Files
openfoam/applications/solvers/combustion/PDRFoam/XiModels/XiEqModels/XiEqModel/XiEqModel.C

203 lines
5.3 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2004-2011 OpenCFD Ltd.
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "XiEqModel.H"
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
defineTypeNameAndDebug(XiEqModel, 0);
defineRunTimeSelectionTable(XiEqModel, dictionary);
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::XiEqModel::XiEqModel
(
const dictionary& XiEqProperties,
const hhuCombustionThermo& thermo,
const compressible::RASModel& turbulence,
const volScalarField& Su
)
:
XiEqModelCoeffs_
(
XiEqProperties.subDict
(
word(XiEqProperties.lookup("XiEqModel")) + "Coeffs"
)
),
thermo_(thermo),
turbulence_(turbulence),
Su_(Su),
Nv_
(
IOobject
(
"Nv",
Su.mesh().facesInstance(),
Su.mesh(),
IOobject::MUST_READ,
IOobject::NO_WRITE
),
Su.mesh()
),
nsv_
(
IOobject
(
"nsv",
Su.mesh().facesInstance(),
Su.mesh(),
IOobject::MUST_READ,
IOobject::NO_WRITE
),
Su.mesh()
),
uPrimeCoef_(XiEqModelCoeffs_.lookupOrDefault<scalar>("uPrimeCoef", 0.0)),
subGridSchelkin_
(
XiEqModelCoeffs_.lookupOrDefault<bool>("subGridSchelkin", false)
)
{}
// * * * * * * * * * * * * * * * * Destructors * * * * * * * * * * * * * * * //
Foam::XiEqModel::~XiEqModel()
{}
// * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * * //
bool Foam::XiEqModel::read(const dictionary& XiEqProperties)
{
XiEqModelCoeffs_ = XiEqProperties.subDict(type() + "Coeffs");
uPrimeCoef_ = XiEqModelCoeffs_.lookupOrDefault<scalar>("uPrimeCoef", 0.0);
subGridSchelkin_ =
XiEqModelCoeffs_.lookupOrDefault<bool>("subGridSchelkin", false);
return true;
}
void Foam::XiEqModel::writeFields() const
{
Nv_.write();
nsv_.write();
if (Su_.mesh().foundObject<volSymmTensorField>("B"))
{
const volSymmTensorField& B =
Su_.mesh().lookupObject<volSymmTensorField>("B");
B.write();
}
}
Foam::tmp<Foam::volScalarField>
Foam::XiEqModel::calculateSchelkinEffect() const
{
const fvMesh& mesh = Su_.mesh();
const volVectorField& U = mesh.lookupObject<volVectorField>("U");
const volSymmTensorField& CT = mesh.lookupObject<volSymmTensorField>("CT");
const volScalarField& Nv = mesh.lookupObject<volScalarField>("Nv");
const volSymmTensorField& nsv =
mesh.lookupObject<volSymmTensorField>("nsv");
tmp<volScalarField> tN
(
new volScalarField
(
IOobject
(
"tN",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE,
false
),
mesh,
dimensionedScalar("zero", Nv.dimensions(), 0.0),
zeroGradientFvPatchVectorField::typeName
)
);
volScalarField& N = tN();
N.internalField() = Nv.internalField()*pow(mesh.V(), 2.0/3.0);
tmp<volSymmTensorField> tns
(
new volSymmTensorField
(
IOobject
(
"tns",
mesh.time().timeName(),
mesh,
IOobject::NO_READ,
IOobject::NO_WRITE
),
mesh,
dimensionedSymmTensor
(
"zero",
nsv.dimensions(),
pTraits<symmTensor>::zero
)
)
);
volSymmTensorField& ns = tns();
ns.internalField() = nsv.internalField()*pow(mesh.V(), 2.0/3.0);
const volVectorField Uhat
(
U/(mag(U) + dimensionedScalar("Usmall", U.dimensions(), 1e-4))
);
const volScalarField nr(sqrt(max(N - (Uhat & ns & Uhat), scalar(1e-4))));
const scalarField cellWidth(pow(mesh.V(), 1.0/3.0));
const scalarField upLocal(uPrimeCoef_*sqrt((U & CT & U)*cellWidth));
const scalarField deltaUp(upLocal*(max(scalar(1.0), pow(nr, 0.5)) - 1.0));
//Re use tN
N.internalField() = upLocal*(max(scalar(1.0), pow(nr, 0.5)) - 1.0);
return tN;
}
// ************************************************************************* //