Files
openfoam/src/mesh/autoMesh/autoHexMesh/refinementFeatures/refinementFeatures.C

789 lines
24 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2011-2014 OpenFOAM Foundation
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "refinementFeatures.H"
#include "Time.H"
#include "Tuple2.H"
#include "DynamicField.H"
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
void Foam::refinementFeatures::read
(
const objectRegistry& io,
const PtrList<dictionary>& featDicts
)
{
forAll(featDicts, featI)
{
const dictionary& dict = featDicts[featI];
fileName featFileName(dict.lookup("file"));
// Try reading extendedEdgeMesh first
IOobject extFeatObj
(
featFileName, // name
io.time().constant(), // instance
"extendedFeatureEdgeMesh", // local
io.time(), // registry
IOobject::MUST_READ,
IOobject::NO_WRITE,
false
);
const fileName fName(extFeatObj.filePath());
if (!fName.empty() && extendedEdgeMesh::canRead(fName))
{
autoPtr<extendedEdgeMesh> eMeshPtr = extendedEdgeMesh::New
(
fName
);
Info<< "Read extendedFeatureEdgeMesh " << extFeatObj.name()
<< nl << incrIndent;
eMeshPtr().writeStats(Info);
Info<< decrIndent << endl;
set(featI, new extendedFeatureEdgeMesh(extFeatObj, eMeshPtr()));
}
else
{
// Try reading edgeMesh
IOobject featObj
(
featFileName, // name
io.time().constant(), // instance
"triSurface", // local
io.time(), // registry
IOobject::MUST_READ,
IOobject::NO_WRITE,
false
);
const fileName fName(featObj.filePath());
if (fName.empty())
{
FatalIOErrorIn
(
"refinementFeatures::read"
"(const objectRegistry&"
", const PtrList<dictionary>&)",
dict
) << "Could not open " << featObj.objectPath()
<< exit(FatalIOError);
}
// Read as edgeMesh
autoPtr<edgeMesh> eMeshPtr = edgeMesh::New(fName);
const edgeMesh& eMesh = eMeshPtr();
Info<< "Read edgeMesh " << featObj.name() << nl
<< incrIndent;
eMesh.writeStats(Info);
Info<< decrIndent << endl;
// Analyse for feature points. These are all classified as mixed
// points for lack of anything better
const labelListList& pointEdges = eMesh.pointEdges();
labelList oldToNew(eMesh.points().size(), -1);
DynamicField<point> newPoints(eMesh.points().size());
forAll(pointEdges, pointI)
{
if (pointEdges[pointI].size() > 2)
{
oldToNew[pointI] = newPoints.size();
newPoints.append(eMesh.points()[pointI]);
}
//else if (pointEdges[pointI].size() == 2)
//MEJ: do something based on a feature angle?
