mirror of
https://develop.openfoam.com/Development/openfoam.git
synced 2025-11-28 03:28:01 +00:00
1420 lines
41 KiB
C
1420 lines
41 KiB
C
/*---------------------------------------------------------------------------*\
|
|
========= |
|
|
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
|
|
\\ / O peration |
|
|
\\ / A nd | Copyright (C) 2011-2013 OpenFOAM Foundation
|
|
\\/ M anipulation |
|
|
-------------------------------------------------------------------------------
|
|
License
|
|
This file is part of OpenFOAM.
|
|
|
|
OpenFOAM is free software: you can redistribute it and/or modify it
|
|
under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
|
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
InClass
|
|
decompositionMethod
|
|
|
|
\*---------------------------------------------------------------------------*/
|
|
|
|
#include "decompositionMethod.H"
|
|
#include "globalIndex.H"
|
|
#include "syncTools.H"
|
|
#include "Tuple2.H"
|
|
#include "faceSet.H"
|
|
#include "regionSplit.H"
|
|
#include "localPointRegion.H"
|
|
|
|
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
|
|
|
|
namespace Foam
|
|
{
|
|
defineTypeNameAndDebug(decompositionMethod, 0);
|
|
defineRunTimeSelectionTable(decompositionMethod, dictionary);
|
|
}
|
|
|
|
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
|
|
|
|
Foam::autoPtr<Foam::decompositionMethod> Foam::decompositionMethod::New
|
|
(
|
|
const dictionary& decompositionDict
|
|
)
|
|
{
|
|
word methodType(decompositionDict.lookup("method"));
|
|
|
|
if (methodType == "scotch" && Pstream::parRun())
|
|
{
|
|
methodType = "ptscotch";
|
|
}
|
|
|
|
|
|
Info<< "Selecting decompositionMethod " << methodType << endl;
|
|
|
|
dictionaryConstructorTable::iterator cstrIter =
|
|
dictionaryConstructorTablePtr_->find(methodType);
|
|
|
|
if (cstrIter == dictionaryConstructorTablePtr_->end())
|
|
{
|
|
FatalErrorIn
|
|
(
|
|
"decompositionMethod::New"
|
|
"(const dictionary& decompositionDict)"
|
|
) << "Unknown decompositionMethod "
|
|
<< methodType << nl << nl
|
|
<< "Valid decompositionMethods are : " << endl
|
|
<< dictionaryConstructorTablePtr_->sortedToc()
|
|
<< exit(FatalError);
|
|
}
|
|
|
|
return autoPtr<decompositionMethod>(cstrIter()(decompositionDict));
|
|
}
|
|
|
|
|
|
Foam::labelList Foam::decompositionMethod::decompose
|
|
(
|
|
const polyMesh& mesh,
|
|
const pointField& points
|
|
)
|
|
{
|
|
scalarField weights(points.size(), 1.0);
|
|
|
|
return decompose(mesh, points, weights);
|
|
}
|
|
|
|
|
|
Foam::labelList Foam::decompositionMethod::decompose
|
|
(
|
|
const polyMesh& mesh,
|
|
const labelList& fineToCoarse,
|
|
const pointField& coarsePoints,
|
|
const scalarField& coarseWeights
|
|
)
|
|
{
|
|
CompactListList<label> coarseCellCells;
|
|
calcCellCells
|
|
(
|
|
mesh,
|
|
fineToCoarse,
|
|
coarsePoints.size(),
|
|
true, // use global cell labels
|
|
coarseCellCells
|
|
);
|
|
|
|
// Decompose based on agglomerated points
|
|
labelList coarseDistribution
|
|
(
|
|
decompose
|
|
(
|
|
coarseCellCells(),
|
|
coarsePoints,
|
|
coarseWeights
|
|
)
|
|
);
|
|
|
|
// Rework back into decomposition for original mesh_
|
|
labelList fineDistribution(fineToCoarse.size());
|
|
|
|
forAll(fineDistribution, i)
|
|
{
|
|
fineDistribution[i] = coarseDistribution[fineToCoarse[i]];
|
|
}
|
|
|
|
return fineDistribution;
|
|
}
|
|
|
|
|
|
Foam::labelList Foam::decompositionMethod::decompose
|
|
(
|
|
const polyMesh& mesh,
|
|
const labelList& fineToCoarse,
|
|
const pointField& coarsePoints
|
|
)
|
|
{
|
|
scalarField cWeights(coarsePoints.size(), 1.0);
|
|
|
|
return decompose
|
|
(
|
|
mesh,
|
|
fineToCoarse,
|
|
coarsePoints,
|
|
cWeights
|
|
);
|
|
}
|
|
|
|
|
|
Foam::labelList Foam::decompositionMethod::decompose
|
|
(
|
|
const labelListList& globalCellCells,
|
|
const pointField& cc
|
|
)
|
|
{
|
|
scalarField cWeights(cc.size(), 1.0);
|
|
|
|
return decompose(globalCellCells, cc, cWeights);
|
|
}
|
|
|
|
|
|
void Foam::decompositionMethod::calcCellCells
|
|
(
|
|
const polyMesh& mesh,
|
|
const labelList& agglom,
|
|
const label nCoarse,
|
|
const bool parallel,
|
|
CompactListList<label>& cellCells
|
|
)
|
|
{
|
|
const labelList& faceOwner = mesh.faceOwner();
|
|
const labelList& faceNeighbour = mesh.faceNeighbour();
|
|
const polyBoundaryMesh& patches = mesh.boundaryMesh();
|
|
|
|
|
