Files
openfoam/src/OpenFOAM/primitives/Tensor/tensor/tensor.C
Henry Weller dc43311e62 src/OpenFOAM: Update ...IOErrorIn -> ...IOErrorInFunction
Avoids the clutter and maintenance effort associated with providing the
function signature string.
2015-11-10 21:13:04 +00:00

353 lines
8.3 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2015 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "tensor.H"
#include "mathematicalConstants.H"
using namespace Foam::constant::mathematical;
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
template<>
const char* const tensor::typeName = "tensor";
template<>
const char* tensor::componentNames[] =
{
"xx", "xy", "xz",
"yx", "yy", "yz",
"zx", "zy", "zz"
};
template<>
const tensor tensor::zero
(
0, 0, 0,
0, 0, 0,
0, 0, 0
);
template<>
const tensor tensor::one
(
1, 1, 1,
1, 1, 1,
1, 1, 1
);
template<>
const tensor tensor::max
(
VGREAT, VGREAT, VGREAT,
VGREAT, VGREAT, VGREAT,
VGREAT, VGREAT, VGREAT
);
template<>
const tensor tensor::min
(
-VGREAT, -VGREAT, -VGREAT,
-VGREAT, -VGREAT, -VGREAT,
-VGREAT, -VGREAT, -VGREAT
);
template<>
const tensor tensor::I
(
1, 0, 0,
0, 1, 0,
0, 0, 1
);
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
Foam::vector Foam::eigenValues(const tensor& t)
{
// The eigenvalues
scalar i, ii, iii;
// diagonal matrix
if
(
(
mag(t.xy()) + mag(t.xz()) + mag(t.yx())
+ mag(t.yz()) + mag(t.zx()) + mag(t.zy())
)
< SMALL
)
{
i = t.xx();
ii = t.yy();
iii = t.zz();
}
// non-diagonal matrix
else
{
// Coefficients of the characteristic polynmial
// x^3 + a*x^2 + b*x + c = 0
scalar a =
- t.xx() - t.yy() - t.zz();
scalar b =
t.xx()*t.yy() + t.xx()*t.zz() + t.yy()*t.zz()
- t.xy()*t.yx() - t.yz()*t.zy() - t.zx()*t.xz();
scalar c =
- t.xx()*t.yy()*t.zz()
- t.xy()*t.yz()*t.zx() - t.xz()*t.zy()*t.yx()
+ t.xx()*t.yz()*t.zy() + t.yy()*t.zx()*t.xz() + t.zz()*t.xy()*t.yx();
// Auxillary variables
scalar aBy3 = a/3;
scalar P = (a*a - 3*b)/9; // == -p_wikipedia/3
scalar PPP = P*P*P;
scalar Q = (2*a*a*a - 9*a*b + 27*c)/54; // == q_wikipedia/2
scalar QQ = Q*Q;
// Three identical roots
if (mag(P) < SMALL && mag(Q) < SMALL)
{
return vector(- aBy3, - aBy3, - aBy3);
}
// Two identical roots and one distinct root
else if (mag(PPP/QQ - 1) < SMALL)
{
scalar sqrtP = sqrt(P);
scalar signQ = sign(Q);
i = ii = signQ*sqrtP - aBy3;
iii = - 2*signQ*sqrtP - aBy3;
}
// Three distinct roots
else if (PPP > QQ)
{
scalar sqrtP = sqrt(P);
scalar value = cos(acos(Q/sqrt(PPP))/3);
scalar delta = sqrt(3 - 3*value*value);
i = - 2*sqrtP*value - aBy3;
ii = sqrtP*(value + delta) - aBy3;
iii = sqrtP*(value - delta) - aBy3;
}
// One real root, two imaginary roots
// based on the above logic, PPP must be less than QQ
else
{
WarningInFunction
<< "complex eigenvalues detected for tensor: " << t
<< endl;
if (mag(P) < SMALL)
{
i = cbrt(QQ/2);
}
else
{
scalar w = cbrt(- Q - sqrt(QQ - PPP));
i = w + P/w - aBy3;
}
return vector(-VGREAT, i, VGREAT);
}
}
// Sort the eigenvalues into ascending order
