git-svn-id: svn://svn.icms.temple.edu/lammps-ro/trunk@13727 f3b2605a-c512-4ea7-a41b-209d697bcdaa

This commit is contained in:
sjplimp
2015-07-27 14:51:17 +00:00
parent 8fe1cd9879
commit 8936e677c4
6 changed files with 374 additions and 18 deletions

View File

@ -205,7 +205,11 @@ it gives quick access to documentation for all LAMMPS commands.
<BR>
6.24 <A HREF = "Section_howto.html#howto_24">Setting parameters for pppm/disp</A>
<BR>
6.25 <A HREF = "Section_howto.html#howto_25">Adiabatic core/shell model</A>
6.25 <A HREF = "Section_howto.html#howto_25">Polarizable models</A>
<BR></UL>
6.26 <A HREF = "Section_howto.html#howto_26">Adiabatic core/shell model</A>
<BR></UL>
6.27 <A HREF = "Section_howto.html#howto_27">Drude induced dipoles</A>
<BR></UL>
<LI><A HREF = "Section_example.html">Example problems</A>
@ -430,6 +434,8 @@ it gives quick access to documentation for all LAMMPS commands.

View File

@ -139,7 +139,9 @@ it gives quick access to documentation for all LAMMPS commands.
6.22 "Calculating a diffusion coefficient"_howto_22 :b
6.23 "Using chunks to calculate system properties"_howto_23 :b
6.24 "Setting parameters for pppm/disp"_howto_24 :b
6.25 "Adiabatic core/shell model"_howto_25 :ule,b
6.25 "Polarizable models"_howto_25 :ule,b
6.26 "Adiabatic core/shell model"_howto_26 :ule,b
6.27 "Drude induced dipoles"_howto_27 :ule,b
"Example problems"_Section_example.html :l
"Performance & scalability"_Section_perf.html :l
"Additional tools"_Section_tools.html :l
@ -233,6 +235,7 @@ it gives quick access to documentation for all LAMMPS commands.
:link(howto_24,Section_howto.html#howto_24)
:link(howto_25,Section_howto.html#howto_25)
:link(howto_26,Section_howto.html#howto_26)
:link(howto_27,Section_howto.html#howto_27)
:link(mod_1,Section_modify.html#mod_1)
:link(mod_2,Section_modify.html#mod_2)

View File

@ -37,7 +37,9 @@
6.22 <A HREF = "#howto_22">Calculating a diffusion coefficient</A><BR>
6.23 <A HREF = "#howto_23">Using chunks to calculate system properties</A><BR>
6.24 <A HREF = "#howto_24">Setting parameters for the kspace_style pppm/disp command</A><BR>
6.25 <A HREF = "#howto_25">Adiabatic core/shell model</A> <BR>
6.25 <A HREF = "#howto_25">Polarizable models</A><BR>
6.26 <A HREF = "#howto_26">Adiabatic core/shell model</A><BR>
6.27 <A HREF = "#howto_27">Drude induced dipoles</A> <BR>
<P>The example input scripts included in the LAMMPS distribution and
highlighted in <A HREF = "Section_example.html">Section_example</A> also show how to
@ -2415,14 +2417,91 @@ to specify this command explicitly.
</P>
<HR>
<A NAME = "howto_25"></A><H4>6.25 Adiabatic core/shell model
<A NAME = "howto_25"></A><H4>6.25 Polarizable models
</H4>
<P>In polarizable force fields the charge distributions in molecules and
materials respond to their electrostatic environements. Polarizable
systems can be simulated in LAMMPS using three methods:
</P>
<UL><LI>the fluctuating charge method, implemented in the <A HREF = "fix_qeq.html">QEQ</A>
package,
<LI>the adiabatic core-shell method, implemented in the
<A HREF = "#howto_26">CORESHELL</A> package,
<LI>the thermalized Drude dipole method, implemented in the
<A HREF = "#howto_27">USER-DRUDE</A> package.
