git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@6645 f3b2605a-c512-4ea7-a41b-209d697bcdaa

This commit is contained in:
sjplimp
2011-08-08 22:50:30 +00:00
parent 9a1a4a4249
commit 7133dbe08f
10 changed files with 575 additions and 0 deletions

View File

@ -0,0 +1,54 @@
<HTML>
<CENTER><A HREF = "http://lammps.sandia.gov">LAMMPS WWW Site</A> - <A HREF = "Manual.html">LAMMPS Documentation</A> - <A HREF = "Section_commands.html#comm">LAMMPS Commands</A>
</CENTER>
<HR>
<H3>angle_style cosine/shift command
</H3>
<P><B>Syntax:</B>
</P>
<PRE>angle_style cosine/shift
</PRE>
<P><B>Examples:</B>
</P>
<PRE>angle_style cosine/shift
angle_coeff * 10.0 45.0
</PRE>
<P><B>Description:</B>
</P>
<P>The <I>cosine/shift</I> angle style uses the potential
</P>
<CENTER><IMG SRC = "Eqs/angle_cosine_shift.jpg">
</CENTER>
<P>where theta0 is the equilibrium angle. The potential is bounded
between -Umin and zero. In the neighborhood of the minimum E=- Umin +
Umin/4(theta-theta0)^2 hence the spring constant is umin/2.
</P>
<P>The following coefficients must be defined for each angle type via the
<A HREF = "angle_coeff.html">angle_coeff</A> command as in the example above, or in
the data file or restart files read by the <A HREF = "read_data.html">read_data</A>
or <A HREF = "read_restart.html">read_restart</A> commands:
</P>
<UL><LI>umin (energy)
<LI>theta (angle)
</UL>
<P><B>Restrictions:</B>
</P>
<P>This angle style can only be used if LAMMPS was built with the
"user-misc" package. See the <A HREF = "Section_start.html#2_3">Making LAMMPS</A>
section for more info on packages.
</P>
<P><B>Related commands:</B>
</P>
<P><A HREF = "angle_coeff.html">angle_coeff</A>,
<A HREF = "angle_cosineshiftexp.html">angle_cosineshiftexp</A>
</P>
<P><B>Default:</B> none
</P>
</HTML>

View File

@ -0,0 +1,49 @@
"LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
:link(lws,http://lammps.sandia.gov)
:link(ld,Manual.html)
:link(lc,Section_commands.html#comm)
:line
angle_style cosine/shift command :h3
[Syntax:]
angle_style cosine/shift :pre
[Examples:]
angle_style cosine/shift
angle_coeff * 10.0 45.0 :pre
[Description:]
The {cosine/shift} angle style uses the potential
:c,image(Eqs/angle_cosine_shift.jpg)
where theta0 is the equilibrium angle. The potential is bounded
between -Umin and zero. In the neighborhood of the minimum E=- Umin +
Umin/4(theta-theta0)^2 hence the spring constant is umin/2.
The following coefficients must be defined for each angle type via the
"angle_coeff"_angle_coeff.html command as in the example above, or in
the data file or restart files read by the "read_data"_read_data.html
or "read_restart"_read_restart.html commands:
umin (energy)
theta (angle) :ul
[Restrictions:]
This angle style can only be used if LAMMPS was built with the
"user-misc" package. See the "Making LAMMPS"_Section_start.html#2_3
section for more info on packages.
[Related commands:]
"angle_coeff"_angle_coeff.html,
"angle_cosineshiftexp"_angle_cosineshiftexp.html
[Default:] none