|
// Create global cell numbers
|
|
// ~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
globalIndex globalAgglom
|
|
(
|
|
nCoarse,
|
|
Pstream::msgType(),
|
|
Pstream::worldComm,
|
|
parallel
|
|
);
|
|
|
|
|
|
// Get agglomerate owner on other side of coupled faces
|
|
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
labelList globalNeighbour(mesh.nFaces()-mesh.nInternalFaces());
|
|
|
|
forAll(patches, patchI)
|
|
{
|
|
const polyPatch& pp = patches[patchI];
|
|
|
|
if (pp.coupled() && (parallel || !isA<processorPolyPatch>(pp)))
|
|
{
|
|
label faceI = pp.start();
|
|
label bFaceI = pp.start() - mesh.nInternalFaces();
|
|
|
|
forAll(pp, i)
|
|
{
|
|
globalNeighbour[bFaceI] = globalAgglom.toGlobal
|
|
(
|
|
agglom[faceOwner[faceI]]
|
|
);
|
|
|
|
bFaceI++;
|
|
faceI++;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Get the cell on the other side of coupled patches
|
|
syncTools::swapBoundaryFaceList(mesh, globalNeighbour);
|
|
|
|
|
|
// Count number of faces (internal + coupled)
|
|
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
// Number of faces per coarse cell
|
|
labelList nFacesPerCell(nCoarse, 0);
|
|
|
|
for (label faceI = 0; faceI < mesh.nInternalFaces(); faceI++)
|
|
{
|
|
label own = agglom[faceOwner[faceI]];
|
|
label nei = agglom[faceNeighbour[faceI]];
|
|
|
|
nFacesPerCell[own]++;
|
|
nFacesPerCell[nei]++;
|
|
}
|
|
|
|
forAll(patches, patchI)
|
|
{
|
|
const polyPatch& pp = patches[patchI];
|
|
|
|
if (pp.coupled() && (parallel || !isA<processorPolyPatch>(pp)))
|
|
{
|
|
label faceI = pp.start();
|
|
label bFaceI = pp.start()-mesh.nInternalFaces();
|
|
|
|
forAll(pp, i)
|
|
{
|
|
label own = agglom[faceOwner[faceI]];
|
|
|
|
label globalNei = globalNeighbour[bFaceI];
|
|
if
|
|
(
|
|
!globalAgglom.isLocal(globalNei)
|
|
|| globalAgglom.toLocal(globalNei) != own
|
|
)
|
|
{
|
|
nFacesPerCell[own]++;
|
|
}
|
|
|
|
faceI++;
|
|
bFaceI++;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Fill in offset and data
|
|
// ~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
cellCells.setSize(nFacesPerCell);
|
|
|
|
nFacesPerCell = 0;
|
|
|
|
labelList& m = cellCells.m();
|
|
const labelList& offsets = cellCells.offsets();
|
|
|
|
// For internal faces is just offsetted owner and neighbour
|
|
for (label faceI = 0; faceI < mesh.nInternalFaces(); faceI++)
|
|
{
|
|
label own = agglom[faceOwner[faceI]];
|
|
label nei = agglom[faceNeighbour[faceI]];
|
|
|
|
m[offsets[own] + nFacesPerCell[own]++] = globalAgglom.toGlobal(nei);
|
|
m[offsets[nei] + nFacesPerCell[nei]++] = globalAgglom.toGlobal(own);
|
|
}
|
|
|
|
// For boundary faces is offsetted coupled neighbour
|
|
forAll(patches, patchI)
|
|
{
|
|
const polyPatch& pp = patches[patchI];
|
|
|
|
if (pp.coupled() && (parallel || !isA<processorPolyPatch>(pp)))
|
|
{
|
|
label faceI = pp.start();
|
|
label bFaceI = pp.start()-mesh.nInternalFaces();
|
|
|
|
forAll(pp, i)
|
|
{
|
|
label own = agglom[faceOwner[faceI]];
|
|
|
|
label globalNei = globalNeighbour[bFaceI];
|
|
|
|
if
|
|
(
|
|
!globalAgglom.isLocal(globalNei)
|
|
|| globalAgglom.toLocal(globalNei) != own
|
|
)
|
|
{
|
|
m[offsets[own] + nFacesPerCell[own]++] = globalNei;
|
|
}
|
|
|
|
faceI++;
|
|
bFaceI++;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// Check for duplicates connections between cells
|
|
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
// Done as postprocessing step since we now have cellCells.
|
|
label newIndex = 0;
|
|
labelHashSet nbrCells;
|
|
|
|
|
|
if (cellCells.size() == 0)
|
|
{
|
|
return;
|
|
}
|
|
|
|
label startIndex = cellCells.offsets()[0];
|
|
|
|
forAll(cellCells, cellI)
|
|
{
|
|
nbrCells.clear();
|
|
nbrCells.insert(globalAgglom.toGlobal(cellI));
|
|
|
|
label endIndex = cellCells.offsets()[cellI+1];
|
|
|
|
for (label i = startIndex; i < endIndex; i++)
|
|
{
|
|
if (nbrCells.insert(cellCells.m()[i]))
|
|
{
|
|
cellCells.m()[newIndex++] = cellCells.m()[i];
|
|
}
|
|
}
|
|
startIndex = endIndex;
|
|
cellCells.offsets()[cellI+1] = newIndex;
|
|
}
|
|
|
|
cellCells.m().setSize(newIndex);
|
|
|
|
//forAll(cellCells, cellI)
|
|
//{
|
|
// Pout<< "Original: Coarse cell " << cellI << endl;
|
|
// forAll(mesh.cellCells()[cellI], i)
|
|
// {
|
|
// Pout<< " nbr:" << mesh.cellCells()[cellI][i] << endl;
|
|
// }
|
|
// Pout<< "Compacted: Coarse cell " << cellI << endl;
|
|