if (i > ii)
{
Swap(i, ii);
}
if (ii > iii)
{
Swap(ii, iii);
}
if (i > ii)
{
Swap(i, ii);
}
return vector(i, ii, iii);
}
Foam::vector Foam::eigenVector
(
const tensor& t,
const scalar lambda
)
{
// Constantly rotating direction ensures different eigenvectors are
// generated when called sequentially with a multiple eigenvalue
static vector direction(1,0,0);
vector oldDirection(direction);
scalar temp = direction[2];
direction[2] = direction[1];
direction[1] = direction[0];
direction[0] = temp;
// Construct the linear system for this eigenvalue
tensor A(t - lambda*I);
// Determinants of the 2x2 sub-matrices used to find the eigenvectors
scalar sd0, sd1, sd2;
scalar magSd0, magSd1, magSd2;
// Sub-determinants for a unique eivenvalue
sd0 = A.yy()*A.zz() - A.yz()*A.zy();
sd1 = A.zz()*A.xx() - A.zx()*A.xz();
sd2 = A.xx()*A.yy() - A.xy()*A.yx();
magSd0 = mag(sd0);
magSd1 = mag(sd1);
magSd2 = mag(sd2);
// Evaluate the eigenvector using the largest sub-determinant
if (magSd0 >= magSd1 && magSd0 >= magSd2 && magSd0 > SMALL)
{
vector ev
(
1,
(A.yz()*A.zx() - A.zz()*A.yx())/sd0,
(A.zy()*A.yx() - A.yy()*A.zx())/sd0
);
return ev/mag(ev);
}
else if (magSd1 >= magSd2 && magSd1 > SMALL)
{
vector ev
(
(A.xz()*A.zy() - A.zz()*A.xy())/sd1,
1,
(A.zx()*A.xy() - A.xx()*A.zy())/sd1
);
return ev/mag(ev);
}
else if (magSd2 > SMALL)
{
vector ev
(
(A.xy()*A.yz() - A.yy()*A.xz())/sd2,
(A.yx()*A.xz() - A.xx()*A.yz())/sd2,
1
);
return ev/mag(ev);
}
// Sub-determinants for a repeated eigenvalue
sd0 = A.yy()*direction.z() - A.yz()*direction.y();
sd1 = A.zz()*direction.x() - A.zx()*direction.z();
sd2 = A.xx()*direction.y() - A.xy()*direction.x();
magSd0 = mag(sd0);
magSd1 = mag(sd1);
magSd2 = mag(sd2);
// Evaluate the eigenvector using the largest sub-determinant
if (magSd0 >= magSd1 && magSd0 >= magSd2 && magSd0 > SMALL)
{
vector ev
(
1,
(A.yz()*direction.x() - direction.z()*A.yx())/sd0,
(direction.y()*A.yx() - A.yy()*direction.x())/sd0
);
return ev/mag(ev);
}
else if (magSd1 >= magSd2 && magSd1 > SMALL)
{
vector ev
(
(direction.z()*A.zy() - A.zz()*direction.y())/sd1,
1,
(A.zx()*direction.y() - direction.x()*A.zy())/sd1
);
return ev/mag(ev);
}
else if (magSd2 > SMALL)
{
vector ev
(
(A.xy()*direction.z() - direction.y()*A.xz())/sd2,
(direction.x()*A.xz() - A.xx()*direction.z())/sd2,
1
);
return ev/mag(ev);
}
// Triple eigenvalue
return oldDirection;
}
Foam::tensor Foam::eigenVectors(const tensor& t)
{
vector evals(eigenValues(t));
tensor evs
(
eigenVector(t, evals.x()),
eigenVector(t, evals.y()),
eigenVector(t, evals.z())
);
return evs;
}
Foam::vector Foam::eigenValues(const symmTensor& t)
{
return eigenValues(tensor(t));
}
Foam::vector Foam::eigenVector(const symmTensor& t, const scalar lambda)
{
return eigenVector(tensor(t), lambda);
}
Foam::tensor Foam::eigenVectors(const symmTensor& t)
{
return eigenVectors(tensor(t));
}
// ************************************************************************* //