</UL>
<P>The fluctuating charge method calculates instantaneous charges on
interacting atoms based on the electronegativity equalization
principle. It is implemented in the <A HREF = "fix_qeq.html">fix qeq</A> which is
available in several variants. It is a relatively efficient technique
since no additional particles are introduced. This method allows for
charge transfer between molecules or atom groups. However, because the
charges are located at the interaction sites, off-plane components of
polarization cannot be represented in planar molecules or atom groups.
</P>
<P>The two other methods share the same basic idea: polarizable atoms are
split into one core atom and one satellite particle (called shell or
Drude particle) attached to it by a harmonic spring. Both atoms bear
a charge and they represent collectively an induced electric dipole.
These techniques are computationally more expensive than the QEq
method because of additional particles and bonds. These two
charge-on-spring methods differ in certain features, with the
core-shell model being normally used for ionic/crystalline materials,
whereas the so-called Drude model is normally used for molecular
systems and fluid states.
</P>
<P>The core-shell model is applicable to crystalline materials where the
high symmetry around each site leads to stable trajectories of the
core-shell pairs. However, bonded atoms in molecules can be so close
that a core would interact too strongly or even capture the Drude
particle of a neighbor. The Drude dipole model is relatively more
complex in order to remediate this and other issues. Specifically, the
Drude model includes specific thermostating of the core-Drude pairs
and short-range damping of the induced dipoles.
</P>
<P>The three polarization methods can be implemented through a
self-consistent calculation of charges or induced dipoles at each
timestep. In the fluctuating charge scheme this is done by the matrix
inversion method in <A HREF = "fix_qeq.html">fix qeq/point</A>, but for core-shell
or Drude-dipoles the relaxed-dipoles technique would require an slow
iterative procedure. These self-consistent solutions yield accurate
trajectories since the additional degrees of freedom representing
polarization are massless. An alternative is to attribute a mass to
the additional degrees of freedom and perform time integration using
an extended Lagrangian technique. For the fluctuating charge scheme
this is done by <A HREF = "fix_qeq.html">fix qeq/dynamic</A>, and for the
charge-on-spring models by the methods outlined in the next two
sections. The assignment of masses to the additional degrees of
freedom can lead to unphysical trajectories if care is not exerted in
choosing the parameters of the poarizable models and the simulation
conditions.
</P>
<P>In the core-shell model the vibration of the shells is kept faster
than the ionic vibrations to mimic the fast response of the
polarizable electrons. But in molecular systems thermalizing the
core-Drude pairs at temperatures comparable to the rest of the
simulation leads to several problems (kinetic energy transfer, too
short a timestep, etc.) In order to avoid these problems the relative
motion of the Drude particles with respect to their cores is kept
"cold" so the vibration of the core-Drude pairs is very slow,
approaching the self-consistent regime. In both models the
temperature is regulated using the velocities of the center of mass of
core+shell (or Drude) pairs, but in the Drude model the actual
relative core-Drude particle motion is thermostated separately as
well.
</P>
<HR>
<A NAME = "howto_26"></A><H4>6.26 Adiabatic core/shell model
</H4>
<P>The adiabatic core-shell model by <A HREF = "#MitchellFinchham">Mitchell and
Finchham</A> is a simple method for adding
polarizability to a system. In order to mimic the electron shell of
an ion, a ghost atom is attached to it. This way the ions are split
into a core and a shell where the latter is meant to react to the
electrostatic environment inducing polarizability.
an ion, a satellite particle is attached to it. This way the ions are
split into a core and a shell where the latter is meant to react to
the electrostatic environment inducing polarizability.