View File

@ -0,0 +1,67 @@
<HTML>
<CENTER><A HREF = "http://lammps.sandia.gov">LAMMPS WWW Site</A> - <A HREF = "Manual.html">LAMMPS Documentation</A> - <A HREF = "Section_commands.html#comm">LAMMPS Commands</A>
</CENTER>
<HR>
<H3>angle_style cosine/shift/exp command
</H3>
<P><B>Syntax:</B>
</P>
<PRE>angle_style cosine/shift/exp
</PRE>
<P><B>Examples:</B>
</P>
<PRE>angle_style cosine/shift/exp
angle_coeff * 10.0 45.0 2.0
</PRE>
<P><B>Description:</B>
</P>
<P>The <I>cosine/shift/exp</I> angle style uses the potential
</P>
<CENTER><IMG SRC = "Eqs/angle_cosine/shift/exp.jpg">
</CENTER>
<P>where Umin, theta, and a are defined for each angle type.
</P>
<P>The potential is bounded between [-Umin:0] and the minimum is
located at the angle theta0. The a parameter can be both positive or
negative and is used to control the spring constant at the
equilibrium.
</P>
<P>The spring constant is given by k = A exp(A) Umin / [2 (Exp(a)-1)].
For a > 3, k/Umin = a/2 to better than 5% relative error. For negative
values of the a parameter, the spring constant is essentially zero,
and anharmonic terms takes over. The potential is furthermore well
behaved in the limit a -> 0, where it has been implemented to linear
order in a for a < 0.001. In this limit the potential reduces to the
cosineshifted potential.
</P>
<P>The following coefficients must be defined for each angle type via the
<A HREF = "angle_coeff.html">angle_coeff</A> command as in the example above, or in
the data file or restart files read by the <A HREF = "read_data.html">read_data</A>
or <A HREF = "read_restart.html">read_restart</A> commands:
</P>
<UL><LI>umin (energy)
<LI>theta (angle)
<LI>A (real number)
</UL>
<P><B>Restrictions:</B>
</P>
<P>This angle style can only be used if LAMMPS was built with the
"user-misc" package. See the <A HREF = "Section_start.html#2_3">Making LAMMPS</A>
section for more info on packages.
</P>
<P><B>Related commands:</B>
</P>
<P><A HREF = "angle_coeff.html">angle_coeff</A>,
<A HREF = "angle_cosineshift.html">angle_cosineshift</A>,
<A HREF = "dihedral_cosineshift.html">dihedral_cosineshift</A>
</P>
<P><B>Default:</B> none
</P>
</HTML>

View File

@ -0,0 +1,62 @@
"LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
:link(lws,http://lammps.sandia.gov)
:link(ld,Manual.html)
:link(lc,Section_commands.html#comm)
:line
angle_style cosine/shift/exp command :h3
[Syntax:]
angle_style cosine/shift/exp :pre
[Examples:]
angle_style cosine/shift/exp
angle_coeff * 10.0 45.0 2.0 :pre
[Description:]
The {cosine/shift/exp} angle style uses the potential
:c,image(Eqs/angle_cosine/shift/exp.jpg)
where Umin, theta, and a are defined for each angle type.
The potential is bounded between \[-Umin:0\] and the minimum is
located at the angle theta0. The a parameter can be both positive or
negative and is used to control the spring constant at the
equilibrium.
The spring constant is given by k = A exp(A) Umin / \[2 (Exp(a)-1)\].
For a > 3, k/Umin = a/2 to better than 5% relative error. For negative
values of the a parameter, the spring constant is essentially zero,
and anharmonic terms takes over. The potential is furthermore well
behaved in the limit a -> 0, where it has been implemented to linear
order in a for a < 0.001. In this limit the potential reduces to the
cosineshifted potential.
The following coefficients must be defined for each angle type via the
"angle_coeff"_angle_coeff.html command as in the example above, or in
the data file or restart files read by the "read_data"_read_data.html
or "read_restart"_read_restart.html commands:
umin (energy)
theta (angle)
A (real number) :ul
[Restrictions:]
This angle style can only be used if LAMMPS was built with the
"user-misc" package. See the "Making LAMMPS"_Section_start.html#2_3
section for more info on packages.
[Related commands:]
"angle_coeff"_angle_coeff.html,
"angle_cosineshift"_angle_cosineshift.html,
"dihedral_cosineshift"_dihedral_cosineshift.html
[Default:] none

