Files
openfoam/applications/utilities/mesh/manipulation/checkMesh/checkTools.C
Mark Olesen bac943e6fc ENH: new bitSet class and improved PackedList class (closes #751)
- The bitSet class replaces the old PackedBoolList class.
  The redesign provides better block-wise access and reduced method
  calls. This helps both in cases where the bitSet may be relatively
  sparse, and in cases where advantage of contiguous operations can be
  made. This makes it easier to work with a bitSet as top-level object.

  In addition to the previously available count() method to determine
  if a bitSet is being used, now have simpler queries:

    - all()  - true if all bits in the addressable range are empty
    - any()  - true if any bits are set at all.
    - none() - true if no bits are set.

  These are faster than count() and allow early termination.

  The new test() method tests the value of a single bit position and
  returns a bool without any ambiguity caused by the return type
  (like the get() method), nor the const/non-const access (like
  operator[] has). The name corresponds to what std::bitset uses.

  The new find_first(), find_last(), find_next() methods provide a faster
  means of searching for bits that are set.

  This can be especially useful when using a bitSet to control an
  conditional:

  OLD (with macro):

      forAll(selected, celli)
      {
          if (selected[celli])
          {
              sumVol += mesh_.cellVolumes()[celli];
          }
      }

  NEW (with const_iterator):

      for (const label celli : selected)
      {
          sumVol += mesh_.cellVolumes()[celli];
      }

      or manually

      for
      (
          label celli = selected.find_first();
          celli != -1;
          celli = selected.find_next()
      )
      {
          sumVol += mesh_.cellVolumes()[celli];
      }

- When marking up contiguous parts of a bitset, an interval can be
  represented more efficiently as a labelRange of start/size.
  For example,

  OLD:

      if (isA<processorPolyPatch>(pp))
      {
          forAll(pp, i)
          {
              ignoreFaces.set(i);
          }
      }

  NEW:

      if (isA<processorPolyPatch>(pp))
      {
          ignoreFaces.set(pp.range());
      }
2018-03-07 11:21:48 +01:00