// const labelUList cCells = cellCells[cellI];
|
|
// forAll(cCells, i)
|
|
// {
|
|
// Pout<< " nbr:" << cCells[i] << endl;
|
|
// }
|
|
//}
|
|
}
|
|
|
|
|
|
//void Foam::decompositionMethod::calcCellCells
|
|
//(
|
|
// const polyMesh& mesh,
|
|
// const boolList& blockedFace,
|
|
// const List<labelPair>& explicitConnections,
|
|
// const labelList& agglom,
|
|
// const label nCoarse,
|
|
// const bool parallel,
|
|
// CompactListList<label>& cellCells
|
|
//)
|
|
//{
|
|
// const labelList& faceOwner = mesh.faceOwner();
|
|
// const labelList& faceNeighbour = mesh.faceNeighbour();
|
|
// const polyBoundaryMesh& patches = mesh.boundaryMesh();
|
|
//
|
|
//
|
|
// // Create global cell numbers
|
|
// // ~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
//
|
|
// globalIndex globalAgglom
|
|
// (
|
|
// nCoarse,
|
|
// Pstream::msgType(),
|
|
// Pstream::worldComm,
|
|
// parallel
|
|
// );
|
|
//
|
|
//
|
|
// // Get agglomerate owner on other side of coupled faces
|
|
// // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
//
|
|
// labelList globalNeighbour(mesh.nFaces()-mesh.nInternalFaces());
|
|
//
|
|
// forAll(patches, patchI)
|
|
// {
|
|
// const polyPatch& pp = patches[patchI];
|
|
//
|
|
// if (pp.coupled() && (parallel || !isA<processorPolyPatch>(pp)))
|
|
// {
|
|
// label faceI = pp.start();
|
|
// label bFaceI = pp.start() - mesh.nInternalFaces();
|
|
//
|
|
// forAll(pp, i)
|
|
// {
|
|
// globalNeighbour[bFaceI] = globalAgglom.toGlobal
|
|
// (
|
|
// agglom[faceOwner[faceI]]
|
|
// );
|
|
//
|
|
// bFaceI++;
|
|
// faceI++;
|
|
// }
|
|
// }
|
|
// }
|
|
//
|
|
// // Get the cell on the other side of coupled patches
|
|
// syncTools::swapBoundaryFaceList(mesh, globalNeighbour);
|
|
//
|
|
//
|
|
// // Count number of faces (internal + coupled)
|
|
// // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
//
|
|
// // Number of faces per coarse cell
|
|
// labelList nFacesPerCell(nCoarse, 0);
|
|
//
|
|
// // 1. Internal faces
|
|
// for (label faceI = 0; faceI < mesh.nInternalFaces(); faceI++)
|
|
// {
|
|
// if (!blockedFace[faceI])
|
|
// {
|
|
// label own = agglom[faceOwner[faceI]];
|
|
// label nei = agglom[faceNeighbour[faceI]];
|
|
//
|
|
// nFacesPerCell[own]++;
|
|
// nFacesPerCell[nei]++;
|
|
// }
|
|
// }
|
|
//
|
|
// // 2. Coupled faces
|
|
// forAll(patches, patchI)
|
|
// {
|
|
// const polyPatch& pp = patches[patchI];
|
|
//
|
|
// if (pp.coupled() && (parallel || !isA<processorPolyPatch>(pp)))
|
|
// {
|
|
// label faceI = pp.start();
|
|
// label bFaceI = pp.start()-mesh.nInternalFaces();
|
|
//
|
|
// forAll(pp, i)
|
|
// {
|
|
// if (!blockedFace[faceI])
|
|
// {
|
|
// label own = agglom[faceOwner[faceI]];
|
|
//
|
|
// label globalNei = globalNeighbour[bFaceI];
|
|
// if
|
|
// (
|
|
// !globalAgglom.isLocal(globalNei)
|
|
// || globalAgglom.toLocal(globalNei) != own
|
|
// )
|
|
// {
|
|
// nFacesPerCell[own]++;
|
|
// }
|
|
//
|
|
// faceI++;
|
|
// bFaceI++;
|
|
// }
|
|
// }
|
|
// }
|
|
// }
|
|
//
|
|
// // 3. Explicit connections between non-coupled boundary faces
|
|
// forAll(explicitConnections, i)
|
|
// {
|
|
// const labelPair& baffle = explicitConnections[i];
|
|
// label f0 = baffle.first();
|
|
// label f1 = baffle.second();
|
|
//
|
|
// if (!blockedFace[f0] && blockedFace[f1])
|
|
// {
|
|
// label f0Own = agglom[faceOwner[f0]];
|
|
// label f1Own = agglom[faceOwner[f1]];
|
|
//
|
|
// // Always count the connection between the two owner sides
|
|
// if (f0Own != f1Own)
|
|
// {
|
|
// nFacesPerCell[f0Own]++;
|
|
// nFacesPerCell[f1Own]++;
|
|
// }
|
|
//
|
|
// // Add any neighbour side connections
|
|
// if (mesh.isInternalFace(f0))
|
|
// {
|
|
// label f0Nei = agglom[faceNeighbour[f0]];
|
|
//
|
|
// if (mesh.isInternalFace(f1))
|
|
// {
|
|
// // Internal faces
|
|
// label f1Nei = agglom[faceNeighbour[f1]];
|
|
//
|
|
// if (f0Own != f1Nei)
|
|
// {
|
|
// nFacesPerCell[f0Own]++;
|
|
// nFacesPerCell[f1Nei]++;
|
|
// }
|
|
// if (f0Nei != f1Own)
|
|
// {
|
|
// nFacesPerCell[f0Nei]++;
|
|
// nFacesPerCell[f1Own]++;
|
|
// }
|
|
// if (f0Nei != f1Nei)
|
|
// {
|
|
// nFacesPerCell[f0Nei]++;
|
|
// nFacesPerCell[f1Nei]++;
|
|
// }
|
|
// }
|
|
// else
|
|
// {
|
|
// // f1 boundary face
|
|
// if (f0Nei != f1Own)
|
|
// {
|
|
// nFacesPerCell[f0Nei]++;
|
|
// nFacesPerCell[f1Own]++;