</P>
<P>Technically, shells are attached to the cores by a spring force f =
k*r where k is a parametrized spring constant and r is the distance
@ -2600,6 +2679,70 @@ fix ave_chunk all ave/time 10 1 10 c_cstherm file chunk.dump mode vector
</PRE>
<HR>
<A NAME = "howto_27"></A><H4>6.27 Drude induced dipoles
</H4>
<P>The thermalized Drude model, similarly to the <A HREF = "#howto_26">core-shell</A>
model, representes induced dipoles by a pair of charges (the core atom
and the Drude particle) connected by a harmonic spring. The Drude
model has a number of features aimed at its use in molecular systems
(<A HREF = "#Lamoureux">Lamoureux and Roux</A>):
</P>
<UL><LI>Thermostating of the additional degrees of freedom associated with the
induced dipoles at very low temperature, in terms of the reduced
coordinates of the Drude particles with respect to their cores. This
makes the trajectory close to that of relaxed induced dipoles.
<LI>Consistent definition of 1-2 to 1-4 neighbors. A core-Drude particle
pair represents a single (polarizable) atom, so the special screening
factors in a covalent structure should be the same for the core and
the Drude particle. Drude particles have to inherit the 1-2, 1-3, 1-4
special neighbor relations from their respective cores.
<LI>Stabilization of the interactions between induced dipoles. Drude
dipoles on covalently bonded atoms interact too strongly due to the
short distances, so an atom may capture the Drude particle of a
neighbor, or the induced dipoles within the same molecule may align
too much. To avoid this, damping at short range can be done by Thole
functions (for which there are physical grounds). This Thole damping
is applied to the point charges composing the induced dipole (the
charge of the Drude particle and the opposite charge on the core, not
to the total charge of the core atom).
</UL>
<P>A detailed tutorial covering the usage of Drude induced dipoles in
LAMMPS is <A HREF = "tutorial_drude.html">available here</A>.
</P>
<P>As with the core-shell model, the cores and Drude particles should
appear in the data file as standard atoms. The same holds for the
springs between them, which are described by standard harmonic bonds.
The nature of the atoms (core, Drude particle or non-polarizable) is
specified via the <A HREF = "fix_drude.html">fix drude</A> command. The special
list of neighbors is automatically refactored to account for the
equivalence of core and Drude particles as regards special 1-2 to 1-4
screening. It may be necessary to use the <I>extra</I> keyword of the
<A HREF = "special_bonds.html">special_bonds</A> command. If using <A HREF = "fix_shake.html">fix
shake</A>, make sure no Drude particle is in this fix
group.
</P>
<P>There are two ways to thermostat the Drude particles at a low
temperature: use either <A HREF = "fix_langevin_drude.html">fix langevin/drude</A>
for a Langevin thermostat, or <A HREF = "fix_drude_transform.html">fix
drude/transform</A> for a Nose-Hoover
thermostat. The former requires use of the command <A HREF = "comm_modify.html">comm_modify vel
yes</A>. The latter requires two separate integration
fixes like <I>nvt</I> or <I>npt</I>. The correct temperatures of the reduced
degrees of freedom can be calculated using the <A HREF = "compute_temp_drude.html">compute
temp/drude</A>. This requires also to use the
command <I>comm_modify vel yes</I>.
</P>
<P>Short-range damping of the induced dipole interactions can be achieved
using Thole functions through the the <A HREF = "pair_thole.html">pair style
thole</A> in <A HREF = "pair_hybrid.html">pair_style hybrid/overlay</A>
with a Coulomb pair style. It may be useful to use <I>coul/long/cs</I> or
similar from the CORESHELL package if the core and Drude particle come
too close, which can cause numerical issues.
</P>
<HR>
<HR>
<A NAME = "Berendsen"></A>
@ -2650,4 +2793,8 @@ Phys, 79, 926 (1983).
<P><B>(Mitchell and Finchham)</B> Mitchell, Finchham, J Phys Condensed Matter,
5, 1031-1038 (1993).
