Files
openfoam/src/dynamicMesh/motionSolvers/displacement/layeredSolver/displacementLayeredMotionMotionSolver.C
Mark Olesen d597b3f959 STYLE: check iterator validity with good() instead of found()
- aligns better with other container checks
2023-02-10 17:12:48 +01:00

617 lines
16 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011-2016 OpenFOAM Foundation
Copyright (C) 2015-2019 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "displacementLayeredMotionMotionSolver.H"
#include "addToRunTimeSelectionTable.H"
#include "pointEdgeStructuredWalk.H"
#include "pointFields.H"
#include "PointEdgeWave.H"
#include "syncTools.H"
#include "interpolationTable.H"
#include "mapPolyMesh.H"
#include "pointConstraints.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
defineTypeNameAndDebug(displacementLayeredMotionMotionSolver, 0);
addToRunTimeSelectionTable
(
motionSolver,
displacementLayeredMotionMotionSolver,
dictionary
);
addToRunTimeSelectionTable
(
displacementMotionSolver,
displacementLayeredMotionMotionSolver,
displacement
);
}
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
const Foam::coordSystem::cylindrical&
Foam::displacementLayeredMotionMotionSolver::getCylindrical
(
const label cellZoneI,
const dictionary& zoneDict
)
{
auto iter = cylSystems_.cfind(cellZoneI);
if (iter.good())
{
return *(iter.val());
}
cylSystems_.set(cellZoneI, new coordSystem::cylindrical(zoneDict));
return *cylSystems_[cellZoneI];
}
void Foam::displacementLayeredMotionMotionSolver::calcZoneMask
(
const label cellZoneI,
bitSet& isZonePoint,
bitSet& isZoneEdge
) const
{
isZonePoint.resize(mesh().nPoints());
isZoneEdge.resize(mesh().nEdges());
if (cellZoneI == -1)
{
isZonePoint = true;
isZoneEdge = true;
return;
}
isZonePoint.reset();
isZoneEdge.reset();
const cellZone& cz = mesh().cellZones()[cellZoneI];
// Mark points, edges inside cellZone
for (const label celli : cz)
{
isZonePoint.set(mesh().cellPoints(celli));
isZoneEdge.set(mesh().cellEdges(celli));
}
syncTools::syncPointList
(
mesh(),
isZonePoint,
orEqOp<unsigned int>(),
0
);
syncTools::syncEdgeList
(
mesh(),
isZoneEdge,
orEqOp<unsigned int>(),
0
);
DebugInfo
<< "On cellZone " << cz.name() << " marked "
<< returnReduce(isZonePoint.count(), sumOp<label>()) << " points and "
<< returnReduce(isZoneEdge.count(), sumOp<label>()) << " edges" << nl;
}
// Find distance to starting point
void Foam::displacementLayeredMotionMotionSolver::walkStructured
(
const label cellZoneI,
const bitSet& isZonePoint,
const bitSet& isZoneEdge,
const labelList& seedPoints,
const vectorField& seedData,
scalarField& distance,
vectorField& data,
labelField& patchPoints
) const
{
List<pointEdgeStructuredWalk> seedInfo(seedPoints.size());
forAll(seedPoints, i)
{
const label pointi = seedPoints[i];
seedInfo[i] = pointEdgeStructuredWalk
(
points0()[pointi], // location of data
points0()[pointi], // previous location
0.0,
seedData[i],
pointi // pass thru seed point id
);
}
// Current info on points
List<pointEdgeStructuredWalk> allPointInfo(mesh().nPoints());
// Mark points inside cellZone.
// Note that we use points0, not mesh.points()
// so as not to accumulate errors.