|
|
// }
|
|
// }
|
|
// }
|
|
// else
|
|
// {
|
|
// if (mesh.isInternalFace(f1))
|
|
// {
|
|
// label f1Nei = agglom[faceNeighbour[f1]];
|
|
// if (f0Own != f1Nei)
|
|
// {
|
|
// nFacesPerCell[f0Own]++;
|
|
// nFacesPerCell[f1Nei]++;
|
|
// }
|
|
// }
|
|
// }
|
|
// }
|
|
// }
|
|
//
|
|
//
|
|
// // Fill in offset and data
|
|
// // ~~~~~~~~~~~~~~~~~~~~~~~
|
|
//
|
|
// cellCells.setSize(nFacesPerCell);
|
|
//
|
|
// nFacesPerCell = 0;
|
|
//
|
|
// labelList& m = cellCells.m();
|
|
// const labelList& offsets = cellCells.offsets();
|
|
//
|
|
// // 1. For internal faces is just offsetted owner and neighbour
|
|
// for (label faceI = 0; faceI < mesh.nInternalFaces(); faceI++)
|
|
// {
|
|
// if (!blockedFace[faceI])
|
|
// {
|
|
// label own = agglom[faceOwner[faceI]];
|
|
// label nei = agglom[faceNeighbour[faceI]];
|
|
//
|
|
// m[offsets[own] + nFacesPerCell[own]++] =
|
|
// globalAgglom.toGlobal(nei);
|
|
// m[offsets[nei] + nFacesPerCell[nei]++] =
|
|
// globalAgglom.toGlobal(own);
|
|
// }
|
|
// }
|
|
//
|
|
// // 2. For boundary faces is offsetted coupled neighbour
|
|
// forAll(patches, patchI)
|
|
// {
|
|
// const polyPatch& pp = patches[patchI];
|
|
//
|
|
// if (pp.coupled() && (parallel || !isA<processorPolyPatch>(pp)))
|
|
// {
|
|
// label faceI = pp.start();
|
|
// label bFaceI = pp.start()-mesh.nInternalFaces();
|
|
//
|
|
// forAll(pp, i)
|
|
// {
|
|
// if (!blockedFace[faceI])
|
|
// {
|
|
// label own = agglom[faceOwner[faceI]];
|
|
//
|
|
// label globalNei = globalNeighbour[bFaceI];
|
|
//
|
|
// if
|
|
// (
|
|
// !globalAgglom.isLocal(globalNei)
|
|
// || globalAgglom.toLocal(globalNei) != own
|
|
// )
|
|
// {
|
|
// m[offsets[own] + nFacesPerCell[own]++] = globalNei;
|
|
// }
|
|
//
|
|
// faceI++;
|
|
// bFaceI++;
|
|
// }
|
|
// }
|
|
// }
|
|
// }
|
|
//
|
|
// // 3. Explicit connections between non-coupled boundary faces
|
|
// forAll(explicitConnections, i)
|
|
// {
|
|
// const labelPair& baffle = explicitConnections[i];
|
|
// label f0 = baffle.first();
|
|
// label f1 = baffle.second();
|
|
//
|
|
// if (!blockedFace[f0] && blockedFace[f1])
|
|
// {
|
|
// label f0Own = agglom[faceOwner[f0]];
|
|
// label f1Own = agglom[faceOwner[f1]];
|
|
//
|
|
// // Always count the connection between the two owner sides
|
|
// if (f0Own != f1Own)
|
|
// {
|
|
// m[offsets[f0Own] + nFacesPerCell[f0Own]++] =
|
|
// globalAgglom.toGlobal(f1Own);
|
|
// m[offsets[f1Own] + nFacesPerCell[f1Own]++] =
|
|
// globalAgglom.toGlobal(f0Own);
|
|
// }
|
|
//
|
|
// // Add any neighbour side connections
|
|
// if (mesh.isInternalFace(f0))
|
|
// {
|
|
// label f0Nei = agglom[faceNeighbour[f0]];
|
|
//
|
|
// if (mesh.isInternalFace(f1))
|
|
// {
|
|
// // Internal faces
|
|
// label f1Nei = agglom[faceNeighbour[f1]];
|
|
//
|
|
// if (f0Own != f1Nei)
|
|
// {
|
|
// m[offsets[f0Own] + nFacesPerCell[f0Own]++] =
|
|
// globalAgglom.toGlobal(f1Nei);
|
|
// m[offsets[f1Nei] + nFacesPerCell[f1Nei]++] =
|
|
// globalAgglom.toGlobal(f1Nei);
|
|
// }
|
|
// if (f0Nei != f1Own)
|
|
// {
|
|
// m[offsets[f0Nei] + nFacesPerCell[f0Nei]++] =
|
|
// globalAgglom.toGlobal(f1Own);
|
|
// m[offsets[f1Own] + nFacesPerCell[f1Own]++] =
|
|
// globalAgglom.toGlobal(f0Nei);
|
|
// }
|
|
// if (f0Nei != f1Nei)
|
|
// {
|
|
// m[offsets[f0Nei] + nFacesPerCell[f0Nei]++] =
|
|
// globalAgglom.toGlobal(f1Nei);
|
|
// m[offsets[f1Nei] + nFacesPerCell[f1Nei]++] =
|
|
// globalAgglom.toGlobal(f0Nei);
|
|
// }
|
|
// }
|
|
// else
|
|
// {
|
|
// // f1 boundary face
|
|
// if (f0Nei != f1Own)
|
|
// {
|
|
// m[offsets[f0Nei] + nFacesPerCell[f0Nei]++] =
|
|
// globalAgglom.toGlobal(f1Own);
|
|
// m[offsets[f1Own] + nFacesPerCell[f1Own]++] =
|
|
// globalAgglom.toGlobal(f0Nei);
|
|
// }
|
|
// }
|
|
// }
|
|
// else
|
|
// {
|
|
// if (mesh.isInternalFace(f1))
|
|
// {
|
|
// label f1Nei = agglom[faceNeighbour[f1]];
|
|
// if (f0Own != f1Nei)
|
|
// {
|
|
// m[offsets[f0Own] + nFacesPerCell[f0Own]++] =
|
|
// globalAgglom.toGlobal(f1Nei);
|
|
// m[offsets[f1Nei] + nFacesPerCell[f1Nei]++] =
|
|
// globalAgglom.toGlobal(f0Own);
|
|
// }
|
|
// }
|
|
// }
|
|
// }
|
|
// }
|
|
//
|
|
//
|
|
// // Check for duplicates connections between cells
|
|
// // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
// // Done as postprocessing step since we now have cellCells.