}
label nFeatures = newPoints.size();
forAll(oldToNew, pointI)
{
if (oldToNew[pointI] == -1)
{
oldToNew[pointI] = newPoints.size();
newPoints.append(eMesh.points()[pointI]);
}
}
const edgeList& edges = eMesh.edges();
edgeList newEdges(edges.size());
forAll(edges, edgeI)
{
const edge& e = edges[edgeI];
newEdges[edgeI] = edge
(
oldToNew[e[0]],
oldToNew[e[1]]
);
}
// Construct an extendedEdgeMesh with
// - all points on more than 2 edges : mixed feature points
// - all edges : external edges
extendedEdgeMesh eeMesh
(
newPoints, // pts
newEdges, // eds
0, // (point) concaveStart
0, // (point) mixedStart
nFeatures, // (point) nonFeatureStart
edges.size(), // (edge) internalStart
edges.size(), // (edge) flatStart
edges.size(), // (edge) openStart
edges.size(), // (edge) multipleStart
vectorField(0), // normals
List<extendedEdgeMesh::sideVolumeType>(0),// normalVolumeTypes
vectorField(0), // edgeDirections
labelListList(0), // normalDirections
labelListList(0), // edgeNormals
labelListList(0), // featurePointNormals
labelListList(0), // featurePointEdges
identity(newEdges.size()) // regionEdges
);
//Info<< "Constructed extendedFeatureEdgeMesh " << featObj.name()
// << nl << incrIndent;
//eeMesh.writeStats(Info);
//Info<< decrIndent << endl;
set(featI, new extendedFeatureEdgeMesh(featObj, eeMesh));
}
const extendedEdgeMesh& eMesh = operator[](featI);
if (dict.found("levels"))
{
List<Tuple2<scalar, label> > distLevels(dict["levels"]);
if (dict.size() < 1)
{
FatalErrorIn
(
"refinementFeatures::read"
"(const objectRegistry&"
", const PtrList<dictionary>&)"
) << " : levels should be at least size 1" << endl
<< "levels : " << dict["levels"]
<< exit(FatalError);
}
distances_[featI].setSize(distLevels.size());
levels_[featI].setSize(distLevels.size());
forAll(distLevels, j)
{
distances_[featI][j] = distLevels[j].first();
levels_[featI][j] = distLevels[j].second();
// Check in incremental order
if (j > 0)
{
if
(
(distances_[featI][j] <= distances_[featI][j-1])
|| (levels_[featI][j] > levels_[featI][j-1])
)
{
FatalErrorIn
(
"refinementFeatures::read"
"(const objectRegistry&"
", const PtrList<dictionary>&)"
) << " : Refinement should be specified in order"
<< " of increasing distance"
<< " (and decreasing refinement level)." << endl
<< "Distance:" << distances_[featI][j]
<< " refinementLevel:" << levels_[featI][j]
<< exit(FatalError);
}
}
}
}
else
{
// Look up 'level' for single level
levels_[featI] = labelList(1, readLabel(dict.lookup("level")));
distances_[featI] = scalarField(1, 0.0);
}
Info<< "Refinement level according to distance to "
<< featFileName << " (" << eMesh.points().size() << " points, "
<< eMesh.edges().size() << " edges)." << endl;
forAll(levels_[featI], j)
{
Info<< " level " << levels_[featI][j]
<< " for all cells within " << distances_[featI][j]
<< " metre." << endl;
}
}
}
void Foam::refinementFeatures::buildTrees(const label featI)
{
const extendedEdgeMesh& eMesh = operator[](featI);
const pointField& points = eMesh.points();
const edgeList& edges = eMesh.edges();
// Calculate bb of all points
treeBoundBox bb(points);
// Random number generator. Bit dodgy since not exactly random ;-)
Random rndGen(65431);
// Slightly extended bb. Slightly off-centred just so on symmetric
// geometry there are less face/edge aligned items.
bb = bb.extend(rndGen, 1e-4);
bb.min() -= point(ROOTVSMALL, ROOTVSMALL, ROOTVSMALL);
bb.max() += point(ROOTVSMALL, ROOTVSMALL, ROOTVSMALL);
edgeTrees_.set
(
featI,
new indexedOctree<treeDataEdge>
(
treeDataEdge
(
false, // do not cache bb
edges,
points,
identity(edges.size())
),
bb, // overall search domain
8, // maxLevel
10, // leafsize
3.0 // duplicity
)
);
labelList featurePoints(identity(eMesh.nonFeatureStart()));
pointTrees_.set
(
featI,
new indexedOctree<treeDataPoint>
(
treeDataPoint(points, featurePoints),
bb, // overall search domain
8, // maxLevel
10, // leafsize
3.0 // duplicity
)
);
}
const Foam::PtrList<Foam::indexedOctree<Foam::treeDataEdge> >&
Foam::refinementFeatures::regionEdgeTrees() const
{
if (!regionEdgeTreesPtr_.valid())
{
regionEdgeTreesPtr_.reset
(
new PtrList<indexedOctree<treeDataEdge> >(size())
);
PtrList<indexedOctree<treeDataEdge> >& trees = regionEdgeTreesPtr_();
forAll(*this, featI)
{
const extendedEdgeMesh& eMesh = operator[](featI);
const pointField& points = eMesh.points();
const edgeList& edges = eMesh.edges();
// Calculate bb of all points
treeBoundBox bb(points);
// Random number generator. Bit dodgy since not exactly random ;-)
Random rndGen(65431);
// Slightly extended bb. Slightly off-centred just so on symmetric
// geometry there are less face/edge aligned items.
