mirror of
https://develop.openfoam.com/Development/openfoam.git
synced 2025-11-28 03:28:01 +00:00
Original commit message:
------------------------
Parallel IO: New collated file format
When an OpenFOAM simulation runs in parallel, the data for decomposed fields and
mesh(es) has historically been stored in multiple files within separate
directories for each processor. Processor directories are named 'processorN',
where N is the processor number.
This commit introduces an alternative "collated" file format where the data for
each decomposed field (and mesh) is collated into a single file, which is
written and read on the master processor. The files are stored in a single
directory named 'processors'.
The new format produces significantly fewer files - one per field, instead of N
per field. For large parallel cases, this avoids the restriction on the number
of open files imposed by the operating system limits.
The file writing can be threaded allowing the simulation to continue running
while the data is being written to file. NFS (Network File System) is not
needed when using the the collated format and additionally, there is an option
to run without NFS with the original uncollated approach, known as
"masterUncollated".
The controls for the file handling are in the OptimisationSwitches of
etc/controlDict:
OptimisationSwitches
{
...
//- Parallel IO file handler
// uncollated (default), collated or masterUncollated
fileHandler uncollated;
//- collated: thread buffer size for queued file writes.
// If set to 0 or not sufficient for the file size threading is not used.
// Default: 2e9
maxThreadFileBufferSize 2e9;
//- masterUncollated: non-blocking buffer size.
// If the file exceeds this buffer size scheduled transfer is used.
// Default: 2e9
maxMasterFileBufferSize 2e9;
}
When using the collated file handling, memory is allocated for the data in the
thread. maxThreadFileBufferSize sets the maximum size of memory in bytes that
is allocated. If the data exceeds this size, the write does not use threading.
When using the masterUncollated file handling, non-blocking MPI communication
requires a sufficiently large memory buffer on the master node.
maxMasterFileBufferSize sets the maximum size in bytes of the buffer. If the
data exceeds this size, the system uses scheduled communication.
The installation defaults for the fileHandler choice, maxThreadFileBufferSize
and maxMasterFileBufferSize (set in etc/controlDict) can be over-ridden within
the case controlDict file, like other parameters. Additionally the fileHandler
can be set by:
- the "-fileHandler" command line argument;
- a FOAM_FILEHANDLER environment variable.
A foamFormatConvert utility allows users to convert files between the collated
and uncollated formats, e.g.
mpirun -np 2 foamFormatConvert -parallel -fileHandler uncollated
An example case demonstrating the file handling methods is provided in:
$FOAM_TUTORIALS/IO/fileHandling
The work was undertaken by Mattijs Janssens, in collaboration with Henry Weller.
1112 lines
36 KiB
C
1112 lines
36 KiB
C
/*---------------------------------------------------------------------------*\
|
|
========= |
|
|
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
|
\\ / O peration |
|
|
\\ / A nd | Copyright (C) 2011-2017 OpenFOAM Foundation
|
|
\\/ M anipulation | Copyright (C) 2015 OpenCFD Ltd.
|
|
-------------------------------------------------------------------------------
|
|
License
|
|
This file is part of OpenFOAM.
|
|
|
|
OpenFOAM is free software: you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
Application
|
|
reconstructPar
|
|
|
|
Group
|
|
grpParallelUtilities
|
|
|
|
Description
|
|
Reconstructs fields of a case that is decomposed for parallel
|
|
execution of OpenFOAM.
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
#include "argList.H"
|
|
#include "timeSelector.H"
|
|
|
|
#include "fvCFD.H"
|
|
#include "IOobjectList.H"
|
|
#include "processorMeshes.H"
|
|
#include "regionProperties.H"
|
|
#include "fvFieldReconstructor.H"
|
|
#include "pointFieldReconstructor.H"
|
|
#include "reconstructLagrangian.H"
|
|
|
|
#include "cellSet.H"
|
|
#include "faceSet.H"
|
|
#include "pointSet.H"
|
|
|
|
#include "hexRef8Data.H"
|
|
|
|
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
|
|
|
|
bool haveAllTimes
|
|
(
|
|
const HashSet<word>& masterTimeDirSet,
|
|
const instantList& timeDirs
|
|
)
|
|
{
|
|
// Loop over all times
|
|
forAll(timeDirs, timei)
|
|
{
|
|
if (!masterTimeDirSet.found(timeDirs[timei].name()))
|
|
{
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
argList::addNote
|
|
(
|
|
"Reconstruct fields of a parallel case"
|
|
);
|
|
|
|
// Enable -constant ... if someone really wants it
|
|
// Enable -withZero to prevent accidentally trashing the initial fields
|
|
timeSelector::addOptions(true, true);
|
|
argList::noParallel();
|
|
#include "addRegionOption.H"
|
|
argList::addBoolOption
|
|
(
|
|
"allRegions",
|
|
"operate on all regions in regionProperties"
|
|
);
|
|
argList::addOption
|
|
(
|
|
"fields",
|
|
"list",
|
|
"specify a list of fields to be reconstructed. Eg, '(U T p)' - "
|
|
"regular expressions not currently supported"
|
|
);
|
|
argList::addBoolOption
|
|
(
|
|
"noFields",
|
|
"skip reconstructing fields"
|
|
);
|
|
argList::addOption
|
|
(
|
|
"lagrangianFields",
|
|
"list",
|
|
"specify a list of lagrangian fields to be reconstructed. Eg, '(U d)' -"
|
|
"regular expressions not currently supported, "
|
|
"positions always included."
