Files
openfoam/src/OpenFOAM/primitives/complex/complexI.H
2020-01-28 16:09:18 +01:00

475 lines
8.7 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | www.openfoam.com
\\/ M anipulation |
-------------------------------------------------------------------------------
Copyright (C) 2011-2014 OpenFOAM Foundation
Copyright (C) 2019 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
inline constexpr Foam::complex::complex() noexcept
:
re(0),
im(0)
{}
inline constexpr Foam::complex::complex(const Foam::zero) noexcept
:
re(0),
im(0)
{}
inline constexpr Foam::complex::complex(const scalar r) noexcept
:
re(r),
im(0)
{}
inline constexpr Foam::complex::complex(const scalar r, const scalar i) noexcept
:
re(r),
im(i)
{}
inline Foam::complex::complex(const std::complex<float>& c)
:
re(c.real()),
im(c.imag())
{}
inline Foam::complex::complex(const std::complex<double>& c)
:
re(c.real()),
im(c.imag())
{}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
inline void Foam::complex::real(scalar val)
{
re = val;
}
inline void Foam::complex::imag(scalar val)
{
im = val;
}
inline Foam::scalar Foam::complex::Re() const
{
return re;
}
inline Foam::scalar Foam::complex::Im() const
{
return im;
}
inline Foam::scalar& Foam::complex::Re()
{
return re;
}
inline Foam::scalar& Foam::complex::Im()
{
return im;
}
inline Foam::complex Foam::complex::conjugate() const
{
return complex(re, -im);
}
// * * * * * * * * * * * * * * * Member Operators * * * * * * * * * * * * * //
inline void Foam::complex::operator=(const Foam::zero)
{
re = 0;
im = 0;
}
inline void Foam::complex::operator=(const scalar s)
{
re = s;
im = 0;
}
inline void Foam::complex::operator+=(const complex& c)
{
re += c.re;
im += c.im;
}
inline void Foam::complex::operator+=(const scalar s)
{
re += s;
}
inline void Foam::complex::operator-=(const complex& c)
{
re -= c.re;
im -= c.im;
}
inline void Foam::complex::operator-=(const scalar s)
{
re -= s;
}
inline void Foam::complex::operator*=(const complex& c)
{
*this = (*this)*c;
}
inline void Foam::complex::operator*=(const scalar s)
{
re *= s;
im *= s;
}
inline void Foam::complex::operator/=(const complex& c)
{
*this = *this/c;
}
inline void Foam::complex::operator/=(const scalar s)
{
re /= s;
im /= s;
}
inline bool Foam::complex::operator==(const complex& c) const
{
return (equal(re, c.re) && equal(im, c.im));
}
inline bool Foam::complex::operator!=(const complex& c) const
{
return !operator==(c);
}
// * * * * * * * * * * * * * * * Global Operators * * * * * * * * * * * * * //
inline Foam::complex Foam::operator~(const complex& c)
{
return c.conjugate();
}
// * * * * * * * * * * * * * * * Friend Functions * * * * * * * * * * * * * //
namespace Foam
{
inline scalar magSqr(const complex& c)
{
return (c.re*c.re + c.im*c.im);
}
inline scalar mag(const complex& c)
{
return std::hypot(c.re, c.im);
}
inline complex sqr(const complex& c)
{
return c*c;
}
inline complex sign(const complex& c)
{
const scalar s(mag(c));
return s < ROOTVSMALL ? Zero : c/s;
}
inline scalar csign(const complex& c)
{
return equal(c.Re(), 0) ? sign(c.Im()) : sign(c.Re());
}
inline const complex& min(const complex& c1, const complex& c2)
{
if (magSqr(c1) < magSqr(c2))
{
return c1;
}
return c2;
}
inline const complex& max(const complex& c1, const complex& c2)
{
if (magSqr(c1) < magSqr(c2))
{
return c2;
}
return c1;
}
inline complex limit(const complex& c1, const complex& c2)
{
return complex(limit(c1.re, c2.re), limit(c1.im, c2.im));
}
inline const complex& sum(const complex& c)
{
return c;
}
template<class Cmpt> class Tensor;
inline complex transform(const Tensor<scalar>&, const complex c)
{
return c;
}
// * * * * * * * * * * * * * * * Friend Operators * * * * * * * * * * * * * //
inline complex operator-(const complex& c)
{
return complex(-c.re, -c.im);
}
inline complex operator+(const complex& c1, const complex& c2)
{
return complex
(
c1.re + c2.re,
c1.im + c2.im
);
}
inline complex operator+(const complex& c, const scalar s)
{
return complex(c.re + s, c.im);
}
inline complex operator+(const scalar s, const complex& c)
{
return complex(c.re + s, c.im);
}
inline complex operator-(const complex& c1, const complex& c2)
{
return complex
(
c1.re - c2.re,
c1.im - c2.im
);
}
inline complex operator-(const complex& c, const scalar s)
{
return complex(c.re - s, c.im);
}
inline complex operator-(const scalar s, const complex& c)
{
return complex(s - c.re, -c.im);
}
inline complex operator*(const complex& c1, const complex& c2)
{
return complex
(
c1.re*c2.re - c1.im*c2.im,
c1.im*c2.re + c1.re*c2.im
);
}
inline complex operator*(const complex& c, const scalar s)
{
return complex(s*c.re, s*c.im);
}
inline complex operator*(const scalar s, const complex& c)
{
return complex(s*c.re, s*c.im);
}
inline complex operator/(const complex& c1, const complex& c2)
{
const scalar sqrC2 = magSqr(c2);
return complex
(
(c1.re*c2.re + c1.im*c2.im)/sqrC2,
(c1.im*c2.re - c1.re*c2.im)/sqrC2
);
}
inline complex operator/(const complex& c, const scalar s)
{
return complex(c.re/s, c.im/s);
}
inline complex operator/(const scalar s, const complex& c)
{
return complex(s)/c;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace Foam
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
// Complex transcendental functions
namespace Foam
{
#define transFunc(func) \
inline complex func(const Foam::complex& z) \
{ \
return std:: func (std::complex<scalar>(z)); \
}
transFunc(sqrt)
transFunc(exp)
transFunc(log)
transFunc(log10)
transFunc(sin)
transFunc(cos)
transFunc(tan)
transFunc(asin)
transFunc(acos)
transFunc(atan)
transFunc(sinh)
transFunc(cosh)
transFunc(tanh)
transFunc(asinh)
transFunc(acosh)
transFunc(atanh)
// Special treatment for pow()
inline complex pow(const complex& x, const complex& y)
{
return std::pow(std::complex<scalar>(x), std::complex<scalar>(y));
}
// Combinations of complex and real
#define powFuncs(type2) \
inline complex pow(const complex& x, const type2& y) \
{ \
return std::pow(std::complex<scalar>(x), scalar(y)); \
} \
\
inline Foam::complex pow(const type2& x, const complex& y) \
{ \
return std::pow(scalar(x), std::complex<scalar>(y)); \
}
powFuncs(float)
powFuncs(double)
powFuncs(int)
powFuncs(long)
inline complex pow3(const complex& c)
{
return c*sqr(c);
}
inline complex pow4(const complex& c)
{
return sqr(sqr(c));
}
inline complex pow5(const complex& c)
{
return c*pow4(c);
}
inline complex pow6(const complex& c)
{
return pow3(sqr(c));
}
inline complex pow025(const complex& c)
{
return sqrt(sqrt(c));
}
} // End namespace Foam
#undef transFunc
#undef powFuncs
// ************************************************************************* //