bb = bb.extend(rndGen, 1e-4);
bb.min() -= point(ROOTVSMALL, ROOTVSMALL, ROOTVSMALL);
bb.max() += point(ROOTVSMALL, ROOTVSMALL, ROOTVSMALL);
trees.set
(
featI,
new indexedOctree<treeDataEdge>
(
treeDataEdge
(
false, // do not cache bb
edges,
points,
eMesh.regionEdges()
),
bb, // overall search domain
8, // maxLevel
10, // leafsize
3.0 // duplicity
)
);
}
}
return regionEdgeTreesPtr_();
}
// Find maximum level of a shell.
void Foam::refinementFeatures::findHigherLevel
(
const pointField& pt,
const label featI,
labelList& maxLevel
) const
{
const labelList& levels = levels_[featI];
const scalarField& distances = distances_[featI];
// Collect all those points that have a current maxLevel less than
// (any of) the shell. Also collect the furthest distance allowable
// to any shell with a higher level.
pointField candidates(pt.size());
labelList candidateMap(pt.size());
scalarField candidateDistSqr(pt.size());
label candidateI = 0;
forAll(maxLevel, pointI)
{
forAllReverse(levels, levelI)
{
if (levels[levelI] > maxLevel[pointI])
{
candidates[candidateI] = pt[pointI];
candidateMap[candidateI] = pointI;
candidateDistSqr[candidateI] = sqr(distances[levelI]);
candidateI++;
break;
}
}
}
candidates.setSize(candidateI);
candidateMap.setSize(candidateI);
candidateDistSqr.setSize(candidateI);
// Do the expensive nearest test only for the candidate points.
const indexedOctree<treeDataEdge>& tree = edgeTrees_[featI];
List<pointIndexHit> nearInfo(candidates.size());
forAll(candidates, candidateI)
{
nearInfo[candidateI] = tree.findNearest
(
candidates[candidateI],
candidateDistSqr[candidateI]
);
}
// Update maxLevel
forAll(nearInfo, candidateI)
{
if (nearInfo[candidateI].hit())
{
// Check which level it actually is in.
label minDistI = findLower
(
distances,
mag(nearInfo[candidateI].hitPoint()-candidates[candidateI])
);
label pointI = candidateMap[candidateI];
// pt is inbetween shell[minDistI] and shell[minDistI+1]
maxLevel[pointI] = levels[minDistI+1];
}
}
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::refinementFeatures::refinementFeatures
(
const objectRegistry& io,
const PtrList<dictionary>& featDicts
)
:
PtrList<extendedFeatureEdgeMesh>(featDicts.size()),
distances_(featDicts.size()),
levels_(featDicts.size()),
edgeTrees_(featDicts.size()),
pointTrees_(featDicts.size())
{
// Read features
read(io, featDicts);
// Search engines
forAll(*this, i)
{
buildTrees(i);
}
}
//Foam::refinementFeatures::refinementFeatures
//(
// const objectRegistry& io,
// const PtrList<dictionary>& featDicts,
// const scalar minCos
//)
//:
// PtrList<extendedFeatureEdgeMesh>(featDicts.size()),
// distances_(featDicts.size()),
// levels_(featDicts.size()),
// edgeTrees_(featDicts.size()),
// pointTrees_(featDicts.size())
//{
// // Read features
// read(io, featDicts);
//
// // Search engines
// forAll(*this, i)
// {
// const edgeMesh& eMesh = operator[](i);
// const pointField& points = eMesh.points();
// const edgeList& edges = eMesh.edges();
// const labelListList& pointEdges = eMesh.pointEdges();