</P>
<A NAME = "Lamoureux"></A>
<P><B>(Lamoureux and Roux)</B> G. Lamoureux, B. Roux, J. Chem. Phys 119, 3025 (2003)
</P>
</HTML>

View File

@ -34,7 +34,9 @@ This section describes how to perform common tasks using LAMMPS.
6.22 "Calculating a diffusion coefficient"_#howto_22
6.23 "Using chunks to calculate system properties"_#howto_23
6.24 "Setting parameters for the kspace_style pppm/disp command"_#howto_24
6.25 "Adiabatic core/shell model"_#howto_25 :all(b)
6.25 "Polarizable models"_#howto_25
6.26 "Adiabatic core/shell model"_#howto_26
6.27 "Drude induced dipoles"_#howto_27 :all(b)
The example input scripts included in the LAMMPS distribution and
highlighted in "Section_example"_Section_example.html also show how to
@ -2400,14 +2402,89 @@ to specify this command explicitly.
:line
6.25 Adiabatic core/shell model :link(howto_25),h4
6.25 Polarizable models :link(howto_25),h4
In polarizable force fields the charge distributions in molecules and
materials respond to their electrostatic environements. Polarizable
systems can be simulated in LAMMPS using three methods:
the fluctuating charge method, implemented in the "QEQ"_fix_qeq.html
package, :ulb,l
the adiabatic core-shell method, implemented in the
"CORESHELL"_#howto_26 package, :l
the thermalized Drude dipole method, implemented in the
"USER-DRUDE"_#howto_27 package. :l,ule
The fluctuating charge method calculates instantaneous charges on
interacting atoms based on the electronegativity equalization
principle. It is implemented in the "fix qeq"_fix_qeq.html which is
available in several variants. It is a relatively efficient technique
since no additional particles are introduced. This method allows for
charge transfer between molecules or atom groups. However, because the
charges are located at the interaction sites, off-plane components of
polarization cannot be represented in planar molecules or atom groups.
The two other methods share the same basic idea: polarizable atoms are
split into one core atom and one satellite particle (called shell or
Drude particle) attached to it by a harmonic spring. Both atoms bear
a charge and they represent collectively an induced electric dipole.
These techniques are computationally more expensive than the QEq
method because of additional particles and bonds. These two
charge-on-spring methods differ in certain features, with the
core-shell model being normally used for ionic/crystalline materials,
whereas the so-called Drude model is normally used for molecular
systems and fluid states.
The core-shell model is applicable to crystalline materials where the
high symmetry around each site leads to stable trajectories of the
core-shell pairs. However, bonded atoms in molecules can be so close
that a core would interact too strongly or even capture the Drude
particle of a neighbor. The Drude dipole model is relatively more
complex in order to remediate this and other issues. Specifically, the
Drude model includes specific thermostating of the core-Drude pairs
and short-range damping of the induced dipoles.
The three polarization methods can be implemented through a
self-consistent calculation of charges or induced dipoles at each
timestep. In the fluctuating charge scheme this is done by the matrix
inversion method in "fix qeq/point"_fix_qeq.html, but for core-shell
or Drude-dipoles the relaxed-dipoles technique would require an slow
iterative procedure. These self-consistent solutions yield accurate
trajectories since the additional degrees of freedom representing
polarization are massless. An alternative is to attribute a mass to
the additional degrees of freedom and perform time integration using
an extended Lagrangian technique. For the fluctuating charge scheme
this is done by "fix qeq/dynamic"_fix_qeq.html, and for the
charge-on-spring models by the methods outlined in the next two
sections. The assignment of masses to the additional degrees of
freedom can lead to unphysical trajectories if care is not exerted in
choosing the parameters of the poarizable models and the simulation
conditions.