|
|
);
|
|
argList::addBoolOption
|
|
(
|
|
"noLagrangian",
|
|
"skip reconstructing lagrangian positions and fields"
|
|
);
|
|
argList::addBoolOption
|
|
(
|
|
"noSets",
|
|
"skip reconstructing cellSets, faceSets, pointSets"
|
|
);
|
|
argList::addBoolOption
|
|
(
|
|
"newTimes",
|
|
"only reconstruct new times (i.e. that do not exist already)"
|
|
);
|
|
|
|
#include "setRootCase.H"
|
|
#include "createTime.H"
|
|
|
|
HashSet<word> selectedFields;
|
|
if (args.optionFound("fields"))
|
|
{
|
|
args.optionLookup("fields")() >> selectedFields;
|
|
}
|
|
|
|
const bool noFields = args.optionFound("noFields");
|
|
|
|
if (noFields)
|
|
{
|
|
Info<< "Skipping reconstructing fields"
|
|
<< nl << endl;
|
|
}
|
|
|
|
const bool noLagrangian = args.optionFound("noLagrangian");
|
|
|
|
if (noLagrangian)
|
|
{
|
|
Info<< "Skipping reconstructing lagrangian positions and fields"
|
|
<< nl << endl;
|
|
}
|
|
|
|
|
|
const bool noReconstructSets = args.optionFound("noSets");
|
|
|
|
if (noReconstructSets)
|
|
{
|
|
Info<< "Skipping reconstructing cellSets, faceSets and pointSets"
|
|
<< nl << endl;
|
|
}
|
|
|
|
|
|
HashSet<word> selectedLagrangianFields;
|
|
if (args.optionFound("lagrangianFields"))
|
|
{
|
|
if (noLagrangian)
|
|
{
|
|
FatalErrorInFunction
|
|
<< "Cannot specify noLagrangian and lagrangianFields "
|
|
<< "options together."
|
|
<< exit(FatalError);
|
|
}
|
|
|
|
args.optionLookup("lagrangianFields")() >> selectedLagrangianFields;
|
|
}
|
|
|
|
|
|
const bool newTimes = args.optionFound("newTimes");
|
|
const bool allRegions = args.optionFound("allRegions");
|
|
|
|
|
|
wordList regionNames;
|
|
wordList regionDirs;
|
|
if (allRegions)
|
|
{
|
|
Info<< "Reconstructing for all regions in regionProperties" << nl
|
|
<< endl;
|
|
regionProperties rp(runTime);
|
|
forAllConstIter(HashTable<wordList>, rp, iter)
|
|
{
|
|
const wordList& regions = iter();
|
|
forAll(regions, i)
|
|
{
|
|
if (findIndex(regionNames, regions[i]) == -1)
|
|
{
|
|
regionNames.append(regions[i]);
|
|
}
|
|
}
|
|
}
|
|
regionDirs = regionNames;
|
|
}
|
|
else
|
|
{
|
|
word regionName;
|
|
if (args.optionReadIfPresent("region", regionName))
|
|
{
|
|
regionNames = wordList(1, regionName);
|
|
regionDirs = regionNames;
|
|
}
|
|
else
|
|
{
|
|
regionNames = wordList(1, fvMesh::defaultRegion);
|
|
regionDirs = wordList(1, word::null);
|
|
}
|
|
}
|
|
|
|
// Determine the processor count
|
|
label nProcs = fileHandler().nProcs(args.path(), regionDirs[0]);
|
|
|
|
if (!nProcs)
|
|
{
|
|
FatalErrorInFunction
|
|
<< "No processor* directories found"
|
|
<< exit(FatalError);
|
|
}
|
|
|
|
// Create the processor databases
|
|
PtrList<Time> databases(nProcs);
|
|
|
|
forAll(databases, proci)
|
|
{
|
|
databases.set
|
|
(
|
|
proci,
|
|
new Time
|
|
(
|
|
Time::controlDictName,
|
|
args.rootPath(),
|
|
args.caseName()/fileName(word("processor") + name(proci))
|
|
)
|
|
);
|
|
}
|
|
|
|
// Use the times list from the master processor
|
|
// and select a subset based on the command-line options
|
|
instantList timeDirs = timeSelector::select
|
|
(
|
|
databases[0].times(),
|
|
args
|
|
);
|
|
|
|
// Note that we do not set the runTime time so it is still the
|
|
// one set through the controlDict. The -time option
|
|
// only affects the selected set of times from processor0.