|
|
// label newIndex = 0;
|
|
// labelHashSet nbrCells;
|
|
//
|
|
//
|
|
// if (cellCells.size() == 0)
|
|
// {
|
|
// return;
|
|
// }
|
|
//
|
|
// label startIndex = cellCells.offsets()[0];
|
|
//
|
|
// forAll(cellCells, cellI)
|
|
// {
|
|
// nbrCells.clear();
|
|
// nbrCells.insert(globalAgglom.toGlobal(cellI));
|
|
//
|
|
// label endIndex = cellCells.offsets()[cellI+1];
|
|
//
|
|
// for (label i = startIndex; i < endIndex; i++)
|
|
// {
|
|
// if (nbrCells.insert(cellCells.m()[i]))
|
|
// {
|
|
// cellCells.m()[newIndex++] = cellCells.m()[i];
|
|
// }
|
|
// }
|
|
// startIndex = endIndex;
|
|
// cellCells.offsets()[cellI+1] = newIndex;
|
|
// }
|
|
//
|
|
// cellCells.m().setSize(newIndex);
|
|
//
|
|
// //forAll(cellCells, cellI)
|
|
// //{
|
|
// // Pout<< "Original: Coarse cell " << cellI << endl;
|
|
// // forAll(mesh.cellCells()[cellI], i)
|
|
// // {
|
|
// // Pout<< " nbr:" << mesh.cellCells()[cellI][i] << endl;
|
|
// // }
|
|
// // Pout<< "Compacted: Coarse cell " << cellI << endl;
|
|
// // const labelUList cCells = cellCells[cellI];
|
|
// // forAll(cCells, i)
|
|
// // {
|
|
// // Pout<< " nbr:" << cCells[i] << endl;
|
|
// // }
|
|
// //}
|
|
//}
|
|
|
|
|
|
Foam::labelList Foam::decompositionMethod::decompose
|
|
(
|
|
const polyMesh& mesh,
|
|
const scalarField& cellWeights,
|
|
|
|
//- Whether owner and neighbour should be on same processor
|
|
// (takes priority over explicitConnections)
|
|
const boolList& blockedFace,
|
|
|
|
//- Whether whole sets of faces (and point neighbours) need to be kept
|
|
// on single processor
|
|
const PtrList<labelList>& specifiedProcessorFaces,
|
|
const labelList& specifiedProcessor,
|
|
|
|
//- Additional connections between boundary faces
|
|
const List<labelPair>& explicitConnections
|
|
)
|
|
{
|
|
// Any weights specified?
|
|
label nWeights = returnReduce(cellWeights.size(), sumOp<label>());
|
|
|
|
// Any processor sets?
|
|
label nProcSets = 0;
|
|
forAll(specifiedProcessorFaces, setI)
|
|
{
|
|
nProcSets += specifiedProcessorFaces[setI].size();
|
|
}
|
|
reduce(nProcSets, sumOp<label>());
|
|
|
|
// Any non-mesh connections?
|
|
label nConnections = returnReduce
|
|
(
|
|
explicitConnections.size(),
|
|
sumOp<label>()
|
|
);
|
|
|
|
// Any faces not blocked?
|
|
label nUnblocked = 0;
|
|
forAll(blockedFace, faceI)
|
|
{
|
|
if (!blockedFace[faceI])
|
|
{
|
|
nUnblocked++;
|
|
}
|
|
}
|
|
reduce(nUnblocked, sumOp<label>());
|
|
|
|
|
|
|
|
// Either do decomposition on cell centres or on agglomeration
|
|
|
|
labelList finalDecomp;
|
|
|
|
|
|
if (nProcSets+nConnections+nUnblocked == 0)
|
|
{
|
|
// No constraints, possibly weights
|
|
|
|
if (nWeights > 0)
|
|
{
|
|
finalDecomp = decompose
|
|
(
|
|
mesh,
|
|
mesh.cellCentres(),
|
|
cellWeights
|
|
);
|
|
}
|
|
else
|
|
{
|
|
finalDecomp = decompose(mesh, mesh.cellCentres());
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (debug)
|
|
{
|
|
Info<< "Constrained decomposition:" << endl
|
|
<< " faces with same owner and neighbour processor : "
|
|
<< nUnblocked << endl
|
|
<< " baffle faces with same owner processor : "
|
|
<< nConnections << endl
|
|
<< " faces all on same processor : "
|
|
<< nProcSets << endl << endl;
|
|
}
|
|
|
|
// Determine global regions, separated by blockedFaces
|
|
regionSplit globalRegion(mesh, blockedFace, explicitConnections);
|
|
|
|
|
|
// Determine region cell centres
|
|
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
// This just takes the first cell in the region. Otherwise the problem
|
|
// is with cyclics - if we'd average the region centre might be
|
|
// somewhere in the middle of the domain which might not be anywhere
|
|
// near any of the cells.
|
|
|
|
pointField regionCentres(globalRegion.nRegions(), point::max);
|
|
|
|
forAll(globalRegion, cellI)
|
|
{
|
|
label regionI = globalRegion[cellI];
|
|
|
|
if (regionCentres[regionI] == point::max)
|
|
{
|
|
regionCentres[regionI] = mesh.cellCentres()[cellI];
|
|
}
|
|
}
|
|
|
|
// Do decomposition on agglomeration
|
|
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
|
|
|
scalarField regionWeights(globalRegion.nRegions(), 0);
|
|
|
|
if (nWeights > 0)
|
|
{
|
|
forAll(globalRegion, cellI)
|
|
{
|
|
label regionI = globalRegion[cellI];
|
|
|
|
regionWeights[regionI] += cellWeights[cellI];
|
|
}
|
|
}
|
|
else
|
|
{
|
|
forAll(globalRegion, cellI)
|
|
{
|
|
label regionI = globalRegion[cellI];
|
|
|
|
regionWeights[regionI] += 1.0;
|
|
}
|
|
}
|
|
|
|
finalDecomp = decompose
|
|
(
|
|
mesh,
|
|
globalRegion,
|
|
regionCentres,
|
|
regionWeights
|
|
);
|
|
|
|
|
|
|
|
// Implement the explicitConnections since above decompose
|
|
// does not know about them
|
|
forAll(explicitConnections, i)
|
|
{
|
|
const labelPair& baffle = explicitConnections[i];
|
|
label f0 = baffle.first();
|
|
label f1 = baffle.second();
|
|
|
|
if (!blockedFace[f0] && !blockedFace[f1])
|
|
{
|
|
// Note: what if internal faces and owner and neighbour on
|
|
// different processor? So for now just push owner side
|
|
// proc
|
|
|
|
const label procI = finalDecomp[mesh.faceOwner()[f0]];
|
|
|
|
finalDecomp[mesh.faceOwner()[f1]] = procI;
|
|
if (mesh.isInternalFace(f1))
|
|
{
|
|
finalDecomp[mesh.faceNeighbour()[f1]] = procI;
|
|
}
|
|
}
|
|
else if (blockedFace[f0] != blockedFace[f1])
|
|
{
|
|
FatalErrorIn
|
|
(
|
|
"labelList decompose\n"
|
|
"(\n"
|
|
" const polyMesh&,\n"
|
|
" const scalarField&,\n"
|
|
" const boolList&,\n"
|
|
" const PtrList<labelList>&,\n"
|
|
" const labelList&,\n"
|
|
" const List<labelPair>&\n"
|
|
")"
|
|
) << "On explicit connection between faces " << f0
|
|
<< " and " << f1
|
|
<< " the two blockedFace status are not equal : "
|
|
<< blockedFace[f0] << " and " << blockedFace[f1]
|
|
<< exit(FatalError);
|
|
}
|
|
}
|
|
|
|
|
|
// For specifiedProcessorFaces rework the cellToProc to enforce
|
|
// all on one processor since we can't guarantee that the input
|
|
// to regionSplit was a single region.