In the core-shell model the vibration of the shells is kept faster
than the ionic vibrations to mimic the fast response of the
polarizable electrons. But in molecular systems thermalizing the
core-Drude pairs at temperatures comparable to the rest of the
simulation leads to several problems (kinetic energy transfer, too
short a timestep, etc.) In order to avoid these problems the relative
motion of the Drude particles with respect to their cores is kept
"cold" so the vibration of the core-Drude pairs is very slow,
approaching the self-consistent regime. In both models the
temperature is regulated using the velocities of the center of mass of
core+shell (or Drude) pairs, but in the Drude model the actual
relative core-Drude particle motion is thermostated separately as
well.
:line
6.26 Adiabatic core/shell model :link(howto_26),h4
The adiabatic core-shell model by "Mitchell and
Finchham"_#MitchellFinchham is a simple method for adding
polarizability to a system. In order to mimic the electron shell of
an ion, a ghost atom is attached to it. This way the ions are split
into a core and a shell where the latter is meant to react to the
electrostatic environment inducing polarizability.
an ion, a satellite particle is attached to it. This way the ions are
split into a core and a shell where the latter is meant to react to
the electrostatic environment inducing polarizability.
Technically, shells are attached to the cores by a spring force f =
k*r where k is a parametrized spring constant and r is the distance
@ -2583,6 +2660,70 @@ CS-Info # header of additional section :pre
8 4
(...) :pre
:line
6.27 Drude induced dipoles :link(howto_27),h4
The thermalized Drude model, similarly to the "core-shell"_#howto_26
model, representes induced dipoles by a pair of charges (the core atom
and the Drude particle) connected by a harmonic spring. The Drude
model has a number of features aimed at its use in molecular systems
("Lamoureux and Roux"_#Lamoureux):
Thermostating of the additional degrees of freedom associated with the
induced dipoles at very low temperature, in terms of the reduced
coordinates of the Drude particles with respect to their cores. This
makes the trajectory close to that of relaxed induced dipoles. :ulb,l
Consistent definition of 1-2 to 1-4 neighbors. A core-Drude particle
pair represents a single (polarizable) atom, so the special screening
factors in a covalent structure should be the same for the core and
the Drude particle. Drude particles have to inherit the 1-2, 1-3, 1-4
special neighbor relations from their respective cores. :l
Stabilization of the interactions between induced dipoles. Drude
dipoles on covalently bonded atoms interact too strongly due to the
short distances, so an atom may capture the Drude particle of a
neighbor, or the induced dipoles within the same molecule may align
too much. To avoid this, damping at short range can be done by Thole
functions (for which there are physical grounds). This Thole damping
is applied to the point charges composing the induced dipole (the
charge of the Drude particle and the opposite charge on the core, not
to the total charge of the core atom). :l,ule
A detailed tutorial covering the usage of Drude induced dipoles in
LAMMPS is "available here"_tutorial_drude.html.
As with the core-shell model, the cores and Drude particles should
appear in the data file as standard atoms. The same holds for the
springs between them, which are described by standard harmonic bonds.
The nature of the atoms (core, Drude particle or non-polarizable) is
specified via the "fix drude"_fix_drude.html command. The special
list of neighbors is automatically refactored to account for the
equivalence of core and Drude particles as regards special 1-2 to 1-4
screening. It may be necessary to use the {extra} keyword of the
"special_bonds"_special_bonds.html command. If using "fix
shake"_fix_shake.html, make sure no Drude particle is in this fix
group.
There are two ways to thermostat the Drude particles at a low
temperature: use either "fix langevin/drude"_fix_langevin_drude.html
for a Langevin thermostat, or "fix
drude/transform"_fix_drude_transform.html for a Nose-Hoover
thermostat. The former requires use of the command "comm_modify vel
yes"_comm_modify.html. The latter requires two separate integration
fixes like {nvt} or {npt}. The correct temperatures of the reduced
degrees of freedom can be calculated using the "compute
temp/drude"_compute_temp_drude.html. This requires also to use the
command {comm_modify vel yes}.