View File

@ -0,0 +1,58 @@
<HTML>
<CENTER><A HREF = "http://lammps.sandia.gov">LAMMPS WWW Site</A> - <A HREF = "Manual.html">LAMMPS Documentation</A> - <A HREF = "Section_commands.html#comm">LAMMPS Commands</A>
</CENTER>
<HR>
<H3>bond_style harmonic/shift command
</H3>
<P><B>Syntax:</B>
</P>
<PRE>bond_style harmonic/shift
</PRE>
<P><B>Examples:</B>
</P>
<PRE>bond_style harmonic/shift
bond_coeff 5 10.0 0.5 1.0
</PRE>
<P><B>Description:</B>
</P>
<P>The <I>harmonic/shift</I> bond style is a shifted harmonic bond that uses
the potential
</P>
<CENTER><IMG SRC = "Eqs/bond_harmonic_shift.jpg">
</CENTER>
<P>where r0 is the equilibrium bond distance, and rc the critical distance.
The potential is -Umin at r0 and zero at rc. The spring constant is
k = Umin / [ 2 (r0-rc)^2].
</P>
<P>The following coefficients must be defined for each bond type via the
<A HREF = "bond_coeff.html">bond_coeff</A> command as in the example above, or in
the data file or restart files read by the <A HREF = "read_data.html">read_data</A>
or <A HREF = "read_restart.html">read_restart</A> commands:
</P>
<UL><LI>Umin (energy)
</UL>
<UL><LI>r0 (distance)
</UL>
<UL><LI>rc (distance)
</UL>
<P><B>Restrictions:</B>
</P>
<P>This bond style can only be used if LAMMPS was built with the
"user-misc" package. See the <A HREF = "Section_start.html#2_3">Making LAMMPS</A>
section for more info on packages.
</P>
<P><B>Related commands:</B>
</P>
<P><A HREF = "bond_coeff.html">bond_coeff</A>, <A HREF = "delete_bonds.html">delete_bonds</A>,
<A HREF = "bond_harmonic.html">bond_harmonic</A>
</P>
<P><B>Default:</B> none
</P>
</HTML>

View File

@ -0,0 +1,51 @@
"LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
:link(lws,http://lammps.sandia.gov)
:link(ld,Manual.html)
:link(lc,Section_commands.html#comm)
:line
bond_style harmonic/shift command :h3
[Syntax:]
bond_style harmonic/shift :pre
[Examples:]
bond_style harmonic/shift
bond_coeff 5 10.0 0.5 1.0 :pre
[Description:]
The {harmonic/shift} bond style is a shifted harmonic bond that uses
the potential
:c,image(Eqs/bond_harmonic_shift.jpg)
where r0 is the equilibrium bond distance, and rc the critical distance.
The potential is -Umin at r0 and zero at rc. The spring constant is
k = Umin / \[ 2 (r0-rc)^2\].
The following coefficients must be defined for each bond type via the
"bond_coeff"_bond_coeff.html command as in the example above, or in
the data file or restart files read by the "read_data"_read_data.html
or "read_restart"_read_restart.html commands:
Umin (energy) :ul
r0 (distance) :ul
rc (distance) :ul
[Restrictions:]
This bond style can only be used if LAMMPS was built with the
"user-misc" package. See the "Making LAMMPS"_Section_start.html#2_3
section for more info on packages.
[Related commands:]
"bond_coeff"_bond_coeff.html, "delete_bonds"_delete_bonds.html,
"bond_harmonic"_bond_harmonic.html
[Default:] none

