Files
openfoam/src/decompositionAgglomeration/parMetisDecomp/parMetisDecomp.C
2008-08-27 18:01:17 +01:00

1003 lines
29 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 1991-2008 OpenCFD Ltd.
\\/ M anipulation |
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 2 of the License, or (at your
option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
\*---------------------------------------------------------------------------*/
#include "syncTools.H"
#include "parMetisDecomp.H"
#include "metisDecomp.H"
#include "addToRunTimeSelectionTable.H"
#include "floatScalar.H"
#include "polyMesh.H"
#include "Time.H"
#include "labelIOField.H"
#include "globalIndex.H"
#include <mpi.h>
extern "C"
{
# include "parmetis.h"
}
// * * * * * * * * * * * * * * Static Data Members * * * * * * * * * * * * * //
namespace Foam
{
defineTypeNameAndDebug(parMetisDecomp, 0);
addToRunTimeSelectionTable
(
decompositionMethod,
parMetisDecomp,
dictionaryMesh
);
}
// * * * * * * * * * * * * * Private Member Functions * * * * * * * * * * * //
//- Does prevention of 0 cell domains and calls parmetis.
Foam::label Foam::parMetisDecomp::decompose
(
Field<int>& xadj,
Field<int>& adjncy,
const pointField& cellCentres,
Field<int>& cellWeights,
Field<int>& faceWeights,
const List<int>& options,
List<int>& finalDecomp
)
{
// C style numbering
int numFlag = 0;
// Number of dimensions
int nDims = 3;
if (cellCentres.size() != xadj.size()-1)
{
FatalErrorIn("parMetisDecomp::decompose(..)")
<< "cellCentres:" << cellCentres.size()
<< " xadj:" << xadj.size()
<< abort(FatalError);
}
// Get number of cells on all processors
List<int> nLocalCells(Pstream::nProcs());
nLocalCells[Pstream::myProcNo()] = xadj.size()-1;
Pstream::gatherList(nLocalCells);
Pstream::scatterList(nLocalCells);
// Get cell offsets.
List<int> cellOffsets(Pstream::nProcs()+1);
int nGlobalCells = 0;
forAll(nLocalCells, procI)
{
cellOffsets[procI] = nGlobalCells;
nGlobalCells += nLocalCells[procI];
}
cellOffsets[Pstream::nProcs()] = nGlobalCells;
// Convert pointField into float
Field<floatScalar> xyz(3*cellCentres.size());
int compI = 0;
forAll(cellCentres, cellI)
{
const point& cc = cellCentres[cellI];
xyz[compI++] = float(cc.x());
xyz[compI++] = float(cc.y());
xyz[compI++] = float(cc.z());
}
// Make sure every domain has at least one cell
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// (Metis falls over with zero sized domains)
// Trickle cells from processors that have them up to those that
// don't.
// Number of cells to send to the next processor
// (is same as number of cells next processor has to receive)
List<int> nSendCells(Pstream::nProcs(), 0);
for (label procI = nLocalCells.size()-1; procI >=1; procI--)
{
if (nLocalCells[procI]-nSendCells[procI] < 1)
{
nSendCells[procI-1] = nSendCells[procI]-nLocalCells[procI]+1;
}
}
// First receive (so increasing the sizes of all arrays)
if (Pstream::myProcNo() >= 1 && nSendCells[Pstream::myProcNo()-1] > 0)
{
// Receive cells from previous processor
IPstream fromPrevProc(Pstream::blocking, Pstream::myProcNo()-1);
Field<int> prevXadj(fromPrevProc);
Field<int> prevAdjncy(fromPrevProc);
Field<floatScalar> prevXyz(fromPrevProc);
Field<int> prevCellWeights(fromPrevProc);
Field<int> prevFaceWeights(fromPrevProc);
if (prevXadj.size() != nSendCells[Pstream::myProcNo()-1])
{
FatalErrorIn("parMetisDecomp::decompose(..)")