|
|
// - can be illogical
|
|
// + any point motion handled through mesh.readUpdate
|
|
|
|
|
|
if (timeDirs.empty())
|
|
{
|
|
WarningInFunction << "No times selected";
|
|
exit(1);
|
|
}
|
|
|
|
|
|
// Get current times if -newTimes
|
|
instantList masterTimeDirs;
|
|
if (newTimes)
|
|
{
|
|
masterTimeDirs = runTime.times();
|
|
}
|
|
HashSet<word> masterTimeDirSet(2*masterTimeDirs.size());
|
|
forAll(masterTimeDirs, i)
|
|
{
|
|
masterTimeDirSet.insert(masterTimeDirs[i].name());
|
|
}
|
|
|
|
|
|
// Set all times on processor meshes equal to reconstructed mesh
|
|
forAll(databases, proci)
|
|
{
|
|
databases[proci].setTime(runTime);
|
|
}
|
|
|
|
|
|
forAll(regionNames, regioni)
|
|
{
|
|
const word& regionName = regionNames[regioni];
|
|
const word& regionDir = regionDirs[regioni];
|
|
|
|
Info<< "\n\nReconstructing fields for mesh " << regionName << nl
|
|
<< endl;
|
|
|
|
if
|
|
(
|
|
newTimes
|
|
&& regionNames.size() == 1
|
|
&& regionDirs[0].empty()
|
|
&& haveAllTimes(masterTimeDirSet, timeDirs)
|
|
)
|
|
{
|
|
Info<< "Skipping region " << regionName
|
|
<< " since already have all times"
|
|
<< endl << endl;
|
|
continue;
|
|
}
|
|
|
|
|
|
fvMesh mesh
|
|
(
|
|
IOobject
|
|
(
|
|
regionName,
|
|
runTime.timeName(),
|
|
runTime,
|
|
Foam::IOobject::MUST_READ
|
|
)
|
|
);
|
|
|
|
|
|
// Read all meshes and addressing to reconstructed mesh
|
|
processorMeshes procMeshes(databases, regionName);
|
|
|
|
|
|
// Check face addressing for meshes that have been decomposed
|
|
// with a very old foam version
|
|
#include "checkFaceAddressingComp.H"
|
|
|
|
// Loop over all times
|
|
forAll(timeDirs, timei)
|
|
{
|
|
if (newTimes && masterTimeDirSet.found(timeDirs[timei].name()))
|
|
{
|
|
Info<< "Skipping time " << timeDirs[timei].name()
|
|
<< endl << endl;
|
|
continue;
|
|
}
|
|
|
|
|
|
// Set time for global database
|
|
runTime.setTime(timeDirs[timei], timei);
|
|
|
|
Info<< "Time = " << runTime.timeName() << endl << endl;
|
|
|
|
// Set time for all databases
|
|
forAll(databases, proci)
|
|
{
|
|
databases[proci].setTime(timeDirs[timei], timei);
|
|
}
|
|
|
|
// Check if any new meshes need to be read.
|
|
fvMesh::readUpdateState meshStat = mesh.readUpdate();
|
|
|
|
fvMesh::readUpdateState procStat = procMeshes.readUpdate();
|
|
|
|
if (procStat == fvMesh::POINTS_MOVED)
|
|
{
|
|
// Reconstruct the points for moving mesh cases and write
|
|
// them out
|
|
procMeshes.reconstructPoints(mesh);
|
|
}
|
|
else if (meshStat != procStat)
|
|
{
|
|
WarningInFunction
|
|
<< "readUpdate for the reconstructed mesh:"
|
|
<< meshStat << nl
|
|
<< "readUpdate for the processor meshes :"
|
|
<< procStat << nl
|
|
<< "These should be equal or your addressing"
|
|
<< " might be incorrect."