View File

@ -0,0 +1,57 @@
<HTML>
<CENTER><A HREF = "http://lammps.sandia.gov">LAMMPS WWW Site</A> - <A HREF = "Manual.html">LAMMPS Documentation</A> - <A HREF = "Section_commands.html#comm">LAMMPS Commands</A>
</CENTER>
<HR>
<H3>bond_style harmonic/shift/cut command
</H3>
<P><B>Syntax:</B>
</P>
<PRE>bond_style harmonic/shift/cut
</PRE>
<P><B>Examples:</B>
</P>
<PRE>bond_style harmonic/shift/cut
bond_coeff 5 10.0 0.5 1.0
</PRE>
<P><B>Description:</B>
</P>
<P>The <I>harmonic/shift/cut</I> bond style is a shifted harmonic bond that
uses the potential
</P>
<CENTER><IMG SRC = "Eqs/bond_harmonic_shift_cut.jpg">
</CENTER>
<P>where r0 is the equilibrium bond distance, and rc the critical distance.
The bond potential is zero for distances r > rc. The potential is -Umin
at r0 and zero at rc. The spring constant is k = Umin / [ 2 (r0-rc)^2].
</P>
<P>The following coefficients must be defined for each bond type via the
<A HREF = "bond_coeff.html">bond_coeff</A> command as in the example above, or in
the data file or restart files read by the <A HREF = "read_data.html">read_data</A>
or <A HREF = "read_restart.html">read_restart</A> commands:
</P>
<UL><LI>Umin (energy)
<LI>r0 (distance)
<LI>rc (distance)
</UL>
<P><B>Restrictions:</B>
</P>
<P>This bond style can only be used if LAMMPS was built with the
"user-misc" package. See the <A HREF = "Section_start.html#2_3">Making LAMMPS</A>
section for more info on packages.
</P>
<P><B>Related commands:</B>
</P>
<P><A HREF = "bond_coeff.html">bond_coeff</A>, <A HREF = "delete_bonds.html">delete_bonds</A>,
<A HREF = "bond_harmonic.html">bond_harmonic</A>,
<A HREF = "bond_harmonicshift.html">bond_harmonicshift</A>
</P>
<P><B>Default:</B> none
</P>
</HTML>

View File

@ -0,0 +1,52 @@
"LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
:link(lws,http://lammps.sandia.gov)
:link(ld,Manual.html)
:link(lc,Section_commands.html#comm)
:line
bond_style harmonic/shift/cut command :h3
[Syntax:]
bond_style harmonic/shift/cut :pre
[Examples:]
bond_style harmonic/shift/cut
bond_coeff 5 10.0 0.5 1.0 :pre
[Description:]
The {harmonic/shift/cut} bond style is a shifted harmonic bond that
uses the potential
:c,image(Eqs/bond_harmonic_shift_cut.jpg)
where r0 is the equilibrium bond distance, and rc the critical distance.
The bond potential is zero for distances r > rc. The potential is -Umin
at r0 and zero at rc. The spring constant is k = Umin / \[ 2 (r0-rc)^2\].
The following coefficients must be defined for each bond type via the
"bond_coeff"_bond_coeff.html command as in the example above, or in
the data file or restart files read by the "read_data"_read_data.html
or "read_restart"_read_restart.html commands:
Umin (energy)
r0 (distance)
rc (distance) :ul
[Restrictions:]
This bond style can only be used if LAMMPS was built with the
"user-misc" package. See the "Making LAMMPS"_Section_start.html#2_3
section for more info on packages.
[Related commands:]
"bond_coeff"_bond_coeff.html, "delete_bonds"_delete_bonds.html,
"bond_harmonic"_bond_harmonic.html,
"bond_harmonicshift"_bond_harmonicshift.html
[Default:] none