//
// DynamicList<label> featurePoints;
// forAll(pointEdges, pointI)
// {
// const labelList& pEdges = pointEdges[pointI];
// if (pEdges.size() > 2)
// {
// featurePoints.append(pointI);
// }
// else if (pEdges.size() == 2)
// {
// // Check the angle
// const edge& e0 = edges[pEdges[0]];
// const edge& e1 = edges[pEdges[1]];
//
// const point& p = points[pointI];
// const point& p0 = points[e0.otherVertex(pointI)];
// const point& p1 = points[e1.otherVertex(pointI)];
//
// vector v0 = p-p0;
// scalar v0Mag = mag(v0);
//
// vector v1 = p1-p;
// scalar v1Mag = mag(v1);
//
// if
// (
// v0Mag > SMALL
// && v1Mag > SMALL
// && ((v0/v0Mag & v1/v1Mag) < minCos)
// )
// {
// featurePoints.append(pointI);
// }
// }
// }
//
// Info<< "Detected " << featurePoints.size()
// << " featurePoints out of " << points.size()
// << " points on feature " << i //eMesh.name()
// << " when using feature cos " << minCos << endl;
//
// buildTrees(i, featurePoints);
// }
//}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
void Foam::refinementFeatures::findNearestEdge
(
const pointField& samples,
const scalarField& nearestDistSqr,
labelList& nearFeature,
List<pointIndexHit>& nearInfo,
vectorField& nearNormal
) const
{
nearFeature.setSize(samples.size());
nearFeature = -1;
nearInfo.setSize(samples.size());
nearInfo = pointIndexHit();
nearNormal.setSize(samples.size());
nearNormal = vector::zero;
forAll(edgeTrees_, featI)
{
const indexedOctree<treeDataEdge>& tree = edgeTrees_[featI];
if (tree.shapes().size() > 0)
{
forAll(samples, sampleI)
{
const point& sample = samples[sampleI];
scalar distSqr;
if (nearInfo[sampleI].hit())
{
distSqr = magSqr(nearInfo[sampleI].hitPoint()-sample);
}
else
{
distSqr = nearestDistSqr[sampleI];
}
pointIndexHit info = tree.findNearest(sample, distSqr);
if (info.hit())
{
nearFeature[sampleI] = featI;
nearInfo[sampleI] = pointIndexHit
(
info.hit(),
info.hitPoint(),
tree.shapes().edgeLabels()[info.index()]
);
const treeDataEdge& td = tree.shapes();
const edge& e = td.edges()[nearInfo[sampleI].index()];
nearNormal[sampleI] = e.vec(td.points());
nearNormal[sampleI] /= mag(nearNormal[sampleI])+VSMALL;
}
}
}
}
}
void Foam::refinementFeatures::findNearestRegionEdge
(
const pointField& samples,
const scalarField& nearestDistSqr,
labelList& nearFeature,
List<pointIndexHit>& nearInfo,
vectorField& nearNormal
) const
{
nearFeature.setSize(samples.size());
nearFeature = -1;
nearInfo.setSize(samples.size());
nearInfo = pointIndexHit();
nearNormal.setSize(samples.size());
nearNormal = vector::zero;
const PtrList<indexedOctree<treeDataEdge> >& regionTrees =
regionEdgeTrees();
forAll(regionTrees, featI)
{
const indexedOctree<treeDataEdge>& regionTree = regionTrees[featI];
forAll(samples, sampleI)
{
const point& sample = samples[sampleI];
scalar distSqr;
if (nearInfo[sampleI].hit())
{
distSqr = magSqr(nearInfo[sampleI].hitPoint()-sample);
}
else
{
distSqr = nearestDistSqr[sampleI];
}
// Find anything closer than current best