<< "Expected from processor " << Pstream::myProcNo()-1
<< " connectivity for " << nSendCells[Pstream::myProcNo()-1]
<< " nCells but only received " << prevXadj.size()
<< abort(FatalError);
}
// Insert adjncy
prepend(prevAdjncy, adjncy);
// Adapt offsets and prepend xadj
xadj += prevAdjncy.size();
prepend(prevXadj, xadj);
// Coords
prepend(prevXyz, xyz);
// Weights
prepend(prevCellWeights, cellWeights);
prepend(prevFaceWeights, faceWeights);
}
// Send to my next processor
if (nSendCells[Pstream::myProcNo()] > 0)
{
// Send cells to next processor
OPstream toNextProc(Pstream::blocking, Pstream::myProcNo()+1);
int nCells = nSendCells[Pstream::myProcNo()];
int startCell = xadj.size()-1 - nCells;
int startFace = xadj[startCell];
int nFaces = adjncy.size()-startFace;
// Send for all cell data: last nCells elements
// Send for all face data: last nFaces elements
toNextProc
<< Field<int>::subField(xadj, nCells, startCell)-startFace
<< Field<int>::subField(adjncy, nFaces, startFace)
<< SubField<floatScalar>(xyz, nDims*nCells, nDims*startCell)
<<
(
(cellWeights.size() > 0)
? static_cast<const Field<int>&>
(
Field<int>::subField(cellWeights, nCells, startCell)
)
: Field<int>(0)
)
<<
(
(faceWeights.size() > 0)
? static_cast<const Field<int>&>
(
Field<int>::subField(faceWeights, nFaces, startFace)
)
: Field<int>(0)
);
// Remove data that has been sent
if (faceWeights.size() > 0)
{
faceWeights.setSize(faceWeights.size()-nFaces);
}
if (cellWeights.size() > 0)
{
cellWeights.setSize(cellWeights.size()-nCells);
}
xyz.setSize(xyz.size()-nDims*nCells);
adjncy.setSize(adjncy.size()-nFaces);
xadj.setSize(xadj.size() - nCells);
}
// Adapt number of cells
forAll(nSendCells, procI)
{
// Sent cells
nLocalCells[procI] -= nSendCells[procI];
if (procI >= 1)
{
// Received cells
nLocalCells[procI] += nSendCells[procI-1];
}
}
// Adapt cellOffsets
nGlobalCells = 0;
forAll(nLocalCells, procI)
{
cellOffsets[procI] = nGlobalCells;
nGlobalCells += nLocalCells[procI];
}
if (nLocalCells[Pstream::myProcNo()] != (xadj.size()-1))
{
FatalErrorIn("parMetisDecomp::decompose(..)")
<< "Have connectivity for " << xadj.size()-1
<< " cells but nLocalCells:" << nLocalCells[Pstream::myProcNo()]
<< abort(FatalError);
}
// Weight info
int wgtFlag = 0;
int* vwgtPtr = NULL;
int* adjwgtPtr = NULL;
if (cellWeights.size() > 0)
{
vwgtPtr = cellWeights.begin();
wgtFlag += 2; // Weights on vertices
}
if (faceWeights.size() > 0)
{
adjwgtPtr = faceWeights.begin();
wgtFlag += 1; // Weights on edges
}
// Number of weights or balance constraints
int nCon = 1;
// Per processor, per constraint the weight
Field<floatScalar> tpwgts(nCon*nProcessors_, 1./nProcessors_);
// Imbalance tolerance
Field<floatScalar> ubvec(nCon, 1.02);
if (nProcessors_ == 1)
{
// If only one processor there is no imbalance.
ubvec[0] = 1;
}
MPI_Comm comm = MPI_COMM_WORLD;
// output: cell -> processor addressing
finalDecomp.setSize(nLocalCells[Pstream::myProcNo()]);
// output: number of cut edges
int edgeCut = 0;
ParMETIS_V3_PartGeomKway
(
cellOffsets.begin(), // vtxDist
xadj.begin(),
adjncy.begin(),
vwgtPtr, // vertexweights
adjwgtPtr, // edgeweights
&wgtFlag,
&numFlag,
&nDims,
xyz.begin(),
&nCon,
&nProcessors_, // nParts
tpwgts.begin(),
ubvec.begin(),
const_cast<List<int>&>(options).begin(),
&edgeCut,
finalDecomp.begin(),
&comm
);
// If we sent cells across make sure we undo it
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Receive back from next processor if I sent something
if (nSendCells[Pstream::myProcNo()] > 0)
{
IPstream fromNextProc(Pstream::blocking, Pstream::myProcNo()+1);
List<int> nextFinalDecomp(fromNextProc);
if (nextFinalDecomp.size() != nSendCells[Pstream::myProcNo()])
{
FatalErrorIn("parMetisDecomp::decompose(..)")
