Files
openfoam/applications/solvers/basic/potentialFoam/potentialFoam.C
Henry 4129560601 potentialFoam: Solve for velocity potential named Phi rather than using the pressure field for this purpose
The Phi field is read if available otherwise created automatically with
boundary conditions obtained automatically from the pressure field if
available (with optional name) otherwise inferred from the velocity
field.  Phi Laplacian scheme and solver specification are required.  See
tutorials for examples.
2015-02-14 11:03:37 +00:00

141 lines
3.8 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2015 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Application
potentialFoam
Description
Potential flow solver which solves for the velocity potential
from which the flux-field is obtained and velocity field by reconstructing
the flux.
This application is particularly useful to generate starting fields for
Navier-Stokes codes.
\*---------------------------------------------------------------------------*/
#include "fvCFD.H"
#include "fvIOoptionList.H"
#include "pisoControl.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
int main(int argc, char *argv[])
{
argList::addOption
(
"pName",
"pName",
"Name of the pressure field"
);
argList::addBoolOption
(
"initialiseUBCs",
"Initialise U boundary conditions"
);
argList::addBoolOption
(
"writePhi",
"Write the velocity potential field"
);
#include "setRootCase.H"
#include "createTime.H"
#include "createMesh.H"
pisoControl potentialFlow(mesh, "potentialFlow");
#include "createFields.H"
#include "createFvOptions.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Info<< nl << "Calculating potential flow" << endl;
// Since solver contains no time loop it would never execute
// function objects so do it ourselves
runTime.functionObjects().start();
fvOptions.makeRelative(phi);
adjustPhi(phi, U, p);
// Non-orthogonal velocity potential corrector loop
while (potentialFlow.correctNonOrthogonal())
{
fvScalarMatrix PhiEqn
(
fvm::laplacian(dimensionedScalar("1", dimless, 1), Phi)
==
fvc::div(phi)
);
PhiEqn.setReference(PhiRefCell, PhiRefValue);
PhiEqn.solve();
if (potentialFlow.finalNonOrthogonalIter())
{
phi -= PhiEqn.flux();
}
}
fvOptions.makeAbsolute(phi);
Info<< "Continuity error = "
<< mag(fvc::div(phi))().weightedAverage(mesh.V()).value()
<< endl;
U = fvc::reconstruct(phi);
U.correctBoundaryConditions();
Info<< "Interpolated velocity error = "
<< (sqrt(sum(sqr((fvc::interpolate(U) & mesh.Sf()) - phi)))
/sum(mesh.magSf())).value()
<< endl;
// Write U and phi
U.write();
phi.write();
// Optionally write Phi
if (args.optionFound("writePhi"))
{
Phi.write();
}
runTime.functionObjects().end();
Info<< "ExecutionTime = " << runTime.elapsedCpuTime() << " s"
<< " ClockTime = " << runTime.elapsedClockTime() << " s"
<< nl << endl;
Info<< "End\n" << endl;
return 0;
}
// ************************************************************************* //