Files
openfoam/src/OpenFOAM/primitives/complex/complex.H
kuti f8a70115fd ENH: add sign(), csign() methods for complex
- use std::hypot for complex mag() instead of long-hand version

- Detail::conj() function for complex or non-complex
2019-05-21 11:18:12 +01:00

376 lines
10 KiB
C++

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2019 OpenCFD Ltd.
\\/ M anipulation |
-------------------------------------------------------------------------------
| Copyright (C) 2011-2014 OpenFOAM Foundation
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
Class
Foam::complex
Description
A complex number, similar to the C++ complex type.
SourceFiles
complexI.H
complex.C
\*---------------------------------------------------------------------------*/
#ifndef complex_H
#define complex_H
#include <complex>
#include <type_traits>
#include "scalar.H"
#include "word.H"
#include "zero.H"
#include "contiguous.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
namespace Foam
{
// Forward Declarations
class complex;
inline scalar magSqr(const complex&);
inline scalar mag(const complex&);
inline complex sqr(const complex&);
inline const complex& min(const complex&, const complex&);
inline const complex& max(const complex&, const complex&);
inline complex limit(const complex&, const complex&);
inline const complex& sum(const complex&);
inline complex operator+(const complex&, const complex&);
inline complex operator-(const complex&);
inline complex operator-(const complex&, const complex&);
inline complex operator*(const complex&, const complex&);
inline complex operator/(const complex&, const complex&);
inline complex operator*(const scalar, const complex&);
inline complex operator*(const complex&, const scalar);
inline complex operator/(const complex&, const scalar);
inline complex operator/(const scalar, const complex&);
/*---------------------------------------------------------------------------*\
Class complex Declaration
\*---------------------------------------------------------------------------*/
class complex
{
// Private Data
//- Real and imaginary parts
scalar re, im;
public:
//- Component type
typedef complex cmptType;
// Static Data Members
//- The type name is "complex"
static constexpr const char* const typeName = "complex";
//- A complex zero (0,0)
static const complex zero;
//- A complex one (1,0)
static const complex one;
// Constructors
//- Construct null as zero-initialized
inline constexpr complex() noexcept;
//- Default copy constructor
complex(const complex&) = default;
//- Construct zero-initialized from zero class
inline constexpr complex(const Foam::zero) noexcept;
//- Construct from real component
inline explicit constexpr complex(const scalar r) noexcept;
//- Construct from real and imaginary parts
inline constexpr complex(const scalar r, const scalar i) noexcept;
//- Construct from std::complex
inline complex(const std::complex<float>& c);
//- Construct from std::complex
inline complex(const std::complex<double>& c);
//- Construct from Istream
explicit complex(Istream& is);
// Member Functions
// STL getter/setter
//- Real part of complex number - STL naming
constexpr scalar real() const
{
return re;
}
//- Imaginary part of complex number - STL naming
constexpr scalar imag() const
{
return im;
}
//- Set real part of complex number - STL naming
inline void real(scalar val);
//- Set imaginary part of complex number - STL naming
inline void imag(scalar val);
// Access
//- Real part of complex number
inline scalar Re() const;
//- Imaginary part of complex number
inline scalar Im() const;
// Edit
//- Real part of complex number
inline scalar& Re();
//- Imaginary part of complex number
inline scalar& Im();
// Operations
//- Complex conjugate
inline complex conjugate() const;
// Member Operators
//- Conversion to std::complex
inline operator std::complex<scalar>() const
{
return std::complex<scalar>(re, im);
}
//- Copy assignment
inline void operator=(const complex& c);
//- Assign zero
inline void operator=(const Foam::zero);
inline void operator+=(const complex& c);
inline void operator-=(const complex& c);
inline void operator*=(const complex& c);
inline void operator/=(const complex& c);
inline void operator=(const scalar s);
inline void operator+=(const scalar s);
inline void operator-=(const scalar s);
inline void operator*=(const scalar s);
inline void operator/=(const scalar s);
inline bool operator==(const complex& c) const;
inline bool operator!=(const complex& c) const;
// Friend Functions
friend scalar magSqr(const complex& c);
friend scalar mag(const complex& c);
friend complex sqr(const complex& c);
//- sgn() https://en.wikipedia.org/wiki/Sign_function#Complex_signum
friend complex sign(const complex& c);
//- csgn() https://en.wikipedia.org/wiki/Sign_function#Complex_signum
friend scalar csign(const complex& c);
friend const complex& min(const complex& c1, const complex& c2);
friend const complex& max(const complex& c1, const complex& c2);
friend complex limit(const complex& c1, const complex& c2);
friend const complex& sum(const complex& c);
// Friend Operators
friend complex operator+(const complex& c1, const complex& c2);
friend complex operator-(const complex& c);
friend complex operator-(const complex& c1, const complex& c2);
friend complex operator*(const complex& c1, const complex& c2);
friend complex operator/(const complex& c1, const complex& c2);
friend complex operator*(const scalar s, const complex& c);
friend complex operator*(const complex& c, const scalar s);
friend complex operator/(const complex& c, const scalar s);
friend complex operator/(const scalar s, const complex& c);
};
/*---------------------------------------------------------------------------*\
Class pTraits<complex> Declaration
\*---------------------------------------------------------------------------*/
// Template specialisation for pTraits<complex>
template<>
class pTraits<complex>
{
complex p_;
public:
//- Component type
typedef complex cmptType;
//- Equivalent type of labels used for valid component indexing
typedef label labelType;
// Member Constants
//- Dimensionality of space
static constexpr direction dim = 3;
//- Rank of complex is 0
static constexpr direction rank = 0;
//- Number of components in complex is 2
static constexpr direction nComponents = 2;
// Static Data Members
static const char* const typeName;
static const char* const componentNames[];
static const complex zero;
static const complex one;
static const complex max;
static const complex min;
static const complex rootMax;
static const complex rootMin;
// Constructors
//- Construct from primitive
explicit pTraits(const complex& val);
//- Construct from Istream
pTraits(Istream& is);
// Member Functions
//- Access to the value
operator complex() const
{
return p_;
}
//- Access to the value
operator complex&()
{
return p_;
}
};
/*---------------------------------------------------------------------------*\
Namespace Detail
\*---------------------------------------------------------------------------*/
namespace Detail
{
// Helper functions for complex, in Detail namespace to avoid possible
// name collisions (could change in the future)
//- The 'conjugate' of non-complex returns itself (pass-through)
//- it does not return a complex!
template<class T>
typename std::enable_if
<
!std::is_same<complex, T>::value,
const T&
>::type conj(const T& val)
{
return val;
}
//- The conjugate of a complex number
template<class T>
typename std::enable_if
<
std::is_same<complex, T>::value,
complex
>::type conj(const T& val)
{
return val.conjugate();
}
} // End namespace Detail
// * * * * * * * * * * * * * * * Global Operators * * * * * * * * * * * * * //
Istream& operator>>(Istream& is, complex& c);
Ostream& operator<<(Ostream& os, const complex& c);
//- Complex conjugate
inline complex operator~(const complex& c);
// * * * * * * * * * * * * * * Global Functions * * * * * * * * * * * * * * //
//- Return string representation of complex
word name(const complex& c);
//- Data associated with complex type are contiguous
template<>
inline bool contiguous<complex>() {return true;}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
} // End namespace Foam
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#include "complexI.H"
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
#endif
// ************************************************************************* //