<< "Expected from processor " << Pstream::myProcNo()+1
<< " decomposition for " << nSendCells[Pstream::myProcNo()]
<< " nCells but only received " << nextFinalDecomp.size()
<< abort(FatalError);
}
append(nextFinalDecomp, finalDecomp);
}
// Send back to previous processor.
if (Pstream::myProcNo() >= 1 && nSendCells[Pstream::myProcNo()-1] > 0)
{
OPstream toPrevProc(Pstream::blocking, Pstream::myProcNo()-1);
int nToPrevious = nSendCells[Pstream::myProcNo()-1];
toPrevProc <<
SubList<int>
(
finalDecomp,
nToPrevious,
finalDecomp.size()-nToPrevious
);
// Remove locally what has been sent
finalDecomp.setSize(finalDecomp.size()-nToPrevious);
}
return edgeCut;
}
// * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::parMetisDecomp::parMetisDecomp
(
const dictionary& decompositionDict,
const polyMesh& mesh
)
:
decompositionMethod(decompositionDict),
mesh_(mesh)
{}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
Foam::labelList Foam::parMetisDecomp::decompose(const pointField& points)
{
if (points.size() != mesh_.nCells())
{
FatalErrorIn("parMetisDecomp::decompose(const pointField&)")
<< "Can use this decomposition method only for the whole mesh"
<< endl
<< "and supply one coordinate (cellCentre) for every cell." << endl
<< "The number of coordinates " << points.size() << endl
<< "The number of cells in the mesh " << mesh_.nCells()
<< exit(FatalError);
}
// For running sequential ...
if (Pstream::nProcs() <= 1)
{
return metisDecomp(decompositionDict_, mesh_).decompose(points);
}
// Create global cell numbers
// ~~~~~~~~~~~~~~~~~~~~~~~~~~
// Get number of cells on all processors
List<int> nLocalCells(Pstream::nProcs());
nLocalCells[Pstream::myProcNo()] = mesh_.nCells();
Pstream::gatherList(nLocalCells);
Pstream::scatterList(nLocalCells);
// Get cell offsets.
List<int> cellOffsets(Pstream::nProcs()+1);
int nGlobalCells = 0;
forAll(nLocalCells, procI)
{
cellOffsets[procI] = nGlobalCells;
nGlobalCells += nLocalCells[procI];
}
cellOffsets[Pstream::nProcs()] = nGlobalCells;
int myOffset = cellOffsets[Pstream::myProcNo()];
//
// Make Metis Distributed CSR (Compressed Storage Format) storage
// adjncy : contains cellCells (= edges in graph)
// xadj(celli) : start of information in adjncy for celli
//
const labelList& faceOwner = mesh_.faceOwner();
const labelList& faceNeighbour = mesh_.faceNeighbour();
const polyBoundaryMesh& patches = mesh_.boundaryMesh();
// Get renumbered owner on other side of coupled faces
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
List<int> globalNeighbour(mesh_.nFaces()-mesh_.nInternalFaces());
forAll(patches, patchI)
{
const polyPatch& pp = patches[patchI];
if (pp.coupled())
{
label faceI = pp.start();
label bFaceI = pp.start() - mesh_.nInternalFaces();
forAll(pp, i)
{
globalNeighbour[bFaceI++] = faceOwner[faceI++] + myOffset;
}
}
}
// Get the cell on the other side of coupled patches
syncTools::swapBoundaryFaceList(mesh_, globalNeighbour, false);
// Count number of faces (internal + coupled)
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// Number of faces per cell
List<int> nFacesPerCell(mesh_.nCells(), 0);
// Number of coupled faces
label nCoupledFaces = 0;
