correct and update the Python Howto
This commit is contained in:
@ -3,16 +3,21 @@ LAMMPS Python Tutorial
|
||||
|
||||
.. contents::
|
||||
|
||||
-----
|
||||
|
||||
Overview
|
||||
--------
|
||||
|
||||
:py:class:`lammps <lammps.lammps>` is a Python wrapper class for the
|
||||
The :py:class:`lammps <lammps.lammps>` Python module is a wrapper class for the
|
||||
LAMMPS :ref:`C language library interface API <lammps_c_api>` which is written using
|
||||
`Python ctypes <ctypes_>`_.
|
||||
`Python ctypes <ctypes_>`_. The design choice of this wrapper class is to
|
||||
follow the C language API closely with only small changes related to Python
|
||||
specific requirements and to better accommodate object oriented programming.
|
||||
|
||||
In addition to the flat `ctypes <ctypes_>`_ interface, this class exposes a
|
||||
discoverable API that doesn't require knowledge of the underlying C++
|
||||
code implementation.
|
||||
In addition to this flat `ctypes <ctypes_>`_ interface, the
|
||||
:py:class:`lammps <lammps.lammps>` wrapper class exposes a discoverable
|
||||
API that doesn't require as much knowledge of the underlying C language
|
||||
library interface or LAMMPS C++ code implementation.
|
||||
|
||||
Finally, the API exposes some additional features for `IPython integration
|
||||
<ipython_>`_ into `Jupyter notebooks <jupyter_>`_, e.g. for embedded
|
||||
@ -22,43 +27,47 @@ visualization output from :doc:`dump style image <dump_image>`.
|
||||
.. _ipython: https://ipython.org/
|
||||
.. _jupyter: https://jupyter.org/
|
||||
|
||||
-----
|
||||
|
||||
Quick Start
|
||||
-----------
|
||||
|
||||
System-wide Installation
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
System-wide or User Installation
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
|
||||
Step 1: Building LAMMPS as a shared library
|
||||
"""""""""""""""""""""""""""""""""""""""""""
|
||||
|
||||
To use LAMMPS inside of Python it has to be compiled as shared
|
||||
library. This library is then loaded by the Python interface. In this
|
||||
example we enable the MOLECULE package and compile LAMMPS with PNG, JPEG
|
||||
and FFMPEG output support enabled.
|
||||
To use LAMMPS inside of Python it has to be compiled as shared library.
|
||||
This library is then loaded by the Python interface. In this example we
|
||||
enable the :ref:`MOLECULE package <PKG-MOLECULE>` and compile LAMMPS
|
||||
with :ref:`PNG, JPEG and FFMPEG output support <graphics>` enabled.
|
||||
|
||||
Step 1a: For the CMake based build system, the steps are:
|
||||
.. tabs::
|
||||
|
||||
.. code-block:: bash
|
||||
.. tab:: CMake build
|
||||
|
||||
mkdir $LAMMPS_DIR/build-shared
|
||||
cd $LAMMPS_DIR/build-shared
|
||||
.. code-block:: bash
|
||||
|
||||
# MPI, PNG, Jpeg, FFMPEG are auto-detected
|
||||
cmake ../cmake -DPKG_MOLECULE=yes -DPKG_PYTHON=on -DBUILD_SHARED_LIBS=yes
|
||||
make
|
||||
mkdir $LAMMPS_DIR/build-shared
|
||||
cd $LAMMPS_DIR/build-shared
|
||||
|
||||
Step 1b: For the legacy, make based build system, the steps are:
|
||||
# MPI, PNG, Jpeg, FFMPEG are auto-detected
|
||||
cmake ../cmake -DPKG_MOLECULE=yes -DPKG_PYTHON=on -DBUILD_SHARED_LIBS=yes
|
||||
make
|
||||
|
||||
.. code-block:: bash
|
||||
.. tab:: Traditional make
|
||||
|
||||
cd $LAMMPS_DIR/src
|
||||
.. code-block:: bash
|
||||
|
||||
# add packages if necessary
|
||||
make yes-MOLECULE
|
||||
make yes-PYTHON
|
||||
cd $LAMMPS_DIR/src
|
||||
|
||||
# compile shared library using Makefile
|
||||
make mpi mode=shlib LMP_INC="-DLAMMPS_PNG -DLAMMPS_JPEG -DLAMMPS_FFMPEG" JPG_LIB="-lpng -ljpeg"
|
||||
# add packages if necessary
|
||||
make yes-MOLECULE
|
||||
make yes-PYTHON
|
||||
|
||||
# compile shared library using Makefile
|
||||
make mpi mode=shlib LMP_INC="-DLAMMPS_PNG -DLAMMPS_JPEG -DLAMMPS_FFMPEG" JPG_LIB="-lpng -ljpeg"
|
||||
|
||||
Step 2: Installing the LAMMPS Python package
|
||||
""""""""""""""""""""""""""""""""""""""""""""
|
||||
@ -69,9 +78,16 @@ Next install the LAMMPS Python package into your current Python installation wit
|
||||
|
||||
make install-python
|
||||
|
||||
This will create a so-called `"wheel"
|
||||
<https://packaging.python.org/en/latest/discussions/package-formats/#what-is-a-wheel>`_
|
||||
and then install the LAMMPS Python module from that "wheel" into either
|
||||
into a system folder (provided the command is executed with root
|
||||
privileges) or into your personal Python module folder.