|
|
<< " Please check your time directories for any "
|
|
<< "mesh directories." << endl;
|
|
}
|
|
|
|
|
|
// Get list of objects from processor0 database
|
|
IOobjectList objects
|
|
(
|
|
procMeshes.meshes()[0],
|
|
databases[0].timeName()
|
|
);
|
|
|
|
if (!noFields)
|
|
{
|
|
// If there are any FV fields, reconstruct them
|
|
Info<< "Reconstructing FV fields" << nl << endl;
|
|
|
|
fvFieldReconstructor fvReconstructor
|
|
(
|
|
mesh,
|
|
procMeshes.meshes(),
|
|
procMeshes.faceProcAddressing(),
|
|
procMeshes.cellProcAddressing(),
|
|
procMeshes.boundaryProcAddressing()
|
|
);
|
|
|
|
fvReconstructor.reconstructFvVolumeInternalFields<scalar>
|
|
(
|
|
objects,
|
|
selectedFields
|
|
);
|
|
fvReconstructor.reconstructFvVolumeInternalFields<vector>
|
|
(
|
|
objects,
|
|
selectedFields
|
|
);
|
|
fvReconstructor.reconstructFvVolumeInternalFields
|
|
<sphericalTensor>
|
|
(
|
|
objects,
|
|
selectedFields
|
|
);
|
|
fvReconstructor.reconstructFvVolumeInternalFields<symmTensor>
|
|
(
|
|
objects,
|
|
selectedFields
|
|
);
|
|
fvReconstructor.reconstructFvVolumeInternalFields<tensor>
|
|
(
|
|
objects,
|
|
selectedFields
|
|
);
|
|
|
|
fvReconstructor.reconstructFvVolumeFields<scalar>
|
|
(
|
|
objects,
|
|
selectedFields
|
|
);
|
|
fvReconstructor.reconstructFvVolumeFields<vector>
|
|
(
|
|
objects,
|
|
selectedFields
|
|
);
|
|
fvReconstructor.reconstructFvVolumeFields<sphericalTensor>
|
|
(
|
|
objects,
|
|
selectedFields
|
|
);
|
|
fvReconstructor.reconstructFvVolumeFields<symmTensor>
|
|
(
|
|
objects,
|
|
selectedFields
|
|
);
|
|
fvReconstructor.reconstructFvVolumeFields<tensor>
|
|
(
|
|
objects,
|
|
selectedFields
|
|
);
|
|
|
|
fvReconstructor.reconstructFvSurfaceFields<scalar>
|
|
(
|
|
objects,
|
|
selectedFields
|
|
);
|
|
fvReconstructor.reconstructFvSurfaceFields<vector>
|
|
(
|
|
objects,
|
|
selectedFields
|
|
);
|
|
fvReconstructor.reconstructFvSurfaceFields<sphericalTensor>
|
|
(
|
|
objects,
|
|
selectedFields
|
|
);
|
|
fvReconstructor.reconstructFvSurfaceFields<symmTensor>
|
|
(
|
|
objects,
|
|
selectedFields
|
|
);
|
|
fvReconstructor.reconstructFvSurfaceFields<tensor>
|
|
(
|
|
objects,
|
|
selectedFields
|
|
);
|
|
|
|
if (fvReconstructor.nReconstructed() == 0)
|
|
{
|
|
Info<< "No FV fields" << nl << endl;
|
|
}
|
|
}
|
|
|
|
if (!noFields)
|
|
{
|
|
Info<< "Reconstructing point fields" << nl << endl;
|
|
|
|
const pointMesh& pMesh = pointMesh::New(mesh);
|
|
PtrList<pointMesh> pMeshes(procMeshes.meshes().size());
|
|
|
|
forAll(pMeshes, proci)
|
|
{
|
|
pMeshes.set
|
|
(
|
|
proci,
|
|
new pointMesh(procMeshes.meshes()[proci])
|
|
);
|
|
}
|
|
|
|
pointFieldReconstructor pointReconstructor
|
|
(
|
|
pMesh,
|
|
pMeshes,
|
|
procMeshes.pointProcAddressing(),
|
|
procMeshes.boundaryProcAddressing()
|
|
);
|
|
|
|
pointReconstructor.reconstructFields<scalar>
|
|
(
|
|
objects,
|
|
selectedFields
|
|
);
|
|
pointReconstructor.reconstructFields<vector>
|
|
(
|
|
objects,
|
|
selectedFields
|
|
);
|
|
pointReconstructor.reconstructFields<sphericalTensor>
|
|
(
|
|
objects,
|
|
selectedFields
|
|
);
|
|
pointReconstructor.reconstructFields<symmTensor>
|
|
(
|
|
objects,
|
|
selectedFields
|
|
);
|
|
pointReconstructor.reconstructFields<tensor>
|
|
(
|
|
objects,
|
|
selectedFields
|
|
);
|
|
|
|
if (pointReconstructor.nReconstructed() == 0)
|
|
{
|
|
Info<< "No point fields" << nl << endl;
|
|
}
|
|
}
|
|
|
|
|
|
// If there are any clouds, reconstruct them.