Short-range damping of the induced dipole interactions can be achieved
using Thole functions through the the "pair style
thole"_pair_thole.html in "pair_style hybrid/overlay"_pair_hybrid.html
with a Coulomb pair style. It may be useful to use {coul/long/cs} or
similar from the CORESHELL package if the core and Drude particle come
too close, which can cause numerical issues.
:line
:line
@ -2623,3 +2764,6 @@ Phys, 79, 926 (1983).
:link(MitchellFinchham)
[(Mitchell and Finchham)] Mitchell, Finchham, J Phys Condensed Matter,
5, 1031-1038 (1993).
:link(Lamoureux)
[(Lamoureux and Roux)] G. Lamoureux, B. Roux, J. Chem. Phys 119, 3025 (2003)

View File

@ -121,12 +121,13 @@ on how to build LAMMPS with both kinds of auxiliary libraries.
</P>
<DIV ALIGN=center><TABLE BORDER=1 >
<TR ALIGN="center"><TD >Package</TD><TD > Description</TD><TD > Author(s)</TD><TD > Doc page</TD><TD > Example</TD><TD > Pic/movie</TD><TD > Library</TD></TR>
<TR ALIGN="center"><TD >USER-ATC</TD><TD > atom-to-continuum coupling</TD><TD > Jones & Templeton & Zimmerman (2)</TD><TD > <A HREF = "fix_atc.html">fix atc</A></TD><TD > USER/atc</TD><TD > <A HREF = "http://lammps.sandia.gov/pictures.html#atc">atc</A></TD><TD > lib/atc</TD></TR>
<TR ALIGN="center"><TD >USER-ATC</TD><TD > atom-to-continuum coupling</TD><TD > Jones & Templeton & Zimmerman (1)</TD><TD > <A HREF = "fix_atc.html">fix atc</A></TD><TD > USER/atc</TD><TD > <A HREF = "http://lammps.sandia.gov/pictures.html#atc">atc</A></TD><TD > lib/atc</TD></TR>
<TR ALIGN="center"><TD >USER-AWPMD</TD><TD > wave-packet MD</TD><TD > Ilya Valuev (JIHT)</TD><TD > <A HREF = "pair_awpmd.html">pair_style awpmd/cut</A></TD><TD > USER/awpmd</TD><TD > -</TD><TD > lib/awpmd</TD></TR>
<TR ALIGN="center"><TD >USER-CG-CMM</TD><TD > coarse-graining model</TD><TD > Axel Kohlmeyer (Temple U)</TD><TD > <A HREF = "pair_sdk.html">pair_style lj/sdk</A></TD><TD > USER/cg-cmm</TD><TD > <A HREF = "http://lammps.sandia.gov/pictures.html#cg">cg</A></TD><TD > -</TD></TR>
<TR ALIGN="center"><TD >USER-COLVARS</TD><TD > collective variables</TD><TD > Fiorin & Henin & Kohlmeyer (3)</TD><TD > <A HREF = "fix_colvars.html">fix colvars</A></TD><TD > USER/colvars</TD><TD > <A HREF = "colvars">colvars</A></TD><TD > lib/colvars</TD></TR>
<TR ALIGN="center"><TD >USER-COLVARS</TD><TD > collective variables</TD><TD > Fiorin & Henin & Kohlmeyer (2)</TD><TD > <A HREF = "fix_colvars.html">fix colvars</A></TD><TD > USER/colvars</TD><TD > <A HREF = "colvars">colvars</A></TD><TD > lib/colvars</TD></TR>
<TR ALIGN="center"><TD >USER-CUDA</TD><TD > NVIDIA GPU styles</TD><TD > Christian Trott (U Tech Ilmenau)</TD><TD > <A HREF = "accelerate_cuda.html">Section accelerate</A></TD><TD > USER/cuda</TD><TD > -</TD><TD > lib/cuda</TD></TR>
<TR ALIGN="center"><TD >USER-DIFFRACTION</TD><TD > virutal x-ray and electron diffraction</TD><TD > Shawn Coleman (ARL)</TD><TD ><A HREF = "compute_xrd.html">compute xrd</A></TD><TD > USER/diffraction</TD><TD > -</TD><TD > -</TD></TR>