for (label faceI = 0; faceI < mesh_.nInternalFaces(); faceI++)
{
nFacesPerCell[faceOwner[faceI]]++;
nFacesPerCell[faceNeighbour[faceI]]++;
}
// Handle coupled faces
forAll(patches, patchI)
{
const polyPatch& pp = patches[patchI];
if (pp.coupled())
{
label faceI = pp.start();
forAll(pp, i)
{
nCoupledFaces++;
nFacesPerCell[faceOwner[faceI++]]++;
}
}
}
// Fill in xadj
// ~~~~~~~~~~~~
Field<int> xadj(mesh_.nCells()+1, -1);
int freeAdj = 0;
for (label cellI = 0; cellI < mesh_.nCells(); cellI++)
{
xadj[cellI] = freeAdj;
freeAdj += nFacesPerCell[cellI];
}
xadj[mesh_.nCells()] = freeAdj;
// Fill in adjncy
// ~~~~~~~~~~~~~~
Field<int> adjncy(2*mesh_.nInternalFaces() + nCoupledFaces, -1);
nFacesPerCell = 0;
// For internal faces is just offsetted owner and neighbour
for (label faceI = 0; faceI < mesh_.nInternalFaces(); faceI++)
{
label own = faceOwner[faceI];
label nei = faceNeighbour[faceI];
adjncy[xadj[own] + nFacesPerCell[own]++] = nei + myOffset;
adjncy[xadj[nei] + nFacesPerCell[nei]++] = own + myOffset;
}
// For boundary faces is offsetted coupled neighbour
forAll(patches, patchI)
{
const polyPatch& pp = patches[patchI];
if (pp.coupled())
{
label faceI = pp.start();
label bFaceI = pp.start()-mesh_.nInternalFaces();
forAll(pp, i)
{
label own = faceOwner[faceI];
adjncy[xadj[own] + nFacesPerCell[own]++] =
globalNeighbour[bFaceI];
faceI++;
bFaceI++;
}
}
}
// decomposition options. 0 = use defaults
List<int> options(3, 0);
//options[0] = 1; // don't use defaults but use values below
//options[1] = -1; // full debug info
//options[2] = 15; // random number seed
// cell weights (so on the vertices of the dual)
Field<int> cellWeights;
// face weights (so on the edges of the dual)
Field<int> faceWeights;
// Check for user supplied weights and decomp options
if (decompositionDict_.found("metisCoeffs"))
{
const dictionary& metisCoeffs =
decompositionDict_.subDict("metisCoeffs");
word weightsFile;
if (metisCoeffs.readIfPresent("cellWeightsFile", weightsFile))
{
Info<< "parMetisDecomp : Using cell-based weights read from "
<< weightsFile << endl;
labelIOField cellIOWeights
(
IOobject
(
weightsFile,
mesh_.time().timeName(),
mesh_,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
)
);
cellWeights.transfer(cellIOWeights);
if (cellWeights.size() != mesh_.nCells())
{
FatalErrorIn("parMetisDecomp::decompose(const pointField&)")
<< "Number of cell weights " << cellWeights.size()
<< " read from " << cellIOWeights.objectPath()
<< " does not equal number of cells " << mesh_.nCells()
<< exit(FatalError);
}
}
if (metisCoeffs.readIfPresent("faceWeightsFile", weightsFile))
{
Info<< "parMetisDecomp : Using face-based weights read from "
<< weightsFile << endl;
labelIOField weights
(
IOobject
(
weightsFile,
mesh_.time().timeName(),
mesh_,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
)
);
if (weights.size() != mesh_.nFaces())
{
FatalErrorIn("parMetisDecomp::decompose(const pointField&)")
<< "Number of face weights " << weights.size()
<< " does not equal number of internal and boundary faces "
<< mesh_.nFaces()
<< exit(FatalError);
}
faceWeights.setSize(2*mesh_.nInternalFaces()+nCoupledFaces);
// Assume symmetric weights. Keep same ordering as adjncy.