|
|
// The problem is that a cloud of size zero will not get written so
|
|
// in pass 1 we determine the cloud names and per cloud name the
|
|
// fields. Note that the fields are stored as IOobjectList from
|
|
// the first processor that has them. They are in pass2 only used
|
|
// for name and type (scalar, vector etc).
|
|
|
|
if (!noLagrangian)
|
|
{
|
|
HashTable<IOobjectList> cloudObjects;
|
|
|
|
forAll(databases, proci)
|
|
{
|
|
fileName lagrangianDir
|
|
(
|
|
fileHandler().filePath
|
|
(
|
|
databases[proci].timePath()
|
|
/ regionDir
|
|
/ cloud::prefix
|
|
)
|
|
);
|
|
|
|
fileNameList cloudDirs;
|
|
if (!lagrangianDir.empty())
|
|
{
|
|
cloudDirs = fileHandler().readDir
|
|
(
|
|
lagrangianDir,
|
|
fileName::DIRECTORY
|
|
);
|
|
}
|
|
|
|
forAll(cloudDirs, i)
|
|
{
|
|
// Check if we already have cloud objects for this
|
|
// cloudname
|
|
HashTable<IOobjectList>::const_iterator iter =
|
|
cloudObjects.find(cloudDirs[i]);
|
|
|
|
if (iter == cloudObjects.end())
|
|
{
|
|
// Do local scan for valid cloud objects
|
|
IOobjectList sprayObjs
|
|
(
|
|
procMeshes.meshes()[proci],
|
|
databases[proci].timeName(),
|
|
cloud::prefix/cloudDirs[i]
|
|
);
|
|
|
|
IOobject* positionsPtr =
|
|
sprayObjs.lookup(word("positions"));
|
|
|
|
if (positionsPtr)
|
|
{
|
|
cloudObjects.insert(cloudDirs[i], sprayObjs);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
if (cloudObjects.size())
|
|
{
|
|
// Pass2: reconstruct the cloud
|
|
forAllConstIter(HashTable<IOobjectList>, cloudObjects, iter)
|
|
{
|
|
const word cloudName = word::validate(iter.key());
|
|
|
|
// Objects (on arbitrary processor)
|
|
const IOobjectList& sprayObjs = iter();
|
|
|
|
Info<< "Reconstructing lagrangian fields for cloud "
|
|
<< cloudName << nl << endl;
|
|
|
|
reconstructLagrangianPositions
|
|
(
|
|
mesh,
|
|
cloudName,
|
|
procMeshes.meshes(),
|
|
procMeshes.faceProcAddressing(),
|
|
procMeshes.cellProcAddressing()
|
|
);
|
|
reconstructLagrangianFields<label>
|
|
(
|
|
cloudName,
|
|
mesh,
|
|
procMeshes.meshes(),
|
|
sprayObjs,
|
|
selectedLagrangianFields
|
|
);
|
|
reconstructLagrangianFieldFields<label>
|
|
(
|
|
cloudName,
|
|
mesh,
|
|
procMeshes.meshes(),
|
|
sprayObjs,
|
|
selectedLagrangianFields
|
|
);
|
|
reconstructLagrangianFields<scalar>
|
|
(
|
|
cloudName,
|
|
mesh,
|
|
procMeshes.meshes(),
|
|
sprayObjs,
|
|
selectedLagrangianFields
|
|
);
|
|
reconstructLagrangianFieldFields<scalar>
|
|
(
|
|
cloudName,
|
|
mesh,
|
|
procMeshes.meshes(),
|
|
sprayObjs,
|
|
selectedLagrangianFields
|
|
);
|
|
reconstructLagrangianFields<vector>
|
|
(
|
|
cloudName,
|
|
mesh,
|
|
procMeshes.meshes(),
|
|
sprayObjs,
|
|
selectedLagrangianFields
|
|
);
|
|
reconstructLagrangianFieldFields<vector>
|
|
(
|
|
cloudName,
|
|
mesh,
|
|
procMeshes.meshes(),
|
|
sprayObjs,
|
|
selectedLagrangianFields
|
|
);
|
|
reconstructLagrangianFields<sphericalTensor>
|
|
(
|
|
cloudName,
|
|
mesh,
|
|
procMeshes.meshes(),
|
|
sprayObjs,
|
|