504 lines
13 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2015-2017 OpenFOAM Foundation
\\/ M anipulation | Copyright (C) 2015-2017 OpenCFD Ltd.
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "checkTools.H"
#include "polyMesh.H"
#include "globalMeshData.H"
#include "hexMatcher.H"
#include "wedgeMatcher.H"
#include "prismMatcher.H"
#include "pyrMatcher.H"
#include "tetWedgeMatcher.H"
#include "tetMatcher.H"
#include "IOmanip.H"
#include "pointSet.H"
#include "faceSet.H"
#include "cellSet.H"
#include "Time.H"
#include "surfaceWriter.H"
#include "syncTools.H"
#include "globalIndex.H"
#include "PatchTools.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
void Foam::printMeshStats(const polyMesh& mesh, const bool allTopology)
{
Info<< "Mesh stats" << nl
<< " points: "
<< returnReduce(mesh.points().size(), sumOp<label>()) << nl;
label nInternalPoints = returnReduce
(
mesh.nInternalPoints(),
sumOp<label>()
);
if (nInternalPoints != -Pstream::nProcs())
{
Info<< " internal points: " << nInternalPoints << nl;
if (returnReduce(mesh.nInternalPoints(), minOp<label>()) == -1)
{
WarningInFunction
<< "Some processors have their points sorted into internal"
<< " and external and some do not." << endl
<< "This can cause problems later on." << endl;
}
}
if (allTopology && nInternalPoints != -Pstream::nProcs())
{
label nEdges = returnReduce(mesh.nEdges(), sumOp<label>());
label nInternalEdges = returnReduce
(
mesh.nInternalEdges(),
sumOp<label>()
);
label nInternal1Edges = returnReduce
(
mesh.nInternal1Edges(),
sumOp<label>()
);
label nInternal0Edges = returnReduce
(
mesh.nInternal0Edges(),
sumOp<label>()
);
Info<< " edges: " << nEdges << nl
<< " internal edges: " << nInternalEdges << nl
<< " internal edges using one boundary point: "
<< nInternal1Edges-nInternal0Edges << nl
<< " internal edges using two boundary points: "
<< nInternalEdges-nInternal1Edges << nl;
}
label nFaces = returnReduce(mesh.faces().size(), sumOp<label>());
label nIntFaces = returnReduce(mesh.faceNeighbour().size(), sumOp<label>());
label nCells = returnReduce(mesh.cells().size(), sumOp<label>());
Info<< " faces: " << nFaces << nl
<< " internal faces: " << nIntFaces << nl
<< " cells: " << nCells << nl
<< " faces per cell: "
<< (scalar(nFaces) + scalar(nIntFaces))/max(1, nCells) << nl
<< " boundary patches: " << mesh.boundaryMesh().size() << nl
<< " point zones: " << mesh.pointZones().size() << nl
<< " face zones: " << mesh.faceZones().size() << nl
<< " cell zones: " << mesh.cellZones().size() << nl
<< endl;
// Construct shape recognizers
hexMatcher hex;
prismMatcher prism;
wedgeMatcher wedge;
pyrMatcher pyr;
tetWedgeMatcher tetWedge;
tetMatcher tet;
// Counters for different cell types
label nHex = 0;
label nWedge = 0;
label nPrism = 0;
label nPyr = 0;
label nTet = 0;
label nTetWedge = 0;
label nUnknown = 0;
Map<label> polyhedralFaces;
for (label celli = 0; celli < mesh.nCells(); celli++)
{
if (hex.isA(mesh, celli))
{
nHex++;
}
else if (tet.isA(mesh, celli))
{
nTet++;
}
else if (pyr.isA(mesh, celli))
{
nPyr++;
}
else if (prism.isA(mesh, celli))
{
nPrism++;
}
else if (wedge.isA(mesh, celli))
{
nWedge++;
}
else if (tetWedge.isA(mesh, celli))
{
nTetWedge++;
}
else
{
nUnknown++;
polyhedralFaces(mesh.cells()[celli].size())++;
}
}
reduce(nHex,sumOp<label>());
reduce(nPrism,sumOp<label>());
reduce(nWedge,sumOp<label>());
reduce(nPyr,sumOp<label>());
reduce(nTetWedge,sumOp<label>());
reduce(nTet,sumOp<label>());
reduce(nUnknown,sumOp<label>());
Info<< "Overall number of cells of each type:" << nl
<< " hexahedra: " << nHex << nl
<< " prisms: " << nPrism << nl
<< " wedges: " << nWedge << nl
<< " pyramids: " << nPyr << nl
<< " tet wedges: " << nTetWedge << nl
<< " tetrahedra: " << nTet << nl
<< " polyhedra: " << nUnknown
<< endl;
if (nUnknown > 0)
{
Pstream::mapCombineGather(polyhedralFaces, plusEqOp<label>());
Info<< " Breakdown of polyhedra by number of faces:" << nl
<< " faces" << " number of cells" << endl;
const labelList sortedKeys = polyhedralFaces.sortedToc();
forAll(sortedKeys, keyi)
{
const label nFaces = sortedKeys[keyi];
Info<< setf(std::ios::right) << setw(13)
<< nFaces << " " << polyhedralFaces[nFaces] << nl;
}
}
Info<< endl;
}
void Foam::mergeAndWrite
(
const polyMesh& mesh,
const surfaceWriter& writer,
const word& name,
const indirectPrimitivePatch setPatch,
const fileName& outputDir
)
{
if (Pstream::parRun())
{
labelList pointToGlobal;
labelList uniqueMeshPointLabels;
autoPtr<globalIndex> globalPoints;
autoPtr<globalIndex> globalFaces;
faceList mergedFaces;
pointField mergedPoints;
Foam::PatchTools::gatherAndMerge
(
mesh,
setPatch.localFaces(),
setPatch.meshPoints(),
setPatch.meshPointMap(),
pointToGlobal,
uniqueMeshPointLabels,
globalPoints,
globalFaces,
