoam/src/mesh/autoMesh/autoHexMesh/refinementFeatures/refinementFeatures.C

252 lines
7.4 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "refinementFeatures.H"
#include "Time.H"
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::refinementFeatures::refinementFeatures
(
const objectRegistry& io,
const PtrList<dictionary>& featDicts
)
:
PtrList<featureEdgeMesh>(featDicts.size()),
levels_(featDicts.size()),
edgeTrees_(featDicts.size()),
pointTrees_(featDicts.size())
{
// Read features
forAll(featDicts, i)
{
const dictionary& dict = featDicts[i];
fileName featFileName(dict.lookup("file"));
set
(
i,
new featureEdgeMesh
(
IOobject
(
featFileName, // name
io.time().constant(), // instance
"triSurface", // local
io.time(), // registry
IOobject::MUST_READ,
IOobject::NO_WRITE,
false
)
)
);
const featureEdgeMesh& eMesh = operator[](i);
//eMesh.mergePoints(meshRefiner_.mergeDistance());
levels_[i] = readLabel(dict.lookup("level"));
Info<< "Refinement level " << levels_[i]
<< " for all cells crossed by feature " << featFileName
<< " (" << eMesh.points().size() << " points, "
<< eMesh.edges().size() << " edges)." << endl;
}
// Search engines
forAll(*this, i)
{
const featureEdgeMesh& eMesh = operator[](i);
const pointField& points = eMesh.points();
const edgeList& edges = eMesh.edges();
// Calculate bb of all points
treeBoundBox bb(points);
// Random number generator. Bit dodgy since not exactly random ;-)
Random rndGen(65431);
// Slightly extended bb. Slightly off-centred just so on symmetric
// geometry there are less face/edge aligned items.
bb = bb.extend(rndGen, 1e-4);
bb.min() -= point(ROOTVSMALL, ROOTVSMALL, ROOTVSMALL);
bb.max() += point(ROOTVSMALL, ROOTVSMALL, ROOTVSMALL);
edgeTrees_.set
(
i,
new indexedOctree<treeDataEdge>
(
treeDataEdge
(
false, // do not cache bb
edges,
points,
identity(edges.size())
),
bb, // overall search domain
8, // maxLevel
10, // leafsize
3.0 // duplicity
)
);
// Detect feature points from edges.
const labelListList& pointEdges = eMesh.pointEdges();
DynamicList<label> featurePoints;
forAll(pointEdges, pointI)
{
if (pointEdges[pointI].size() > 2)
{
featurePoints.append(pointI);
}
}
Info<< "Detected " << featurePoints.size()
<< " featurePoints out of " << points.size()
<< " on feature " << eMesh.name() << endl;
pointTrees_.set
(
i,
new indexedOctree<treeDataPoint>
(
treeDataPoint(points, featurePoints),
bb, // overall search domain
8, // maxLevel
10, // leafsize
3.0 // duplicity
)
);
}
}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
void Foam::refinementFeatures::findNearestEdge
(
const pointField& samples,
const scalarField& nearestDistSqr,
labelList& nearFeature,
List<pointIndexHit>& nearInfo
) const
{
nearFeature.setSize(samples.size());
nearFeature = -1;
nearInfo.setSize(samples.size());
forAll(edgeTrees_, featI)
{
const indexedOctree<treeDataEdge>& tree = edgeTrees_[featI];
if (tree.shapes().size() > 0)
{
forAll(samples, sampleI)
{
const point& sample = samples[sampleI];
scalar distSqr;
if (nearInfo[sampleI].hit())
{
distSqr = magSqr(nearInfo[sampleI].hitPoint()-sample);
}
else
{
distSqr = nearestDistSqr[sampleI];
}
pointIndexHit info = tree.findNearest(sample, distSqr);
if (info.hit())
{
nearInfo[sampleI] = info;
nearFeature[sampleI] = featI;
}
}
}
}
}
void Foam::refinementFeatures::findNearestPoint
(
const pointField& samples,
const scalarField& nearestDistSqr,
labelList& nearFeature,
labelList& nearIndex
) const
{
nearFeature.setSize(samples.size());
nearFeature = -1;
nearIndex.setSize(samples.size());
nearIndex = -1;
forAll(pointTrees_, featI)
{
const indexedOctree<treeDataPoint>& tree = pointTrees_[featI];
if (tree.shapes().pointLabels().size() > 0)
{
forAll(samples, sampleI)
{
const point& sample = samples[sampleI];
scalar distSqr;
if (nearFeature[sampleI] != -1)
{
label nearFeatI = nearFeature[sampleI];
const indexedOctree<treeDataPoint>& nearTree =
pointTrees_[nearFeatI];
label featPointI =
nearTree.shapes().pointLabels()[nearIndex[sampleI]];
const point& featPt =
operator[](nearFeatI).points()[featPointI];
distSqr = magSqr(featPt-sample);
}
else
{
distSqr = nearestDistSqr[sampleI];
}
pointIndexHit info = tree.findNearest(sample, distSqr);
if (info.hit())
{
nearFeature[sampleI] = featI;
nearIndex[sampleI] = info.index();
}
}
}
}
}
// ************************************************************************* //