View File

@ -0,0 +1,65 @@
<HTML>
<CENTER><A HREF = "http://lammps.sandia.gov">LAMMPS WWW Site</A> - <A HREF = "Manual.html">LAMMPS Documentation</A> - <A HREF = "Section_commands.html#comm">LAMMPS Commands</A>
</CENTER>
<HR>
<H3>dihedral_style cosine/shift/exp command
</H3>
<P><B>Syntax:</B>
</P>
<PRE>dihedral_style cosine/shift/exp
</PRE>
<P><B>Examples:</B>
</P>
<PRE>dihedral_style cosine/shift/exp
dihedral_coeff 1 10.0 45.0 2.0
</PRE>
<P><B>Description:</B>
</P>
<P>The <I>cosine/shift/exp</I> dihedral style uses the potential
</P>
<CENTER><IMG SRC = "Eqs/dihedral_cosine_shift_exp.jpg">
</CENTER>
<P>where Umin, theta, and a are defined for each dihedral type.
</P>
<P>The potential is bounded between [-Umin:0] and the minimum is located
at the angle theta0. The a parameter can be both positive or negative
and is used to control the spring constant at the equilibrium.
</P>
<P>The spring constant is given by k=a exp(a) Umin/ [2 (Exp(a)-1)].
For a>3 k/Umin = a/2 to better than 5% relative error. For negative
values of the a parameter, the spring constant is essentially zero,
and anharmonic terms takes over. The potential is furthermore well
behaved in the limit a->0, where it has been implemented to linear
order in a for a < 0.001.
</P>
<P>The following coefficients must be defined for each dihedral type via
the <A HREF = "dihedral_coeff.html">dihedral_coeff</A> command as in the example
above, or in the data file or restart files read by the
<A HREF = "read_data.html">read_data</A> or <A HREF = "read_restart.html">read_restart</A>
commands:
</P>
<UL><LI>umin (energy)
<LI>theta (angle)
<LI>A (real number)
</UL>
<P><B>Restrictions:</B>
</P>
<P>This dihedral style can only be used if LAMMPS was built with the
"user-misc" package. See the <A HREF = "Section_start.html#2_3">Making LAMMPS</A>
section for more info on packages.
</P>
<P><B>Related commands:</B>
</P>
<P><A HREF = "dihedral_coeff.html">dihedral_coeff</A>,
<A HREF = "angle_cosineshiftexp.html">angle_cosineshiftexp</A>
</P>
<P><B>Default:</B> none
</P>
</HTML>

View File

@ -0,0 +1,60 @@
"LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
:link(lws,http://lammps.sandia.gov)
:link(ld,Manual.html)
:link(lc,Section_commands.html#comm)
:line
dihedral_style cosine/shift/exp command :h3
[Syntax:]
dihedral_style cosine/shift/exp :pre
[Examples:]
dihedral_style cosine/shift/exp
dihedral_coeff 1 10.0 45.0 2.0 :pre
[Description:]
The {cosine/shift/exp} dihedral style uses the potential
:c,image(Eqs/dihedral_cosine_shift_exp.jpg)
where Umin, theta, and a are defined for each dihedral type.
The potential is bounded between \[-Umin:0\] and the minimum is located
at the angle theta0. The a parameter can be both positive or negative
and is used to control the spring constant at the equilibrium.
The spring constant is given by k=a exp(a) Umin/ \[2 (Exp(a)-1)\].
For a>3 k/Umin = a/2 to better than 5% relative error. For negative
values of the a parameter, the spring constant is essentially zero,
and anharmonic terms takes over. The potential is furthermore well
behaved in the limit a->0, where it has been implemented to linear
order in a for a < 0.001.
The following coefficients must be defined for each dihedral type via
the "dihedral_coeff"_dihedral_coeff.html command as in the example
above, or in the data file or restart files read by the
"read_data"_read_data.html or "read_restart"_read_restart.html
commands:
umin (energy)
theta (angle)
A (real number) :ul
[Restrictions:]
This dihedral style can only be used if LAMMPS was built with the
"user-misc" package. See the "Making LAMMPS"_Section_start.html#2_3
section for more info on packages.
[Related commands:]
"dihedral_coeff"_dihedral_coeff.html,
"angle_cosineshiftexp"_angle_cosineshiftexp.html
[Default:] none