|
|
// E.g. faceSet 'a' with the cells split into two regions
|
|
// by a notch formed by two walls
|
|
//
|
|
// \ /
|
|
// \ /
|
|
// ---a----+-----a-----
|
|
//
|
|
//
|
|
// Note that reworking the cellToProc might make the decomposition
|
|
// unbalanced.
|
|
forAll(specifiedProcessorFaces, setI)
|
|
{
|
|
const labelList& set = specifiedProcessorFaces[setI];
|
|
|
|
label procI = specifiedProcessor[setI];
|
|
if (procI == -1)
|
|
{
|
|
// If no processor specified use the one from the
|
|
// 0th element
|
|
procI = finalDecomp[mesh.faceOwner()[set[0]]];
|
|
}
|
|
|
|
forAll(set, fI)
|
|
{
|
|
const face& f = mesh.faces()[set[fI]];
|
|
forAll(f, fp)
|
|
{
|
|
const labelList& pFaces = mesh.pointFaces()[f[fp]];
|
|
forAll(pFaces, i)
|
|
{
|
|
label faceI = pFaces[i];
|
|
|
|
finalDecomp[mesh.faceOwner()[faceI]] = procI;
|
|
if (mesh.isInternalFace(faceI))
|
|
{
|
|
finalDecomp[mesh.faceNeighbour()[faceI]] = procI;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return finalDecomp;
|
|
}
|
|
|
|
|
|
void Foam::decompositionMethod::setConstraints
|
|
(
|
|
const polyMesh& mesh,
|
|
boolList& blockedFace,
|
|
PtrList<labelList>& specifiedProcessorFaces,
|
|
labelList& specifiedProcessor,
|
|
List<labelPair>& explicitConnections
|
|
)
|
|
{
|
|
blockedFace.setSize(mesh.nFaces());
|
|
blockedFace = true;
|
|
//label nUnblocked = 0;
|
|
|
|
specifiedProcessorFaces.clear();
|
|
explicitConnections.clear();
|
|
|
|
|
|
if (decompositionDict_.found("preservePatches"))
|
|
{
|
|
wordList pNames(decompositionDict_.lookup("preservePatches"));
|
|
|
|
Info<< nl
|
|
<< "Keeping owner of faces in patches " << pNames
|
|
<< " on same processor. This only makes sense for cyclics." << endl;
|
|
|
|
const polyBoundaryMesh& patches = mesh.boundaryMesh();
|
|
|
|
forAll(pNames, i)
|
|
{
|
|
const label patchI = patches.findPatchID(pNames[i]);
|
|
|
|
if (patchI == -1)
|
|
{
|
|
FatalErrorIn("decompositionMethod::decompose(const polyMesh&)")
|
|
<< "Unknown preservePatch " << pNames[i]
|
|
<< endl << "Valid patches are " << patches.names()
|
|
<< exit(FatalError);
|
|
}
|
|
|
|
const polyPatch& pp = patches[patchI];
|
|
|
|
forAll(pp, i)
|
|
{
|
|
if (blockedFace[pp.start() + i])
|
|
{
|
|
blockedFace[pp.start() + i] = false;
|
|
//nUnblocked++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (decompositionDict_.found("preserveFaceZones"))
|
|
{
|
|
wordList zNames(decompositionDict_.lookup("preserveFaceZones"));
|
|
|
|
Info<< nl
|
|
<< "Keeping owner and neighbour of faces in zones " << zNames
|
|
<< " on same processor" << endl;
|
|
|
|
const faceZoneMesh& fZones = mesh.faceZones();
|
|
|
|
forAll(zNames, i)
|
|
{
|
|
label zoneI = fZones.findZoneID(zNames[i]);
|
|
|
|
if (zoneI == -1)
|
|
{
|
|
FatalErrorIn("decompositionMethod::decompose(const polyMesh&)")
|
|
<< "Unknown preserveFaceZone " << zNames[i]
|
|
<< endl << "Valid faceZones are " << fZones.names()
|
|
<< exit(FatalError);
|
|
}
|
|
|
|
const faceZone& fz = fZones[zoneI];
|
|
|
|
forAll(fz, i)
|
|
{
|
|
if (blockedFace[fz[i]])
|
|
{
|
|
blockedFace[fz[i]] = false;
|
|
//nUnblocked++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool preserveBaffles = decompositionDict_.lookupOrDefault
|
|
(
|
|
"preserveBaffles",
|
|
false
|
|
);
|
|
if (preserveBaffles)
|
|
{
|
|
Info<< nl
|
|
<< "Keeping owner of faces in baffles "
|
|
<< " on same processor." << endl;
|
|
|
|
// Faces to test: all boundary faces
|
|
labelList testFaces
|
|
(
|
|
identity(mesh.nFaces()-mesh.nInternalFaces())
|
|
+ mesh.nInternalFaces()
|
|
);
|
|
|
|
// Find correspondencing baffle face (or -1)
|
|
labelList duplicateFace
|
|
(
|
|
localPointRegion::findDuplicateFaces
|
|
(
|
|
mesh,
|
|
testFaces
|
|
)
|
|
);
|
|
|
|
const polyBoundaryMesh& patches = mesh.boundaryMesh();
|
|
|
|
// Convert into list of coupled face pairs (mesh face labels).