for (const label pointi : isZonePoint)
{
allPointInfo[pointi] = pointEdgeStructuredWalk
(
points0()[pointi], // location of data
point::max, // not valid
0.0,
Zero // passive data
);
}
// Current info on edges
List<pointEdgeStructuredWalk> allEdgeInfo(mesh().nEdges());
// Mark edges inside cellZone
for (const label edgei : isZoneEdge)
{
allEdgeInfo[edgei] = pointEdgeStructuredWalk
(
mesh().edges()[edgei].centre(points0()), // location of data
point::max, // not valid
0.0,
Zero
);
}
// Walk
PointEdgeWave<pointEdgeStructuredWalk> wallCalc
(
mesh(),
seedPoints,
seedInfo,
allPointInfo,
allEdgeInfo,
mesh().globalData().nTotalPoints() // max iterations
);
// Extract distance and passive data
for (const label pointi : isZonePoint)
{
const auto& pointInfo = allPointInfo[pointi];
distance[pointi] = pointInfo.dist();
data[pointi] = pointInfo.data();
// Optional information
if (patchPoints.size())
{
patchPoints[pointi] = pointInfo.index();
}
}
}
// Evaluate faceZone patch
Foam::tmp<Foam::vectorField>
Foam::displacementLayeredMotionMotionSolver::faceZoneEvaluate
(
const faceZone& fz,
const labelList& meshPoints,
const dictionary& dict,
const PtrList<pointVectorField>& patchDisp,
const label patchi
) const
{
auto tfld = tmp<vectorField>::New(meshPoints.size());
auto& fld = tfld.ref();
const word type(dict.get<word>("type"));
if (type == "fixedValue")
{
fld = vectorField("value", dict, meshPoints.size());
}
else if (type == "timeVaryingUniformFixedValue")
{
interpolationTable<vector> timeSeries(dict);
fld = timeSeries(mesh().time().timeOutputValue());
}
else if (type == "slip")
{
if ((patchi % 2) != 1)
{
FatalIOErrorInFunction(*this)
<< "FaceZone:" << fz.name()
<< exit(FatalIOError);
}
// Use field set by previous bc
fld = vectorField(patchDisp[patchi - 1], meshPoints);
}
else if (type == "follow")
{
// Only on boundary faces - follow boundary conditions
fld = vectorField(pointDisplacement_, meshPoints);
}
else if (type == "uniformFollow")
{
// Reads name of name of patch. Then get average point displacement on
// patch. That becomes the value of fld.
const word patchName(dict.get<word>("patch"));
const label patchID = mesh().boundaryMesh().findPatchID(patchName);
pointField pdf
(
pointDisplacement_.boundaryField()[patchID].patchInternalField()
);
fld = gAverage(pdf);
}
else
{
FatalIOErrorInFunction(*this)
<< "Unknown faceZonePatch type " << type
<< " for faceZone " << fz.name() << nl
<< exit(FatalIOError);
}
return tfld;
}
void Foam::displacementLayeredMotionMotionSolver::cellZoneSolve
(
const label cellZoneI,
const dictionary& zoneDict
)
{
bitSet isZonePoint, isZoneEdge;
calcZoneMask(cellZoneI, isZonePoint, isZoneEdge);
const dictionary& patchesDict = zoneDict.subDict("boundaryField");
if (patchesDict.size() != 2)
{
FatalIOErrorInFunction(*this)
<< "Two faceZones (patches) must be specified per cellZone. "
<< " cellZone:" << cellZoneI
<< " patches:" << patchesDict.toc()
<< exit(FatalIOError);
}
PtrList<labelField> patchPoints(patchesDict.size());
PtrList<scalarField> patchDist(patchesDict.size());
PtrList<pointVectorField> patchDisp(patchesDict.size());
// Allocate the fields
label patchi = 0;
for (const entry& dEntry : patchesDict)
{
const word& faceZoneName = dEntry.keyword();
const label zoneI = mesh().faceZones().findZoneID(faceZoneName);
if (zoneI == -1)
{
FatalIOErrorInFunction(*this)
<< "Cannot find faceZone " << faceZoneName
<< endl << "Valid zones are " << mesh().faceZones().names()
<< exit(FatalIOError);
}
// Determine the points of the faceZone within the cellZone
const faceZone& fz = mesh().faceZones()[zoneI];
patchPoints.set(patchi, new labelField(mesh().nPoints(), label(-1)));
patchDist.set(patchi, new scalarField(mesh().nPoints()));
patchDisp.set
(
patchi,
new pointVectorField
(
IOobject
(
mesh().cellZones()[cellZoneI].name() + "_" + fz.name(),
mesh().time().timeName(),
mesh(),
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
pointDisplacement_ // to inherit the boundary conditions
)
);
++patchi;
}
// 'correctBoundaryConditions'
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Loops over all the faceZones and walks their boundary values
// Make sure we can pick up bc values from field
pointDisplacement_.correctBoundaryConditions();
patchi = 0;
for (const entry& dEntry : patchesDict)
{
const word& faceZoneName = dEntry.keyword();
const dictionary& faceZoneDict = dEntry.dict();
// Determine the points of the faceZone within the cellZone
const faceZone& fz = mesh().faceZones()[faceZoneName];
const labelList& fzMeshPoints = fz().meshPoints();
DynamicList<label> meshPoints(fzMeshPoints.size());
forAll(fzMeshPoints, i)
{
if (isZonePoint[fzMeshPoints[i]])
{
meshPoints.append(fzMeshPoints[i]);
}
}
// Get initial value for all the faceZone points
tmp<vectorField> tseed = faceZoneEvaluate
(
fz,
meshPoints,
faceZoneDict,
patchDisp,
patchi
);
DebugInfo
<< "For cellZone:" << cellZoneI
<< " for faceZone:" << fz.name()
<< " nPoints:" << tseed().size()
<< " have patchField:"
<< " max:" << gMax(tseed())
<< " min:" << gMin(tseed())
<< " avg:" << gAverage(tseed())
<< endl;
// Set distance and transported value
walkStructured
(
cellZoneI,
isZonePoint,
isZoneEdge,
meshPoints,
tseed,
patchDist[patchi],
patchDisp[patchi],
patchPoints[patchi]
);
// Implement real bc.