<TR ALIGN="center"><TD >USER-DRUDE</TD><TD > Drude oscillators</TD><TD > Dequidt & Devemy & Padua (3)</TD><TD > <A HREF = "tutorial_drude.html">tutorial</A></TD><TD > USER/drude</TD><TD > -</TD><TD > -</TD></TR>
<TR ALIGN="center"><TD >USER-EFF</TD><TD > electron force field</TD><TD > Andres Jaramillo-Botero (Caltech)</TD><TD > <A HREF = "pair_eff.html">pair_style eff/cut</A></TD><TD > USER/eff</TD><TD > <A HREF = "http://lammps.sandia.gov/movies.html#eff">eff</A></TD><TD > -</TD></TR>
<TR ALIGN="center"><TD >USER-FEP</TD><TD > free energy perturbation</TD><TD > Agilio Padua (U Blaise Pascal Clermont-Ferrand)</TD><TD > <A HREF = "compute_fep.html">compute fep</A></TD><TD > USER/fep</TD><TD > -</TD><TD > -</TD></TR>
<TR ALIGN="center"><TD >USER-INTEL</TD><TD > Vectorized CPU and Intel(R) coprocessor styles</TD><TD > W. Michael Brown (Intel)</TD><TD > <A HREF = "accelerate_intel.html">Section accelerate</A></TD><TD > examples/intel</TD><TD > -</TD><TD > -</TD></TR>
@ -164,10 +165,14 @@ library from.
<P>(2) The ATC package was created by Reese Jones, Jeremy Templeton, and
Jon Zimmerman (Sandia).
</P>
<P>(3) The COLVARS package was created by Axel Kohlmeyer (Temple U) using
<P>(2) The COLVARS package was created by Axel Kohlmeyer (Temple U) using
the colvars module library written by Giacomo Fiorin (Temple U) and
Jerome Henin (LISM, Marseille, France).
</P>
<P>(3) The DRUDE package was created by Alain Dequidt (U Blaise Pascal
Clermont-Ferrand) and co-authors Julien Devemy (CNRS) and Agilio Padua
(U Blaise Pascal).
</P>
<P>The "Doc page" column links to either a portion of the
<A HREF = "Section_howto.html">Section_howto</A> of the manual, or an input script
command implemented as part of the package, or to additional
@ -356,6 +361,29 @@ Arkansas. Contact him directly if you have questions.
</P>
<HR>
<H4>USER-DRUDE package
</H4>
<P>This package implements methods for simulating polarizable systems
in LAMMPS using thermalized Drude oscillators.
</P>
<P>See these doc pages and their related commands to get started:
</P>
<P><A HREF = "tutorial_drude.html">Drude tutorial</A>
<A HREF = "fix_drude.html">fix drude</A>
<A HREF = "compute_temp_drude.html">compute temp/drude</A>
<A HREF = "fix_langevin_drude.html">fix langevin/drude</A>
<A HREF = "fix_drude_transform.html">fix drude/transform/...</A>
<A HREF = "pair_thole.html">pair thole</A>
</P>
<P>There are auxiliary tools for using this package in tools/drude.
</P>
<P>The person who created this package is Alain Dequidt at Universite
Blaise Pascal Clermont-Ferrand (alain.dequidt at univ-bpclermont.fr)
Contact him directly if you have questions. Co-authors: Julien Devemy,
Agilio Padua.
</P>
<HR>
<H4>USER-EFF package
</H4>
<P>This package contains a LAMMPS implementation of the electron Force

View File

@ -113,12 +113,13 @@ on how to build LAMMPS with both kinds of auxiliary libraries.