nFacesPerCell = 0;
// Handle internal faces
for (label faceI = 0; faceI < mesh_.nInternalFaces(); faceI++)
{
label w = weights[faceI];
label own = faceOwner[faceI];
label nei = faceNeighbour[faceI];
faceWeights[xadj[own] + nFacesPerCell[own]++] = w;
faceWeights[xadj[nei] + nFacesPerCell[nei]++] = w;
}
// Coupled boundary faces
forAll(patches, patchI)
{
const polyPatch& pp = patches[patchI];
if (pp.coupled())
{
label faceI = pp.start();
forAll(pp, i)
{
label w = weights[faceI];
label own = faceOwner[faceI];
adjncy[xadj[own] + nFacesPerCell[own]++] = w;
faceI++;
}
}
}
}
if (metisCoeffs.readIfPresent("options", options))
{
Info<< "Using Metis options " << options
<< nl << endl;
if (options.size() != 3)
{
FatalErrorIn("parMetisDecomp::decompose(const pointField&)")
<< "Number of options " << options.size()
<< " should be three." << exit(FatalError);
}
}
}
// Do actual decomposition
List<int> finalDecomp;
decompose
(
xadj,
adjncy,
points,
cellWeights,
faceWeights,
options,
finalDecomp
);
// Copy back to labelList
labelList decomp(finalDecomp.size());
forAll(decomp, i)
{
decomp[i] = finalDecomp[i];
}
return decomp;
}
Foam::labelList Foam::parMetisDecomp::decompose
(
const labelList& cellToRegion,
const pointField& regionPoints
)
{
const labelList& faceOwner = mesh_.faceOwner();
const labelList& faceNeighbour = mesh_.faceNeighbour();
const polyBoundaryMesh& patches = mesh_.boundaryMesh();
if (cellToRegion.size() != mesh_.nCells())
{
FatalErrorIn
(
"parMetisDecomp::decompose(const labelList&, const pointField&)"
) << "Size of cell-to-coarse map " << cellToRegion.size()
<< " differs from number of cells in mesh " << mesh_.nCells()
<< exit(FatalError);
}
// Global region numbering engine
globalIndex globalRegions(regionPoints.size());
// Get renumbered owner region on other side of coupled faces
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
List<int> globalNeighbour(mesh_.nFaces()-mesh_.nInternalFaces());
forAll(patches, patchI)
{
const polyPatch& pp = patches[patchI];
if (pp.coupled())
{
label faceI = pp.start();
label bFaceI = pp.start() - mesh_.nInternalFaces();
forAll(pp, i)
{
label ownRegion = cellToRegion[faceOwner[faceI]];
globalNeighbour[bFaceI++] = globalRegions.toGlobal(ownRegion);
faceI++;
}
}
}
// Get the cell on the other side of coupled patches
syncTools::swapBoundaryFaceList(mesh_, globalNeighbour, false);
// Get globalCellCells on coarse mesh
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
labelListList globalRegionRegions;
{
List<DynamicList<label> > dynRegionRegions(regionPoints.size());
// Internal faces first
forAll(faceNeighbour, faceI)
{
label ownRegion = cellToRegion[faceOwner[faceI]];
label neiRegion = cellToRegion[faceNeighbour[faceI]];
if (ownRegion != neiRegion)
{
label globalOwn = globalRegions.toGlobal(ownRegion);
label globalNei = globalRegions.toGlobal(neiRegion);
if (findIndex(dynRegionRegions[ownRegion], globalNei) == -1)
{
dynRegionRegions[ownRegion].append(globalNei);
}
if (findIndex(dynRegionRegions[neiRegion], globalOwn) == -1)
{
dynRegionRegions[neiRegion].append(globalOwn);
}
}
}
// Coupled boundary faces
forAll(patches, patchI)
{
const polyPatch& pp = patches[patchI];
if (pp.coupled())
{
label faceI = pp.start();
label bFaceI = pp.start() - mesh_.nInternalFaces();
forAll(pp, i)
{
label ownRegion = cellToRegion[faceOwner[faceI]];
label globalNei = globalNeighbour[bFaceI++];
faceI++;
if (findIndex(dynRegionRegions[ownRegion], globalNei) == -1)
{
dynRegionRegions[ownRegion].append(globalNei);
}
}
}
}
globalRegionRegions.setSize(dynRegionRegions.size());
forAll(dynRegionRegions, i)
{
globalRegionRegions[i].transfer(dynRegionRegions[i].shrink());
dynRegionRegions[i].clear();
}
}
labelList regionDecomp(decompose(globalRegionRegions, regionPoints));
// Rework back into decomposition for original mesh_
labelList cellDistribution(cellToRegion.size());
forAll(cellDistribution, cellI)
{
cellDistribution[cellI] = regionDecomp[cellToRegion[cellI]];
}
return cellDistribution;
}
Foam::labelList Foam::parMetisDecomp::decompose
(
const labelListList& globalCellCells,
const pointField& cellCentres
)
{
if (cellCentres.size() != globalCellCells.size())
{
FatalErrorIn
(
"parMetisDecomp::decompose(const labelListList&, const pointField&)"
) << "Inconsistent number of cells (" << globalCellCells.size()
<< ") and number of cell centres (" << cellCentres.size()
<< ")." << exit(FatalError);
}
// For running sequential ...