mergedFaces,
mergedPoints
);
// Write
if (Pstream::master())
{
writer.write
(
outputDir,
name,
meshedSurfRef
(
mergedPoints,
mergedFaces
)
);
}
}
else
{
writer.write
(
outputDir,
name,
meshedSurfRef
(
setPatch.localPoints(),
setPatch.localFaces()
)
);
}
}
void Foam::mergeAndWrite
(
const surfaceWriter& writer,
const faceSet& set
)
{
const polyMesh& mesh = refCast<const polyMesh>(set.db());
const indirectPrimitivePatch setPatch
(
IndirectList<face>(mesh.faces(), set.sortedToc()),
mesh.points()
);
fileName outputDir
(
set.time().path()
/ (Pstream::parRun() ? ".." : "")
/ "postProcessing"
/ mesh.pointsInstance()
/ set.name()
);
outputDir.clean();
mergeAndWrite(mesh, writer, set.name(), setPatch, outputDir);
}
void Foam::mergeAndWrite
(
const surfaceWriter& writer,
const cellSet& set
)
{
const polyMesh& mesh = refCast<const polyMesh>(set.db());
const polyBoundaryMesh& pbm = mesh.boundaryMesh();
// Determine faces on outside of cellSet
bitSet isInSet(mesh.nCells());
forAllConstIter(cellSet, set, iter)
{
isInSet.set(iter.key());
}
boolList bndInSet(mesh.nFaces()-mesh.nInternalFaces());
forAll(pbm, patchi)
{
const polyPatch& pp = pbm[patchi];
const labelList& fc = pp.faceCells();
forAll(fc, i)
{
bndInSet[pp.start()+i-mesh.nInternalFaces()] = isInSet[fc[i]];
}
}
syncTools::swapBoundaryFaceList(mesh, bndInSet);
DynamicList<label> outsideFaces(3*set.size());
for (label facei = 0; facei < mesh.nInternalFaces(); facei++)
{
const bool ownVal = isInSet[mesh.faceOwner()[facei]];
const bool neiVal = isInSet[mesh.faceNeighbour()[facei]];
if (ownVal != neiVal)
{
outsideFaces.append(facei);
}
}
forAll(pbm, patchi)
{
const polyPatch& pp = pbm[patchi];
const labelList& fc = pp.faceCells();
if (pp.coupled())
{
forAll(fc, i)
{
label facei = pp.start()+i;
const bool neiVal = bndInSet[facei-mesh.nInternalFaces()];
if (isInSet[fc[i]] && !neiVal)
{
outsideFaces.append(facei);
}
}
}
else
{
forAll(fc, i)
{
if (isInSet[fc[i]])
{
outsideFaces.append(pp.start()+i);
}
}
}
}
const indirectPrimitivePatch setPatch
(
IndirectList<face>(mesh.faces(), outsideFaces),
mesh.points()
);
fileName outputDir
(
set.time().path()
/ (Pstream::parRun() ? ".." : "")
/ "postProcessing"
/ mesh.pointsInstance()
/ set.name()
);
outputDir.clean();
mergeAndWrite(mesh, writer, set.name(), setPatch, outputDir);
}
void Foam::mergeAndWrite
(
const writer<scalar>& writer,
const pointSet& set
)
{
const polyMesh& mesh = refCast<const polyMesh>(set.db());
pointField mergedPts;
labelList mergedIDs;
if (Pstream::parRun())
{
// Note: we explicitly do not merge the points
// (mesh.globalData().mergePoints etc) since this might
// hide any synchronisation problem
globalIndex globalNumbering(mesh.nPoints());
mergedPts.setSize(returnReduce(set.size(), sumOp<label>()));
mergedIDs.setSize(mergedPts.size());
labelList setPointIDs(set.sortedToc());
// Get renumbered local data
pointField myPoints(mesh.points(), setPointIDs);
labelList myIDs(setPointIDs.size());
forAll(setPointIDs, i)
{
myIDs[i] = globalNumbering.toGlobal(setPointIDs[i]);
}
if (Pstream::master())
{
// Insert master data first
label pOffset = 0;
SubList<point>(mergedPts, myPoints.size(), pOffset) = myPoints;
SubList<label>(mergedIDs, myIDs.size(), pOffset) = myIDs;
pOffset += myPoints.size();
// Receive slave ones
for (int slave=1; slave<Pstream::nProcs(); slave++)
{
IPstream fromSlave(Pstream::commsTypes::scheduled, slave);
pointField slavePts(fromSlave);
labelList slaveIDs(fromSlave);
SubList<point>(mergedPts, slavePts.size(), pOffset) = slavePts;
SubList<label>(mergedIDs, slaveIDs.size(), pOffset) = slaveIDs;
pOffset += slaveIDs.size();
}
}
else
{
// Construct processor stream with estimate of size. Could
// be improved.
OPstream toMaster
(
Pstream::commsTypes::scheduled,
Pstream::masterNo(),
myPoints.byteSize() + myIDs.byteSize()
);
toMaster << myPoints << myIDs;
}
}
else
{
mergedIDs = set.sortedToc();
mergedPts = pointField(mesh.points(), mergedIDs);
}
// Write with scalar pointID
if (Pstream::master())
{
scalarField scalarPointIDs(mergedIDs.size());
forAll(mergedIDs, i)
{
scalarPointIDs[i] = 1.0*mergedIDs[i];
}
coordSet points(set.name(), "distance", mergedPts, mag(mergedPts));
List<const scalarField*> flds(1, &scalarPointIDs);
wordList fldNames(1, "pointID");
// Output e.g. pointSet p0 to
// postProcessing/<time>/p0.vtk
fileName outputDir
(
set.time().path()
/ (Pstream::parRun() ? ".." : "")
/ "postProcessing"
/ mesh.pointsInstance()
// set.name()
);
outputDir.clean();
mkDir(outputDir);
fileName outputFile(outputDir/writer.getFileName(points, wordList()));
//fileName outputFile(outputDir/set.name());
OFstream os(outputFile);
writer.write(points, fldNames, flds, os);
}
}
// ************************************************************************* //