Files
openfoam/src/finiteArea/interpolation/edgeInterpolation/edgeInterpolationScheme/edgeInterpolationScheme.C
2019-07-12 18:00:00 +02:00

514 lines
14 KiB
C

/*---------------------------------------------------------------------------*\
========= |
\\ / F ield | OpenFOAM: The Open Source CFD Toolbox
\\ / O peration |
\\ / A nd | Copyright (C) 2019 OpenCFD Ltd.
\\/ M anipulation |
-------------------------------------------------------------------------------
| Copyright (C) 2016-2017 Wikki Ltd
-------------------------------------------------------------------------------
License
This file is part of OpenFOAM.
OpenFOAM is free software: you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenFOAM is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with OpenFOAM. If not, see <http://www.gnu.org/licenses/>.
\*---------------------------------------------------------------------------*/
#include "edgeInterpolationScheme.H"
#include "areaFields.H"
#include "edgeFields.H"
#include "faPatchFields.H"
#include "coupledFaPatchField.H"
#include "transform.H"
// * * * * * * * * * * * * * * * * * Selectors * * * * * * * * * * * * * * * //
template<class Type>
Foam::tmp<Foam::edgeInterpolationScheme<Type>>
Foam::edgeInterpolationScheme<Type>::New
(
const faMesh& mesh,
Istream& schemeData
)
{
if (edgeInterpolation::debug)
{
InfoInFunction
<< "constructing edgeInterpolationScheme<Type>"
<< endl;
}
if (schemeData.eof())
{
FatalIOErrorInFunction(schemeData)
<< "Discretisation scheme not specified" << nl << nl
<< "Valid schemes are :" << nl
<< MeshConstructorTablePtr_->sortedToc()
<< exit(FatalIOError);
}
const word schemeName(schemeData);
auto cstrIter = MeshConstructorTablePtr_->cfind(schemeName);
if (!cstrIter.found())
{
FatalIOErrorInLookup
(
schemeData,
"discretisation",
schemeName,
*MeshConstructorTablePtr_
) << exit(FatalIOError);
}
return cstrIter()(mesh, schemeData);
}
template<class Type>
Foam::tmp<Foam::edgeInterpolationScheme<Type>>
Foam::edgeInterpolationScheme<Type>::New
(
const faMesh& mesh,
const edgeScalarField& faceFlux,
Istream& schemeData
)
{
if (edgeInterpolation::debug)
{
InfoInFunction
<< "constructing edgeInterpolationScheme<Type>"
<< endl;
}
if (schemeData.eof())
{
FatalIOErrorInFunction(schemeData)
<< "Discretisation scheme not specified"
<< endl << endl
<< "Valid schemes are :" << endl
<< MeshConstructorTablePtr_->sortedToc()
<< exit(FatalIOError);
}
const word schemeName(schemeData);
auto cstrIter = MeshFluxConstructorTablePtr_->cfind(schemeName);
if (!cstrIter.found())
{
FatalIOErrorInLookup
(
schemeData,
"discretisation",
schemeName,
*MeshFluxConstructorTablePtr_
) << exit(FatalIOError);
}
return cstrIter()(mesh, faceFlux, schemeData);
}
// * * * * * * * * * * * * * * * * Destructor * * * * * * * * * * * * * * * //
template<class Type>
Foam::edgeInterpolationScheme<Type>::~edgeInterpolationScheme()
{}
// * * * * * * * * * * * * * * * Member Functions * * * * * * * * * * * * * //
template<class Type>
Foam::tmp<Foam::GeometricField<Type, Foam::faePatchField, Foam::edgeMesh>>
Foam::edgeInterpolationScheme<Type>::interpolate
(
const GeometricField<Type, faPatchField, areaMesh>& vf,
const tmp<edgeScalarField>& tlambdas,
const tmp<edgeScalarField>& tys
)
{
if (edgeInterpolation::debug)
{
InfoInFunction
<< "interpolating "
<< vf.type() << " "
<< vf.name()
<< " from areas to edges "
"without explicit correction"
<< endl;
}
const edgeScalarField& lambdas = tlambdas();
const edgeScalarField& ys = tys();
const Field<Type>& vfi = vf.internalField();
const scalarField& lambda = lambdas.internalField();