pointIndexHit info = regionTree.findNearest(sample, distSqr);
if (info.hit())
{
const treeDataEdge& td = regionTree.shapes();
nearFeature[sampleI] = featI;
nearInfo[sampleI] = pointIndexHit
(
info.hit(),
info.hitPoint(),
regionTree.shapes().edgeLabels()[info.index()]
);
const edge& e = td.edges()[nearInfo[sampleI].index()];
nearNormal[sampleI] = e.vec(td.points());
nearNormal[sampleI] /= mag(nearNormal[sampleI])+VSMALL;
}
}
}
}
//void Foam::refinementFeatures::findNearestPoint
//(
// const pointField& samples,
// const scalarField& nearestDistSqr,
// labelList& nearFeature,
// labelList& nearIndex
//) const
//{
// nearFeature.setSize(samples.size());
// nearFeature = -1;
// nearIndex.setSize(samples.size());
// nearIndex = -1;
//
// forAll(pointTrees_, featI)
// {
// const indexedOctree<treeDataPoint>& tree = pointTrees_[featI];
//
// if (tree.shapes().pointLabels().size() > 0)
// {
// forAll(samples, sampleI)
// {
// const point& sample = samples[sampleI];
//
// scalar distSqr;
// if (nearFeature[sampleI] != -1)
// {
// label nearFeatI = nearFeature[sampleI];
// const indexedOctree<treeDataPoint>& nearTree =
// pointTrees_[nearFeatI];
// label featPointI =
// nearTree.shapes().pointLabels()[nearIndex[sampleI]];
// const point& featPt =
// operator[](nearFeatI).points()[featPointI];
// distSqr = magSqr(featPt-sample);
// }
// else
// {
// distSqr = nearestDistSqr[sampleI];
// }
//
// pointIndexHit info = tree.findNearest(sample, distSqr);
//
// if (info.hit())
// {
// nearFeature[sampleI] = featI;
// nearIndex[sampleI] = info.index();
// }
// }
// }
// }
//}
void Foam::refinementFeatures::findNearestPoint
(
const pointField& samples,
const scalarField& nearestDistSqr,
labelList& nearFeature,
List<pointIndexHit>& nearInfo
) const
{
nearFeature.setSize(samples.size());
nearFeature = -1;
nearInfo.setSize(samples.size());
nearInfo = pointIndexHit();
forAll(pointTrees_, featI)
{
const indexedOctree<treeDataPoint>& tree = pointTrees_[featI];
if (tree.shapes().pointLabels().size() > 0)
{
forAll(samples, sampleI)
{
const point& sample = samples[sampleI];
scalar distSqr;
if (nearFeature[sampleI] != -1)
{
distSqr = magSqr(nearInfo[sampleI].hitPoint()-sample);
}
else
{
distSqr = nearestDistSqr[sampleI];
}
pointIndexHit info = tree.findNearest(sample, distSqr);
if (info.hit())
{
nearFeature[sampleI] = featI;
nearInfo[sampleI] = pointIndexHit
(
info.hit(),
info.hitPoint(),
tree.shapes().pointLabels()[info.index()]
);
}
}
}
}
}
void Foam::refinementFeatures::findHigherLevel
(
const pointField& pt,
const labelList& ptLevel,
labelList& maxLevel
) const
{
// Maximum level of any shell. Start off with level of point.
maxLevel = ptLevel;
forAll(*this, featI)
{
findHigherLevel(pt, featI, maxLevel);
}
}
Foam::scalar Foam::refinementFeatures::maxDistance() const
{
scalar overallMax = -GREAT;
forAll(distances_, featI)
{
overallMax = max(overallMax, max(distances_[featI]));
}
return overallMax;
}
// ************************************************************************* //