git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@9302 f3b2605a-c512-4ea7-a41b-209d697bcdaa

This commit is contained in:
sjplimp
2013-01-18 21:00:07 +00:00
parent 35769609d9
commit 6efc234065
2 changed files with 26 additions and 0 deletions

View File

@ -31,6 +31,7 @@
dim = <I>x</I> or <I>y</I> or <I>z</I> = axis of cylinder
c1,c2 = coords of cylinder axis in other 2 dimensions (distance units)
radius = cylinder radius (distance units)
radius can be a variable (see below)
lo,hi = bounds of cylinder in dim (distance units)
<I>plane</I> args = px py pz nx ny nz
px,py,pz = point on the plane (distance units)
@ -43,6 +44,7 @@
<I>sphere</I> args = x y z radius
x,y,z = center of sphere (distance units)
radius = radius of sphere (distance units)
radius can be a variable (see below)
<I>union</I> args = N reg-ID1 reg-ID2 ...
N = # of regions to follow, must be 2 or greater
reg-ID1,reg-ID2, ... = IDs of regions to join together
@ -175,6 +177,17 @@ since if the maximum tilt factor is 5 (as in this example), then
configurations with tilt = ..., -15, -5, 5, 15, 25, ... are all
geometrically equivalent.
</P>
<P>The <I>radius</I> value for style <I>sphere</I> and <I>cylinder</I> can be specified
as an equal-style <A HREF = "variable.html">variable</A>. If the value is a
variable, it should be specified as v_name, where name is the variable
name. In this case, the variable will be evaluated each timestep, and
its value used to determine the radius of the region.
</P>
<P>Equal-style variables can specify formulas with various mathematical
functions, and include <A HREF = "thermo_style.html">thermo_style</A> command
keywords for the simulation box parameters and timestep and elapsed
time. Thus it is easy to specify a time-dependent radius.
</P>
<P>See <A HREF = "Section_howto.html#howto_12">Section_howto 12</A> of the doc pages
for a geometric description of triclinic boxes, as defined by LAMMPS,
and how to transform these parameters to and from other commonly used

View File

@ -26,6 +26,7 @@ style = {delete} or {block} or {cone} or {cylinder} or {plane} or {prism} or {sp
dim = {x} or {y} or {z} = axis of cylinder
c1,c2 = coords of cylinder axis in other 2 dimensions (distance units)
radius = cylinder radius (distance units)
radius can be a variable (see below)
lo,hi = bounds of cylinder in dim (distance units)
{plane} args = px py pz nx ny nz
px,py,pz = point on the plane (distance units)
@ -38,6 +39,7 @@ style = {delete} or {block} or {cone} or {cylinder} or {plane} or {prism} or {sp
{sphere} args = x y z radius
x,y,z = center of sphere (distance units)
radius = radius of sphere (distance units)
radius can be a variable (see below)
{union} args = N reg-ID1 reg-ID2 ...
N = # of regions to follow, must be 2 or greater
reg-ID1,reg-ID2, ... = IDs of regions to join together
@ -166,6 +168,17 @@ since if the maximum tilt factor is 5 (as in this example), then
configurations with tilt = ..., -15, -5, 5, 15, 25, ... are all
geometrically equivalent.
The {radius} value for style {sphere} and {cylinder} can be specified
as an equal-style "variable"_variable.html. If the value is a
variable, it should be specified as v_name, where name is the variable
name. In this case, the variable will be evaluated each timestep, and
its value used to determine the radius of the region.
Equal-style variables can specify formulas with various mathematical
functions, and include "thermo_style"_thermo_style.html command
keywords for the simulation box parameters and timestep and elapsed
time. Thus it is easy to specify a time-dependent radius.
See "Section_howto 12"_Section_howto.html#howto_12 of the doc pages
for a geometric description of triclinic boxes, as defined by LAMMPS,
and how to transform these parameters to and from other commonly used