const scalarField& y = ys.internalField();
const faMesh& mesh = vf.mesh();
const labelUList& P = mesh.owner();
const labelUList& N = mesh.neighbour();
tmp<GeometricField<Type, faePatchField, edgeMesh>> tsf
(
new GeometricField<Type, faePatchField, edgeMesh>
(
IOobject
(
"interpolate("+vf.name()+')',
vf.instance(),
vf.db()
),
mesh,
vf.dimensions()
)
);
GeometricField<Type, faePatchField, edgeMesh>& sf = tsf.ref();
Field<Type>& sfi = sf.primitiveFieldRef();
for (label fi=0; fi<P.size(); ++fi)
{
const tensorField& curT = mesh.edgeTransformTensors()[fi];
const tensor& Te = curT[0];
const tensor& TP = curT[1];
const tensor& TN = curT[2];
sfi[fi] =
transform
(
Te.T(),
lambda[fi]*transform(TP, vfi[P[fi]])
+ y[fi]*transform(TN, vfi[N[fi]])
);
}
// Interpolate across coupled patches using given lambdas and ys
forAll(lambdas.boundaryField(), pi)
{
const faePatchScalarField& pLambda = lambdas.boundaryField()[pi];
const faePatchScalarField& pY = ys.boundaryField()[pi];
if (vf.boundaryField()[pi].coupled())
{
label size = vf.boundaryField()[pi].patch().size();
label start = vf.boundaryField()[pi].patch().start();
Field<Type> pOwnVf = vf.boundaryField()[pi].patchInternalField();
Field<Type> pNgbVf = vf.boundaryField()[pi].patchNeighbourField();
Field<Type>& pSf = sf.boundaryFieldRef()[pi];
for (label i=0; i<size; ++i)
{
const tensorField& curT =
mesh.edgeTransformTensors()[start + i];
const tensor& Te = curT[0];
const tensor& TP = curT[1];
const tensor& TN = curT[2];
pSf[i] =
transform
(
Te.T(),
pLambda[i]*transform(TP, pOwnVf[i])
+ pY[i]*transform(TN, pNgbVf[i])
);
}
// sf.boundaryFieldRef()[pi] =
// pLambda*vf.boundaryField()[pi].patchInternalField()
// + pY*vf.boundaryField()[pi].patchNeighbourField();
}
else
{
sf.boundaryFieldRef()[pi] = vf.boundaryField()[pi];
}
}
tlambdas.clear();
tys.clear();
return tsf;
}
template<class Type>
Foam::tmp<Foam::GeometricField<Type, Foam::faePatchField, Foam::edgeMesh>>
Foam::edgeInterpolationScheme<Type>::interpolate
(
const GeometricField<Type, faPatchField, areaMesh>& vf,
const tmp<edgeScalarField>& tlambdas
)
{
if (edgeInterpolation::debug)
{
InfoInFunction
<< "interpolating "
<< vf.type() << " "
<< vf.name()
<< " from area to edges "
"without explicit correction"
<< endl;
}
const edgeScalarField& lambdas = tlambdas();
const Field<Type>& vfi = vf.internalField();
const scalarField& lambda = lambdas.internalField();
const faMesh& mesh = vf.mesh();
const labelUList& P = mesh.owner();
const labelUList& N = mesh.neighbour();
tmp<GeometricField<Type, faePatchField, edgeMesh>> tsf
(
new GeometricField<Type, faePatchField, edgeMesh>
(
IOobject
(
"interpolate("+vf.name()+')',
vf.instance(),
vf.db()
),
mesh,
vf.dimensions()
)
);
GeometricField<Type, faePatchField, edgeMesh>& sf = tsf.ref();
Field<Type>& sfi = sf.primitiveFieldRef();
for (label eI = 0; eI < P.size(); ++eI)
{
const tensorField& curT = mesh.edgeTransformTensors()[eI];
const tensor& Te = curT[0];
const tensor& TP = curT[1];
const tensor& TN = curT[2];
sfi[eI] =
transform
(
Te.T(),
lambda[eI]*transform(TP, vfi[P[eI]])
+ (1 - lambda[eI])*transform(TN, vfi[N[eI]])
);
}
// Interpolate across coupled patches using given lambdas
const typename GeometricField<Type, faPatchField, areaMesh>::Boundary&
vfb = vf.boundaryField();
forAll(lambdas.boundaryField(), pi)
{
const faePatchScalarField& pLambda = lambdas.boundaryField()[pi];
if (vf.boundaryField()[pi].coupled())
{
label size = vfb[pi].patch().size();
label start = vfb[pi].patch().start();
Field<Type> pOwnVf(vfb[pi].patchInternalField());