patchDisp[patchi].correctBoundaryConditions();
++patchi;
}
// Solve
// ~~~~~
if (debug)
{
// Normalised distance
pointScalarField distance
(
IOobject
(
mesh().cellZones()[cellZoneI].name() + ":distance",
mesh().time().timeName(),
mesh(),
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
pointMesh::New(mesh()),
dimensionedScalar(dimLength, Zero)
);
for (const label pointi : isZonePoint)
{
const scalar d1 = patchDist[0][pointi];
const scalar d2 = patchDist[1][pointi];
if (d1 + d2 > SMALL)
{
distance[pointi] = d1/(d1 + d2);
}
}
Info<< "Writing " << pointScalarField::typeName
<< distance.name() << " to "
<< mesh().time().timeName() << endl;
distance.write();
}
const word interpolationScheme(zoneDict.get<word>("interpolationScheme"));
if (interpolationScheme == "oneSided")
{
for (const label pointi : isZonePoint)
{
pointDisplacement_[pointi] = patchDisp[0][pointi];
}
}
else if (interpolationScheme == "linear")
{
for (const label pointi : isZonePoint)
{
const scalar d1 = patchDist[0][pointi];
const scalar d2 = patchDist[1][pointi];
const scalar s = d1/(d1 + d2 + VSMALL);
const vector& pd1 = patchDisp[0][pointi];
const vector& pd2 = patchDisp[1][pointi];
pointDisplacement_[pointi] = (1 - s)*pd1 + s*pd2;
}
}
else if (interpolationScheme == "cylindrical")
{
const coordSystem::cylindrical& cs =
this->getCylindrical(cellZoneI, zoneDict);
// May wish to implement alternative distance calculation here
FatalErrorInFunction
<< "cylindrical interpolation not yet available" << nl
<< "coordinate system " << cs << nl
<< exit(FatalError);
}
else
{
FatalErrorInFunction
<< "Invalid interpolationScheme: " << interpolationScheme
<< ". Valid schemes: (oneSided linear cylindrical)" << nl
<< exit(FatalError);
}
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::displacementLayeredMotionMotionSolver::
displacementLayeredMotionMotionSolver
(
const polyMesh& mesh,
const IOdictionary& dict
)
:
displacementMotionSolver(mesh, dict, typeName)
{}
Foam::displacementLayeredMotionMotionSolver::
displacementLayeredMotionMotionSolver
(
const polyMesh& mesh,
const IOdictionary& dict,
const pointVectorField& pointDisplacement,
const pointIOField& points0
)
:
displacementMotionSolver(mesh, dict, pointDisplacement, points0, typeName)
{}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
Foam::tmp<Foam::pointField>
Foam::displacementLayeredMotionMotionSolver::curPoints() const
{
tmp<pointField> tcurPoints
(
points0() + pointDisplacement_.primitiveField()
);
return tcurPoints;
}
void Foam::displacementLayeredMotionMotionSolver::solve()
{
// The points have moved so before interpolation update the motionSolver
movePoints(mesh().points());
// Apply boundary conditions
pointDisplacement_.boundaryFieldRef().updateCoeffs();
// Solve motion on all regions (=cellZones)
for (const entry& dEntry : coeffDict().subDict("regions"))
{
const word& cellZoneName = dEntry.keyword();
const dictionary& regionDict = dEntry.dict();
const label zoneI = mesh().cellZones().findZoneID(cellZoneName);
Info<< "solving for zone: " << cellZoneName << endl;
if (zoneI == -1)
{
FatalIOErrorInFunction(*this)
<< "Cannot find cellZone " << cellZoneName
<< endl << "Valid zones are " << mesh().cellZones().names()
<< exit(FatalIOError);
}
cellZoneSolve(zoneI, regionDict);
}
// Update pointDisplacement for solved values
const pointConstraints& pcs =
pointConstraints::New(pointDisplacement_.mesh());
pcs.constrainDisplacement(pointDisplacement_, false);
}
void Foam::displacementLayeredMotionMotionSolver::updateMesh
(
const mapPolyMesh& mpm
)
{
displacementMotionSolver::updateMesh(mpm);
const vectorField displacement(this->newPoints() - points0_);
forAll(points0_, pointi)
{
const label oldPointi = mpm.pointMap()[pointi];
if (oldPointi >= 0)
{
const label masterPointi = mpm.reversePointMap()[oldPointi];
if ((masterPointi != pointi))
{
// newly inserted point in this cellZone
// need to set point0 so that it represents the position that
// it would have had if it had existed for all time
points0_[pointi] -= displacement[pointi];
}
}
}
}
// ************************************************************************* //