selectedLagrangianFields
|
|
);
|
|
reconstructLagrangianFieldFields<sphericalTensor>
|
|
(
|
|
cloudName,
|
|
mesh,
|
|
procMeshes.meshes(),
|
|
sprayObjs,
|
|
selectedLagrangianFields
|
|
);
|
|
reconstructLagrangianFields<symmTensor>
|
|
(
|
|
cloudName,
|
|
mesh,
|
|
procMeshes.meshes(),
|
|
sprayObjs,
|
|
selectedLagrangianFields
|
|
);
|
|
reconstructLagrangianFieldFields<symmTensor>
|
|
(
|
|
cloudName,
|
|
mesh,
|
|
procMeshes.meshes(),
|
|
sprayObjs,
|
|
selectedLagrangianFields
|
|
);
|
|
reconstructLagrangianFields<tensor>
|
|
(
|
|
cloudName,
|
|
mesh,
|
|
procMeshes.meshes(),
|
|
sprayObjs,
|
|
selectedLagrangianFields
|
|
);
|
|
reconstructLagrangianFieldFields<tensor>
|
|
(
|
|
cloudName,
|
|
mesh,
|
|
procMeshes.meshes(),
|
|
sprayObjs,
|
|
selectedLagrangianFields
|
|
);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
Info<< "No lagrangian fields" << nl << endl;
|
|
}
|
|
}
|
|
|
|
|
|
if (!noReconstructSets)
|
|
{
|
|
// Scan to find all sets
|
|
HashTable<label> cSetNames;
|
|
HashTable<label> fSetNames;
|
|
HashTable<label> pSetNames;
|
|
|
|
forAll(procMeshes.meshes(), proci)
|
|
{
|
|
const fvMesh& procMesh = procMeshes.meshes()[proci];
|
|
|
|
// Note: look at sets in current time only or between
|
|
// mesh and current time?. For now current time. This will
|
|
// miss out on sets in intermediate times that have not
|
|
// been reconstructed.
|
|
IOobjectList objects
|
|
(
|
|
procMesh,
|
|
databases[0].timeName(), //procMesh.facesInstance()
|
|
polyMesh::meshSubDir/"sets"
|
|
);
|
|
|
|
IOobjectList cSets(objects.lookupClass(cellSet::typeName));
|
|
forAllConstIter(IOobjectList, cSets, iter)
|
|
{
|
|
cSetNames.insert(iter.key(), cSetNames.size());
|
|
}
|
|
|
|
IOobjectList fSets(objects.lookupClass(faceSet::typeName));
|
|
forAllConstIter(IOobjectList, fSets, iter)
|
|
{
|
|
fSetNames.insert(iter.key(), fSetNames.size());
|
|
}
|
|
IOobjectList pSets(objects.lookupClass(pointSet::typeName));
|
|
forAllConstIter(IOobjectList, pSets, iter)
|
|
{
|
|
pSetNames.insert(iter.key(), pSetNames.size());
|
|
}
|
|
}
|
|
|
|
if (cSetNames.size() || fSetNames.size() || pSetNames.size())
|
|
{
|
|
// Construct all sets
|
|
PtrList<cellSet> cellSets(cSetNames.size());
|
|
PtrList<faceSet> faceSets(fSetNames.size());
|
|
PtrList<pointSet> pointSets(pSetNames.size());
|
|
|
|
Info<< "Reconstructing sets:" << endl;
|
|
if (cSetNames.size())
|
|
{
|
|
Info<< " cellSets "
|
|
<< cSetNames.sortedToc() << endl;
|
|
}
|
|
if (fSetNames.size())
|
|
{
|
|
Info<< " faceSets "
|
|
<< fSetNames.sortedToc() << endl;
|
|
}
|
|
if (pSetNames.size())
|
|
{
|
|
Info<< " pointSets "
|
|
<< pSetNames.sortedToc() << endl;
|
|
}
|
|
|
|
// Load sets
|
|
forAll(procMeshes.meshes(), proci)
|
|
{
|
|
const fvMesh& procMesh = procMeshes.meshes()[proci];
|
|
|
|
IOobjectList objects
|
|
(
|
|
procMesh,
|
|
databases[0].timeName(),
|
|
polyMesh::meshSubDir/"sets"
|
|
);
|
|
|
|
// cellSets
|
|
const labelList& cellMap =