|
|
explicitConnections.setSize(testFaces.size());
|
|
label dupI = 0;
|
|
|
|
forAll(duplicateFace, i)
|
|
{
|
|
label otherFaceI = duplicateFace[i];
|
|
|
|
if (otherFaceI != -1 && i < otherFaceI)
|
|
{
|
|
label meshFace0 = testFaces[i];
|
|
label patch0 = patches.whichPatch(meshFace0);
|
|
label meshFace1 = testFaces[otherFaceI];
|
|
label patch1 = patches.whichPatch(meshFace1);
|
|
|
|
// Check for illegal topology. Should normally not happen!
|
|
if
|
|
(
|
|
(patch0 != -1 && isA<processorPolyPatch>(patches[patch0]))
|
|
|| (patch1 != -1 && isA<processorPolyPatch>(patches[patch1]))
|
|
)
|
|
{
|
|
FatalErrorIn
|
|
(
|
|
"decompositionMethod::decompose(const polyMesh&)"
|
|
) << "One of two duplicate faces is on"
|
|
<< " processorPolyPatch."
|
|
<< "This is not allowed." << nl
|
|
<< "Face:" << meshFace0
|
|
<< " is on patch:" << patches[patch0].name()
|
|
<< nl
|
|
<< "Face:" << meshFace1
|
|
<< " is on patch:" << patches[patch1].name()
|
|
<< abort(FatalError);
|
|
}
|
|
|
|
explicitConnections[dupI++] = labelPair(meshFace0, meshFace1);
|
|
if (blockedFace[meshFace0])
|
|
{
|
|
blockedFace[meshFace0] = false;
|
|
//nUnblocked++;
|
|
}
|
|
if (blockedFace[meshFace1])
|
|
{
|
|
blockedFace[meshFace1] = false;
|
|
//nUnblocked++;
|
|
}
|
|
}
|
|
}
|
|
explicitConnections.setSize(dupI);
|
|
}
|
|
|
|
if
|
|
(
|
|
decompositionDict_.found("preservePatches")
|
|
|| decompositionDict_.found("preserveFaceZones")
|
|
|| preserveBaffles
|
|
)
|
|
{
|
|
syncTools::syncFaceList(mesh, blockedFace, andEqOp<bool>());
|
|
//reduce(nUnblocked, sumOp<label>());
|
|
}
|
|
|
|
|
|
|
|
// Specified processor for group of cells connected to faces
|
|
|
|
label nProcSets = 0;
|
|
if (decompositionDict_.found("singleProcessorFaceSets"))
|
|
{
|
|
List<Tuple2<word, label> > zNameAndProcs
|
|
(
|
|
decompositionDict_.lookup("singleProcessorFaceSets")
|
|
);
|
|
|
|
specifiedProcessorFaces.setSize(zNameAndProcs.size());
|
|
specifiedProcessor.setSize(zNameAndProcs.size());
|
|
|
|
forAll(zNameAndProcs, setI)
|
|
{
|
|
Info<< "Keeping all cells connected to faceSet "
|
|
<< zNameAndProcs[setI].first()
|
|
<< " on processor " << zNameAndProcs[setI].second() << endl;
|
|
|
|
// Read faceSet
|
|
faceSet fz(mesh, zNameAndProcs[setI].first());
|
|
|
|
specifiedProcessorFaces.set(setI, new labelList(fz.sortedToc()));
|
|
specifiedProcessor[setI] = zNameAndProcs[setI].second();
|
|
nProcSets += fz.size();
|
|
}
|
|
reduce(nProcSets, sumOp<label>());
|
|
|
|
|
|
// Unblock all point connected faces
|
|
// 1. Mark all points on specifiedProcessorFaces
|
|
boolList procFacePoint(mesh.nPoints(), false);
|
|
forAll(specifiedProcessorFaces, setI)
|
|
{
|
|
const labelList& set = specifiedProcessorFaces[setI];
|
|
forAll(set, fI)
|
|
{
|
|
const face& f = mesh.faces()[set[fI]];
|
|
forAll(f, fp)
|
|
{
|
|
procFacePoint[f[fp]] = true;
|
|
}
|
|
}
|
|
}
|
|
syncTools::syncPointList(mesh, procFacePoint, orEqOp<bool>(), false);
|
|
|
|
// 2. Unblock all faces on procFacePoint
|
|
forAll(procFacePoint, pointI)
|
|
{
|
|
if (procFacePoint[pointI])
|
|
{
|
|
const labelList& pFaces = mesh.pointFaces()[pointI];
|
|
forAll(pFaces, i)
|
|
{
|
|
blockedFace[pFaces[i]] = false;
|
|
}
|
|
}
|
|
}
|
|
syncTools::syncFaceList(mesh, blockedFace, andEqOp<bool>());
|
|
}
|
|
}
|
|
|
|
|
|
Foam::labelList Foam::decompositionMethod::decompose
|
|
(
|
|
const polyMesh& mesh,
|
|
const scalarField& cellWeights
|
|
)
|
|
{
|
|
//labelHashSet sameProcFaces;
|
|
//
|
|
//if (decompositionDict_.found("preservePatches"))
|
|
//{
|
|
// wordList pNames(decompositionDict_.lookup("preservePatches"));
|
|
//
|
|
// Info<< nl
|
|
// << "Keeping owner of faces in patches " << pNames
|
|
// << " on same processor. This only makes sense for cyclics."