The current list of user-contributed packages is as follows:
Package, Description, Author(s), Doc page, Example, Pic/movie, Library
USER-ATC, atom-to-continuum coupling, Jones & Templeton & Zimmerman (2), "fix atc"_fix_atc.html, USER/atc, "atc"_atc, lib/atc
USER-ATC, atom-to-continuum coupling, Jones & Templeton & Zimmerman (1), "fix atc"_fix_atc.html, USER/atc, "atc"_atc, lib/atc
USER-AWPMD, wave-packet MD, Ilya Valuev (JIHT), "pair_style awpmd/cut"_pair_awpmd.html, USER/awpmd, -, lib/awpmd
USER-CG-CMM, coarse-graining model, Axel Kohlmeyer (Temple U), "pair_style lj/sdk"_pair_sdk.html, USER/cg-cmm, "cg"_cg, -
USER-COLVARS, collective variables, Fiorin & Henin & Kohlmeyer (3), "fix colvars"_fix_colvars.html, USER/colvars, "colvars"_colvars, lib/colvars
USER-COLVARS, collective variables, Fiorin & Henin & Kohlmeyer (2), "fix colvars"_fix_colvars.html, USER/colvars, "colvars"_colvars, lib/colvars
USER-CUDA, NVIDIA GPU styles, Christian Trott (U Tech Ilmenau), "Section accelerate"_accelerate_cuda.html, USER/cuda, -, lib/cuda
USER-DIFFRACTION, virutal x-ray and electron diffraction, Shawn Coleman (ARL),"compute xrd"_compute_xrd.html, USER/diffraction, -, -
USER-DRUDE, Drude oscillators, Dequidt & Devemy & Padua (3), "tutorial"_tutorial_drude.html, USER/drude, -, -
USER-EFF, electron force field, Andres Jaramillo-Botero (Caltech), "pair_style eff/cut"_pair_eff.html, USER/eff, "eff"_eff, -
USER-FEP, free energy perturbation, Agilio Padua (U Blaise Pascal Clermont-Ferrand), "compute fep"_compute_fep.html, USER/fep, -, -
USER-INTEL, Vectorized CPU and Intel(R) coprocessor styles, W. Michael Brown (Intel), "Section accelerate"_accelerate_intel.html, examples/intel, -, -
@ -151,10 +152,14 @@ library from.
(2) The ATC package was created by Reese Jones, Jeremy Templeton, and
Jon Zimmerman (Sandia).
(3) The COLVARS package was created by Axel Kohlmeyer (Temple U) using
(2) The COLVARS package was created by Axel Kohlmeyer (Temple U) using
the colvars module library written by Giacomo Fiorin (Temple U) and
Jerome Henin (LISM, Marseille, France).
(3) The DRUDE package was created by Alain Dequidt (U Blaise Pascal
Clermont-Ferrand) and co-authors Julien Devemy (CNRS) and Agilio Padua
(U Blaise Pascal).
The "Doc page" column links to either a portion of the
"Section_howto"_Section_howto.html of the manual, or an input script
command implemented as part of the package, or to additional
@ -343,6 +348,29 @@ Arkansas. Contact him directly if you have questions.
:line
USER-DRUDE package :h4
This package implements methods for simulating polarizable systems
in LAMMPS using thermalized Drude oscillators.
See these doc pages and their related commands to get started:
"Drude tutorial"_tutorial_drude.html
"fix drude"_fix_drude.html
"compute temp/drude"_compute_temp_drude.html
"fix langevin/drude"_fix_langevin_drude.html
"fix drude/transform/..."_fix_drude_transform.html
"pair thole"_pair_thole.html
There are auxiliary tools for using this package in tools/drude.
The person who created this package is Alain Dequidt at Universite
Blaise Pascal Clermont-Ferrand (alain.dequidt at univ-bpclermont.fr)
Contact him directly if you have questions. Co-authors: Julien Devemy,
Agilio Padua.
:line
USER-EFF package :h4
This package contains a LAMMPS implementation of the electron Force