|
|
procMeshes.cellProcAddressing()[proci];
|
|
|
|
IOobjectList cSets
|
|
(
|
|
objects.lookupClass(cellSet::typeName)
|
|
);
|
|
|
|
forAllConstIter(IOobjectList, cSets, iter)
|
|
{
|
|
// Load cellSet
|
|
const cellSet procSet(*iter());
|
|
label setI = cSetNames[iter.key()];
|
|
if (!cellSets.set(setI))
|
|
{
|
|
cellSets.set
|
|
(
|
|
setI,
|
|
new cellSet
|
|
(
|
|
mesh,
|
|
iter.key(),
|
|
procSet.size()
|
|
)
|
|
);
|
|
}
|
|
cellSet& cSet = cellSets[setI];
|
|
cSet.instance() = runTime.timeName();
|
|
|
|
forAllConstIter(cellSet, procSet, iter)
|
|
{
|
|
cSet.insert(cellMap[iter.key()]);
|
|
}
|
|
}
|
|
|
|
// faceSets
|
|
const labelList& faceMap =
|
|
procMeshes.faceProcAddressing()[proci];
|
|
|
|
IOobjectList fSets
|
|
(
|
|
objects.lookupClass(faceSet::typeName)
|
|
);
|
|
|
|
forAllConstIter(IOobjectList, fSets, iter)
|
|
{
|
|
// Load faceSet
|
|
const faceSet procSet(*iter());
|
|
label setI = fSetNames[iter.key()];
|
|
if (!faceSets.set(setI))
|
|
{
|
|
faceSets.set
|
|
(
|
|
setI,
|
|
new faceSet
|
|
(
|
|
mesh,
|
|
iter.key(),
|
|
procSet.size()
|
|
)
|
|
);
|
|
}
|
|
faceSet& fSet = faceSets[setI];
|
|
fSet.instance() = runTime.timeName();
|
|
|
|
forAllConstIter(faceSet, procSet, iter)
|
|
{
|
|
fSet.insert(mag(faceMap[iter.key()])-1);
|
|
}
|
|
}
|
|
// pointSets
|
|
const labelList& pointMap =
|
|
procMeshes.pointProcAddressing()[proci];
|
|
|
|
IOobjectList pSets
|
|
(
|
|
objects.lookupClass(pointSet::typeName)
|
|
);
|
|
forAllConstIter(IOobjectList, pSets, iter)
|
|
{
|
|
// Load pointSet
|
|
const pointSet propSet(*iter());
|
|
label setI = pSetNames[iter.key()];
|
|
if (!pointSets.set(setI))
|
|
{
|
|
pointSets.set
|
|
(
|
|
setI,
|
|
new pointSet
|
|
(
|
|
mesh,
|
|
iter.key(),
|
|
propSet.size()
|
|
)
|
|
);
|
|
}
|
|
pointSet& pSet = pointSets[setI];
|
|
pSet.instance() = runTime.timeName();
|
|
|
|
forAllConstIter(pointSet, propSet, iter)
|
|
{
|
|
pSet.insert(pointMap[iter.key()]);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Write sets
|
|
forAll(cellSets, i)
|
|
{
|
|
cellSets[i].write();
|
|
}
|
|
forAll(faceSets, i)
|
|
{
|
|
faceSets[i].write();
|
|
}
|
|
forAll(pointSets, i)
|
|
{
|
|
pointSets[i].write();
|
|
}
|
|
}
|
|
|
|
|
|
// Reconstruct refinement data
|
|
{
|
|
PtrList<hexRef8Data> procData(procMeshes.meshes().size());
|
|
|
|
forAll(procMeshes.meshes(), procI)
|
|
{
|
|
const fvMesh& procMesh = procMeshes.meshes()[procI];
|
|
|
|
procData.set
|
|
(
|
|
procI,
|
|
new hexRef8Data
|
|
(
|
|
IOobject
|
|
(
|
|
"dummy",
|
|
procMesh.time().timeName(),
|
|
polyMesh::meshSubDir,
|
|
procMesh,
|
|
IOobject::READ_IF_PRESENT,
|
|
IOobject::NO_WRITE,
|
|
false
|
|
)
|
|
)
|
|
);
|
|
}
|
|
|
|
// Combine individual parts
|
|
|
|
const PtrList<labelIOList>& cellAddr =
|
|
procMeshes.cellProcAddressing();
|
|
|
|
UPtrList<const labelList> cellMaps(cellAddr.size());
|
|
forAll(cellAddr, i)
|
|
{
|
|
cellMaps.set(i, &cellAddr[i]);
|
|
}
|
|
|
|