Field<Type> pNgbVf(vfb[pi].patchNeighbourField());
Field<Type>& pSf = sf.boundaryFieldRef()[pi];
for (label i=0; i<size; ++i)
{
const tensorField& curT =
mesh.edgeTransformTensors()[start + i];
const tensor& Te = curT[0];
const tensor& TP = curT[1];
const tensor& TN = curT[2];
pSf[i] =
transform
(
Te.T(),
pLambda[i]*transform(TP, pOwnVf[i])
+ (1 - pLambda[i])*transform(TN, pNgbVf[i])
);
}
// tsf().boundaryFieldRef()[pi] =
// pLambda*vf.boundaryField()[pi].patchInternalField()
// + (1 - pLambda)*vf.boundaryField()[pi].patchNeighbourField();
}
else
{
sf.boundaryFieldRef()[pi] = vf.boundaryField()[pi];
}
}
tlambdas.clear();
return tsf;
}
template<class Type>
Foam::tmp<Foam::GeometricField<Type, Foam::faePatchField, Foam::edgeMesh>>
Foam::edgeInterpolationScheme<Type>::euclidianInterpolate
(
const GeometricField<Type, faPatchField, areaMesh>& vf,
const tmp<edgeScalarField>& tlambdas
)
{
if (edgeInterpolation::debug)
{
InfoInFunction
<< "interpolating "
<< vf.type() << " "
<< vf.name()
<< " from area to edges "
"without explicit correction"
<< endl;
}
const edgeScalarField& lambdas = tlambdas();
const Field<Type>& vfi = vf.internalField();
const scalarField& lambda = lambdas.internalField();
const faMesh& mesh = vf.mesh();
const labelUList& P = mesh.owner();
const labelUList& N = mesh.neighbour();
tmp<GeometricField<Type, faePatchField, edgeMesh>> tsf
(
new GeometricField<Type, faePatchField, edgeMesh>
(
IOobject
(
"interpolate("+vf.name()+')',
vf.instance(),
vf.db()
),
mesh,
vf.dimensions()
)
);
GeometricField<Type, faePatchField, edgeMesh>& sf = tsf.ref();
Field<Type>& sfi = sf.primitiveFieldRef();
for (label eI = 0; eI < P.size(); ++eI)
{
sfi[eI] = lambda[eI]*vfi[P[eI]] + (1 - lambda[eI])*vfi[N[eI]];
}
// Interpolate across coupled patches using given lambdas
forAll(lambdas.boundaryField(), pi)
{
const faePatchScalarField& pLambda = lambdas.boundaryField()[pi];
if (vf.boundaryField()[pi].coupled())
{
tsf.ref().boundaryFieldRef()[pi] =
pLambda*vf.boundaryField()[pi].patchInternalField()
+ (1.0 - pLambda)*vf.boundaryField()[pi].patchNeighbourField();
}
else
{
sf.boundaryFieldRef()[pi] = vf.boundaryField()[pi];
}
}
tlambdas.clear();
return tsf;
}
template<class Type>
Foam::tmp<Foam::GeometricField<Type, Foam::faePatchField, Foam::edgeMesh>>
Foam::edgeInterpolationScheme<Type>::interpolate
(
const GeometricField<Type, faPatchField, areaMesh>& vf
) const
{
if (edgeInterpolation::debug)
{
InfoInFunction
<< "interpolating "
<< vf.type() << " "
<< vf.name()
<< " from areas to edges"
<< endl;
}
tmp<GeometricField<Type, faePatchField, edgeMesh>> tsf =
interpolate(vf, weights(vf));
if (corrected())
{
tsf.ref() += correction(vf);
}
return tsf;
}
template<class Type>
Foam::tmp<Foam::GeometricField<Type, Foam::faePatchField, Foam::edgeMesh>>
Foam::edgeInterpolationScheme<Type>::euclidianInterpolate
(
const GeometricField<Type, faPatchField, areaMesh>& vf
) const
{
if (edgeInterpolation::debug)
{
InfoInFunction
<< "interpolating "
<< vf.type() << " "
<< vf.name()
<< " from area to edges "
<< endl;
}
tmp<GeometricField<Type, faePatchField, edgeMesh>> tsf =
euclidianInterpolate(vf, weights(vf));
return tsf;
}
template<class Type>
Foam::tmp<Foam::GeometricField<Type, Foam::faePatchField, Foam::edgeMesh>>
Foam::edgeInterpolationScheme<Type>::interpolate
(
const tmp<GeometricField<Type, faPatchField, areaMesh>>& tvf
) const
{
tmp<GeometricField<Type, faePatchField, edgeMesh>> tinterpVf =
interpolate(tvf());
tvf.clear();
return tinterpVf;
}
// ************************************************************************* //