|
|
// << endl;
|
|
//
|
|
// const polyBoundaryMesh& patches = mesh.boundaryMesh();
|
|
//
|
|
// forAll(pNames, i)
|
|
// {
|
|
// const label patchI = patches.findPatchID(pNames[i]);
|
|
//
|
|
// if (patchI == -1)
|
|
// {
|
|
// FatalErrorIn
|
|
// (
|
|
// "decompositionMethod::decompose(const polyMesh&)")
|
|
// << "Unknown preservePatch " << pNames[i]
|
|
// << endl << "Valid patches are " << patches.names()
|
|
// << exit(FatalError);
|
|
// }
|
|
//
|
|
// const polyPatch& pp = patches[patchI];
|
|
//
|
|
// forAll(pp, i)
|
|
// {
|
|
// sameProcFaces.insert(pp.start() + i);
|
|
// }
|
|
// }
|
|
//}
|
|
//if (decompositionDict_.found("preserveFaceZones"))
|
|
//{
|
|
// wordList zNames(decompositionDict_.lookup("preserveFaceZones"));
|
|
//
|
|
// Info<< nl
|
|
// << "Keeping owner and neighbour of faces in zones " << zNames
|
|
// << " on same processor" << endl;
|
|
//
|
|
// const faceZoneMesh& fZones = mesh.faceZones();
|
|
//
|
|
// forAll(zNames, i)
|
|
// {
|
|
// label zoneI = fZones.findZoneID(zNames[i]);
|
|
//
|
|
// if (zoneI == -1)
|
|
// {
|
|
// FatalErrorIn
|
|
// ("decompositionMethod::decompose(const polyMesh&)")
|
|
// << "Unknown preserveFaceZone " << zNames[i]
|
|
// << endl << "Valid faceZones are " << fZones.names()
|
|
// << exit(FatalError);
|
|
// }
|
|
//
|
|
// const faceZone& fz = fZones[zoneI];
|
|
//
|
|
// forAll(fz, i)
|
|
// {
|
|
// sameProcFaces.insert(fz[i]);
|
|
// }
|
|
// }
|
|
//}
|
|
//
|
|
//
|
|
//// Specified processor for group of cells connected to faces
|
|
//
|
|
////- Sets of faces to move together
|
|
//PtrList<labelList> specifiedProcessorFaces;
|
|
////- Destination processor
|
|
//labelList specifiedProcessor;
|
|
//
|
|
//label nProcSets = 0;
|
|
//if (decompositionDict_.found("singleProcessorFaceSets"))
|
|
//{
|
|
// List<Tuple2<word, label> > zNameAndProcs
|
|
// (
|
|
// decompositionDict_.lookup("singleProcessorFaceSets")
|
|
// );
|
|
//
|
|
// specifiedProcessorFaces.setSize(zNameAndProcs.size());
|
|
// specifiedProcessor.setSize(zNameAndProcs.size());
|
|
//
|
|
// forAll(zNameAndProcs, setI)
|
|
// {
|
|
// Info<< "Keeping all cells connected to faceSet "
|
|
// << zNameAndProcs[setI].first()
|
|
// << " on processor " << zNameAndProcs[setI].second() << endl;
|
|
//
|
|
// // Read faceSet
|
|
// faceSet fz(mesh, zNameAndProcs[setI].first());
|
|
//
|
|
// specifiedProcessorFaces.set(setI, new labelList(fz.sortedToc()));
|
|
// specifiedProcessor[setI] = zNameAndProcs[setI].second();
|
|
// nProcSets += fz.size();
|
|
// }
|
|
// reduce(nProcSets, sumOp<label>());
|
|
//}
|
|
//
|
|
//
|
|
//label nUnblocked = returnReduce(sameProcFaces.size(), sumOp<label>());
|
|
//
|
|
//if (nProcSets+nUnblocked > 0)
|
|
//{
|
|
// Info<< "Constrained decomposition:" << endl
|
|
// << " faces with same owner and neighbour processor : "
|
|
// << nUnblocked << endl
|
|
// << " faces all on same processor : "
|
|
// << nProcSets << endl << endl;
|
|
//}
|
|
//
|
|
//
|
|
//// Faces where owner and neighbour are not 'connected' (= all except
|
|
//// sameProcFaces)
|
|
//boolList blockedFace(mesh.nFaces(), true);
|
|
//{
|
|
// forAllConstIter(labelHashSet, sameProcFaces, iter)
|
|
// {
|
|
// blockedFace[iter.key()] = false;
|
|
// }
|
|
// syncTools::syncFaceList(mesh, blockedFace, andEqOp<bool>());
|
|
//
|
|
// // Add all point connected faces
|
|
// boolList procFacePoint(mesh.nPoints(), false);
|
|
// forAll(specifiedProcessorFaces, setI)
|
|
// {
|
|
// const labelList& set = specifiedProcessorFaces[setI];
|
|
// forAll(set, fI)
|
|
// {
|
|
// const face& f = mesh.faces()[set[fI]];
|
|
// forAll(f, fp)
|
|
// {
|
|
// procFacePoint[f[fp]] = true;
|
|
// }
|
|
// }
|
|
// }
|
|
// syncTools::syncPointList(mesh, procFacePoint, orEqOp<bool>(), false);
|
|
//
|
|
// forAll(procFacePoint, pointI)
|
|
// {
|
|
// if (procFacePoint[pointI])
|
|
// {
|
|
// const labelList& pFaces = mesh.pointFaces()[pointI];
|
|
// forAll(pFaces, i)
|
|
// {
|
|
// blockedFace[pFaces[i]] = false;
|
|
// }
|
|
// }
|
|
// }
|
|
// syncTools::syncFaceList(mesh, blockedFace, andEqOp<bool>());
|
|
//}
|
|
|
|
boolList blockedFace;
|
|
PtrList<labelList> specifiedProcessorFaces;
|
|
labelList specifiedProcessor;
|
|
List<labelPair> explicitConnections;
|
|
setConstraints
|
|
(
|
|
mesh,
|
|
blockedFace,
|
|
specifiedProcessorFaces,
|
|
specifiedProcessor,
|
|
explicitConnections
|
|
);
|
|
|
|
|
|
// Construct decomposition method and either do decomposition on
|
|
// cell centres or on agglomeration
|
|
|
|
labelList finalDecomp = decompose
|
|
(
|
|
mesh,
|
|
cellWeights, // optional weights
|
|
blockedFace, // any cells to be combined
|
|
specifiedProcessorFaces,// any whole cluster of cells to be kept
|
|
specifiedProcessor,
|
|
explicitConnections // baffles
|
|
);
|
|
|
|
return finalDecomp;
|
|
}
|
|
|
|
|
|
// ************************************************************************* //
|