const PtrList<labelIOList>& pointAddr =
|
|
procMeshes.pointProcAddressing();
|
|
|
|
UPtrList<const labelList> pointMaps(pointAddr.size());
|
|
forAll(pointAddr, i)
|
|
{
|
|
pointMaps.set(i, &pointAddr[i]);
|
|
}
|
|
|
|
UPtrList<const hexRef8Data> procRefs(procData.size());
|
|
forAll(procData, i)
|
|
{
|
|
procRefs.set(i, &procData[i]);
|
|
}
|
|
|
|
hexRef8Data
|
|
(
|
|
IOobject
|
|
(
|
|
"dummy",
|
|
mesh.time().timeName(),
|
|
polyMesh::meshSubDir,
|
|
mesh,
|
|
IOobject::NO_READ,
|
|
IOobject::NO_WRITE,
|
|
false
|
|
),
|
|
cellMaps,
|
|
pointMaps,
|
|
procRefs
|
|
).write();
|
|
}
|
|
}
|
|
|
|
|
|
// Reconstruct refinement data
|
|
{
|
|
PtrList<hexRef8Data> procData(procMeshes.meshes().size());
|
|
|
|
forAll(procMeshes.meshes(), procI)
|
|
{
|
|
const fvMesh& procMesh = procMeshes.meshes()[procI];
|
|
|
|
procData.set
|
|
(
|
|
procI,
|
|
new hexRef8Data
|
|
(
|
|
IOobject
|
|
(
|
|
"dummy",
|
|
procMesh.time().timeName(),
|
|
polyMesh::meshSubDir,
|
|
procMesh,
|
|
IOobject::READ_IF_PRESENT,
|
|
IOobject::NO_WRITE,
|
|
false
|
|
)
|
|
)
|
|
);
|
|
}
|
|
|
|
// Combine individual parts
|
|
|
|
const PtrList<labelIOList>& cellAddr =
|
|
procMeshes.cellProcAddressing();
|
|
|
|
UPtrList<const labelList> cellMaps(cellAddr.size());
|
|
forAll(cellAddr, i)
|
|
{
|
|
cellMaps.set(i, &cellAddr[i]);
|
|
}
|
|
|
|
const PtrList<labelIOList>& pointAddr =
|
|
procMeshes.pointProcAddressing();
|
|
|
|
UPtrList<const labelList> pointMaps(pointAddr.size());
|
|
forAll(pointAddr, i)
|
|
{
|
|
pointMaps.set(i, &pointAddr[i]);
|
|
}
|
|
|
|
UPtrList<const hexRef8Data> procRefs(procData.size());
|
|
forAll(procData, i)
|
|
{
|
|
procRefs.set(i, &procData[i]);
|
|
}
|
|
|
|
hexRef8Data
|
|
(
|
|
IOobject
|
|
(
|
|
"dummy",
|
|
mesh.time().timeName(),
|
|
polyMesh::meshSubDir,
|
|
mesh,
|
|
IOobject::NO_READ,
|
|
IOobject::NO_WRITE,
|
|
false
|
|
),
|
|
cellMaps,
|
|
pointMaps,
|
|
procRefs
|
|
).write();
|
|
}
|
|
|
|
// If there is a "uniform" directory in the time region
|
|
// directory copy from the master processor
|
|
{
|
|
fileName uniformDir0
|
|
(
|
|
fileHandler().filePath
|
|
(
|
|
databases[0].timePath()/regionDir/"uniform"
|
|
)
|
|
);
|
|
|
|
if (!uniformDir0.empty() && fileHandler().isDir(uniformDir0))
|
|
{
|
|
fileHandler().cp(uniformDir0, runTime.timePath()/regionDir);
|
|
}
|
|
}
|
|
|
|
// For the first region of a multi-region case additionally
|
|
// copy the "uniform" directory in the time directory
|
|
if (regioni == 0 && regionDir != word::null)
|
|
{
|
|
fileName uniformDir0
|
|
(
|
|
fileHandler().filePath
|
|
(
|
|
databases[0].timePath()/"uniform"
|
|
)
|
|
);
|
|
|
|
if (!uniformDir0.empty() && fileHandler().isDir(uniformDir0))
|
|
{
|
|
fileHandler().cp(uniformDir0, runTime.timePath());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
Info<< "\nEnd\n" << endl;
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
// ************************************************************************* //
|