if (Pstream::nProcs() <= 1)
{
return metisDecomp(decompositionDict_, mesh_)
.decompose(globalCellCells, cellCentres);
}
// Make Metis Distributed CSR (Compressed Storage Format) storage
// Connections
Field<int> adjncy;
// Offsets into adjncy
Field<int> xadj;
metisDecomp::calcMetisCSR(globalCellCells, adjncy, xadj);
// decomposition options. 0 = use defaults
List<int> options(3, 0);
//options[0] = 1; // don't use defaults but use values below
//options[1] = -1; // full debug info
//options[2] = 15; // random number seed
// cell weights (so on the vertices of the dual)
Field<int> cellWeights;
// face weights (so on the edges of the dual)
Field<int> faceWeights;
// Check for user supplied weights and decomp options
if (decompositionDict_.found("metisCoeffs"))
{
const dictionary& metisCoeffs =
decompositionDict_.subDict("metisCoeffs");
word weightsFile;
if (metisCoeffs.readIfPresent("cellWeightsFile", weightsFile))
{
Info<< "parMetisDecomp : Using cell-based weights read from "
<< weightsFile << endl;
labelIOField cellIOWeights
(
IOobject
(
weightsFile,
mesh_.time().timeName(),
mesh_,
IOobject::MUST_READ,
IOobject::AUTO_WRITE
)
);
cellWeights.transfer(cellIOWeights);
if (cellWeights.size() != cellCentres.size())
{
FatalErrorIn
(
"parMetisDecomp::decompose"
"(const labelListList&, const pointField&)"
) << "Number of cell weights " << cellWeights.size()
<< " read from " << cellIOWeights.objectPath()
<< " does not equal number of cells " << cellCentres.size()
<< exit(FatalError);
}
}
//- faceWeights disabled. Only makes sense for cellCells from mesh.
//if (metisCoeffs.readIfPresent("faceWeightsFile", weightsFile))
//{
// Info<< "parMetisDecomp : Using face-based weights read from "
// << weightsFile << endl;
//
// labelIOField weights
// (
// IOobject
// (
// weightsFile,
// mesh_.time().timeName(),
// mesh_,
// IOobject::MUST_READ,
// IOobject::AUTO_WRITE
// )
// );
//
// if (weights.size() != mesh_.nFaces())
// {
// FatalErrorIn("parMetisDecomp::decompose(const pointField&)")
// << "Number of face weights " << weights.size()
// << " does not equal number of internal and boundary faces "
// << mesh_.nFaces()
// << exit(FatalError);
// }
//
// faceWeights.setSize(2*mesh_.nInternalFaces()+nCoupledFaces);
//
// // Assume symmetric weights. Keep same ordering as adjncy.
// nFacesPerCell = 0;
//
// // Handle internal faces
// for (label faceI = 0; faceI < mesh_.nInternalFaces(); faceI++)
// {
// label w = weights[faceI];
//
// label own = faceOwner[faceI];
// label nei = faceNeighbour[faceI];
//
// faceWeights[xadj[own] + nFacesPerCell[own]++] = w;
// faceWeights[xadj[nei] + nFacesPerCell[nei]++] = w;
// }
// // Coupled boundary faces
// forAll(patches, patchI)
// {
// const polyPatch& pp = patches[patchI];
//
// if (pp.coupled())
// {
// label faceI = pp.start();
//
// forAll(pp, i)
// {
// label w = weights[faceI];
// label own = faceOwner[faceI];
// adjncy[xadj[own] + nFacesPerCell[own]++] = w;
// faceI++;
// }
// }
// }
//}
if (metisCoeffs.readIfPresent("options", options))
{
Info<< "Using Metis options " << options
<< nl << endl;
if (options.size() != 3)
{
FatalErrorIn
(
"parMetisDecomp::decompose"
"(const labelListList&, const pointField&)"
) << "Number of options " << options.size()
<< " should be three." << exit(FatalError);
}
}
}
// Do actual decomposition
List<int> finalDecomp;
decompose
(
xadj,
adjncy,
cellCentres,
cellWeights,
faceWeights,
options,
finalDecomp
);
// Copy back to labelList
labelList decomp(finalDecomp.size());
forAll(decomp, i)
{
decomp[i] = finalDecomp[i];
}
return decomp;
}
// ************************************************************************* //