mirror of
https://develop.openfoam.com/Development/openfoam.git
synced 2025-11-28 03:28:01 +00:00
252 lines
7.4 KiB
C
252 lines
7.4 KiB
C
/*---------------------------------------------------------------------------*\
|
|
========= |
|
|
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
|
\\ / O peration |
|
|
\\ / A nd | Copyright (C) 2011 OpenFOAM Foundation
|
|
\\/ M anipulation |
|
|
-------------------------------------------------------------------------------
|
|
License
|
|
This file is part of OpenFOAM.
|
|
|
|
OpenFOAM is free software: you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
#include "refinementFeatures.H"
|
|
#include "Time.H"
|
|
|
|
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
|
|
|
|
Foam::refinementFeatures::refinementFeatures
|
|
(
|
|
const objectRegistry& io,
|
|
const PtrList<dictionary>& featDicts
|
|
)
|
|
:
|
|
PtrList<featureEdgeMesh>(featDicts.size()),
|
|
levels_(featDicts.size()),
|
|
edgeTrees_(featDicts.size()),
|
|
pointTrees_(featDicts.size())
|
|
{
|
|
// Read features
|
|
|
|
forAll(featDicts, i)
|
|
{
|
|
const dictionary& dict = featDicts[i];
|
|
|
|
fileName featFileName(dict.lookup("file"));
|
|
|
|
set
|
|
(
|
|
i,
|
|
new featureEdgeMesh
|
|
(
|
|
IOobject
|
|
(
|
|
featFileName, // name
|
|
io.time().constant(), // instance
|
|
"triSurface", // local
|
|
io.time(), // registry
|
|
IOobject::MUST_READ,
|
|
IOobject::NO_WRITE,
|
|
false
|
|
)
|
|
)
|
|
);
|
|
|
|
const featureEdgeMesh& eMesh = operator[](i);
|
|
|
|
//eMesh.mergePoints(meshRefiner_.mergeDistance());
|
|
levels_[i] = readLabel(dict.lookup("level"));
|
|
|
|
Info<< "Refinement level " << levels_[i]
|
|
<< " for all cells crossed by feature " << featFileName
|
|
<< " (" << eMesh.points().size() << " points, "
|
|
<< eMesh.edges().size() << " edges)." << endl;
|
|
}
|
|
|
|
|
|
// Search engines
|
|
|
|
forAll(*this, i)
|
|
{
|
|
const featureEdgeMesh& eMesh = operator[](i);
|
|
const pointField& points = eMesh.points();
|
|
const edgeList& edges = eMesh.edges();
|
|
|
|
// Calculate bb of all points
|
|
treeBoundBox bb(points);
|
|
|
|
// Random number generator. Bit dodgy since not exactly random ;-)
|
|
Random rndGen(65431);
|
|
|
|
// Slightly extended bb. Slightly off-centred just so on symmetric
|
|
// geometry there are less face/edge aligned items.
|
|
bb = bb.extend(rndGen, 1e-4);
|
|
bb.min() -= point(ROOTVSMALL, ROOTVSMALL, ROOTVSMALL);
|
|
bb.max() += point(ROOTVSMALL, ROOTVSMALL, ROOTVSMALL);
|
|
|
|
edgeTrees_.set
|
|
(
|
|
i,
|
|
new indexedOctree<treeDataEdge>
|
|
(
|
|
treeDataEdge
|
|
(
|
|
false, // do not cache bb
|
|
edges,
|
|
points,
|
|
identity(edges.size())
|
|
),
|
|
bb, // overall search domain
|
|
8, // maxLevel
|
|
10, // leafsize
|
|
3.0 // duplicity
|
|
)
|
|
);
|
|
|
|
|
|
// Detect feature points from edges.
|
|
const labelListList& pointEdges = eMesh.pointEdges();
|
|
DynamicList<label> featurePoints;
|
|
forAll(pointEdges, pointI)
|
|
{
|
|
if (pointEdges[pointI].size() > 2)
|
|
{
|
|
featurePoints.append(pointI);
|
|
}
|
|
}
|
|
|
|
Info<< "Detected " << featurePoints.size()
|
|
<< " featurePoints out of " << points.size()
|
|
<< " on feature " << eMesh.name() << endl;
|
|
|
|
pointTrees_.set
|
|
(
|
|
i,
|
|
new indexedOctree<treeDataPoint>
|
|
(
|
|
treeDataPoint(points, featurePoints),
|
|
bb, // overall search domain
|
|
8, // maxLevel
|
|
10, // leafsize
|
|
3.0 // duplicity
|
|
)
|
|
);
|
|
}
|
|
}
|
|
|
|
|
|
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
|
|
|
|
void Foam::refinementFeatures::findNearestEdge
|
|
(
|
|
const pointField& samples,
|
|
const scalarField& nearestDistSqr,
|
|
labelList& nearFeature,
|
|
List<pointIndexHit>& nearInfo
|
|
) const
|
|
{
|
|
nearFeature.setSize(samples.size());
|
|
nearFeature = -1;
|
|
nearInfo.setSize(samples.size());
|
|
|
|
forAll(edgeTrees_, featI)
|
|
{
|
|
const indexedOctree<treeDataEdge>& tree = edgeTrees_[featI];
|
|
|
|
if (tree.shapes().size() > 0)
|
|
{
|
|
forAll(samples, sampleI)
|
|
{
|
|
const point& sample = samples[sampleI];
|
|
|
|
scalar distSqr;
|
|
if (nearInfo[sampleI].hit())
|
|
{
|
|
distSqr = magSqr(nearInfo[sampleI].hitPoint()-sample);
|
|
}
|
|
else
|
|
{
|
|
distSqr = nearestDistSqr[sampleI];
|
|
}
|
|
|
|
pointIndexHit info = tree.findNearest(sample, distSqr);
|
|
|
|
if (info.hit())
|
|
{
|
|
nearInfo[sampleI] = info;
|
|
nearFeature[sampleI] = featI;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void Foam::refinementFeatures::findNearestPoint
|
|
(
|
|
const pointField& samples,
|
|
const scalarField& nearestDistSqr,
|
|
labelList& nearFeature,
|
|
labelList& nearIndex
|
|
) const
|
|
{
|
|
nearFeature.setSize(samples.size());
|
|
nearFeature = -1;
|
|
nearIndex.setSize(samples.size());
|
|
nearIndex = -1;
|
|
|
|
forAll(pointTrees_, featI)
|
|
{
|
|
const indexedOctree<treeDataPoint>& tree = pointTrees_[featI];
|
|
|
|
if (tree.shapes().pointLabels().size() > 0)
|
|
{
|
|
forAll(samples, sampleI)
|
|
{
|
|
const point& sample = samples[sampleI];
|
|
|
|
scalar distSqr;
|
|
if (nearFeature[sampleI] != -1)
|
|
{
|
|
label nearFeatI = nearFeature[sampleI];
|
|
const indexedOctree<treeDataPoint>& nearTree =
|
|
pointTrees_[nearFeatI];
|
|
label featPointI =
|
|
nearTree.shapes().pointLabels()[nearIndex[sampleI]];
|
|
const point& featPt =
|
|
operator[](nearFeatI).points()[featPointI];
|
|
distSqr = magSqr(featPt-sample);
|
|
}
|
|
else
|
|
{
|
|
distSqr = nearestDistSqr[sampleI];
|
|
}
|
|
|
|
pointIndexHit info = tree.findNearest(sample, distSqr);
|
|
|
|
if (info.hit())
|
|
{
|
|
nearFeature[sampleI] = featI;
|
|
nearIndex[sampleI] = info.index();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// ************************************************************************* //
|