|
||||
|
||||
.. note::
|
||||
|
||||
Recompiling the shared library requires re-installing the Python package
|
||||
Recompiling the shared library requires re-installing the Python
|
||||
package.
|
||||
|
||||
Installation inside of a virtual environment
|
||||
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
|
||||
@ -117,13 +133,15 @@ to the location in the virtual environment with:
|
||||
(testing) make install-python
|
||||
|
||||
# install other useful packages
|
||||
(testing) pip install matplotlib jupyter mpi4py
|
||||
(testing) pip install matplotlib jupyter mpi4py pandas
|
||||
|
||||
...
|
||||
|
||||
# return to original shell
|
||||
(testing) deactivate
|
||||
|
||||
-------
|
||||
|
||||
Creating a new lammps instance
|
||||
------------------------------
|
||||
|
||||
@ -136,6 +154,11 @@ module. By using the default constructor, a new :py:class:`lammps
|
||||
from lammps import lammps
|
||||
L = lammps()
|
||||
|
||||
See the :doc:`LAMMPS Python documentation <Python_create>` for how to customize
|
||||
the instance creation with optional arguments.
|
||||
|
||||
-----
|
||||
|
||||
Commands
|
||||
--------
|
||||
|
||||
@ -187,105 +210,47 @@ them automatically to a final command string.
|
||||
When running in IPython you can use Tab-completion after ``L.cmd.`` to see
|
||||
all available LAMMPS commands.
|
||||
|
||||
System state
|
||||
------------
|
||||
|
||||
In addition to dispatching commands directly through the PyLammps object, it
|
||||
also provides several properties which allow you to query the system state.
|
||||
|
||||
L.system
|
||||
Is a dictionary describing the system such as the bounding box or number of atoms
|
||||
|
||||
L.system.xlo, L.system.xhi
|
||||
bounding box limits along x-axis
|
||||
|
||||
L.system.ylo, L.system.yhi
|
||||
bounding box limits along y-axis
|
||||
|
||||
L.system.zlo, L.system.zhi
|
||||
bounding box limits along z-axis
|
||||
|
||||
L.communication
|
||||
configuration of communication subsystem, such as the number of threads or processors
|
||||
|
||||
L.communication.nthreads
|
||||
number of threads used by each LAMMPS process
|
||||
|
||||
L.communication.nprocs
|
||||
number of MPI processes used by LAMMPS
|
||||
|
||||
L.fixes
|
||||
List of fixes in the current system
|
||||
|
||||
L.computes
|
||||
List of active computes in the current system
|
||||
|
||||
L.dump
|
||||
List of active dumps in the current system
|
||||
|
||||
L.groups
|
||||
List of groups present in the current system
|
||||
|
||||
Working with LAMMPS variables
|
||||
-----------------------------
|
||||
|
||||
LAMMPS variables can be both defined and accessed via the PyLammps interface.
|
||||
|
||||
To define a variable you can use the :doc:`variable <variable>` command:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
L.variable("a index 2")
|
||||
|
||||
A dictionary of all variables is returned by L.variables
|
||||
|
||||
you can access an individual variable by retrieving a variable object from the
|
||||
``L.variables`` dictionary by name
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
a = L.variables['a']
|
||||
|
||||
The variable value can then be easily read and written by accessing the value
|
||||
property of this object.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
print(a.value)
|
||||
a.value = 4
|
||||
|
||||
Retrieving the value of an arbitrary LAMMPS expressions
|
||||
-------------------------------------------------------
|
||||
|
||||
LAMMPS expressions can be immediately evaluated by using the eval method. The
|
||||
passed string parameter can be any expression containing global thermo values,
|
||||
variables, compute or fix data.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
result = L.get_thermo("ke") # kinetic energy
|
||||
result = L.get_thermo("pe") # potential energy
|
||||
|
||||
result = L.extract_variable("t") / 2.0
|
||||
-----
|
||||
|
||||
Accessing atom data
|
||||
-------------------
|
||||
|
||||
All atoms in the current simulation can be accessed by using the L.atoms list.
|
||||
Each element of this list is an object which exposes its properties (id, type,
|
||||
position, velocity, force, etc.).
|
||||
All per-atom properties that are part of the :doc:`atom style
|
||||
<atom_style>` in the current simulation can be accessed using the
|
||||
:py:meth:`extract_atoms() <lammps.lammps.extract_atoms()>` method. This
|
||||
can be retrieved as ctypes objects or as NumPy arrays through the
|
||||
lammps.numpy module. Those represent the *local* atoms of the
|
||||
individual sub-domain for the current MPI process and may contain
|
||||
information for the local ghost atoms or not depending on the property.
|
||||
Both can be accessed as lists, but for the ctypes list object the size
|
||||
is not known and hast to be retrieved first to avoid out-of-bounds
|
||||
accesses.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
# access first atom
|
||||
atom_id = L.numpy.extract_atom("id")
|
||||
nlocal = L.extract_setting("nlocal")
|
||||
nall = L.extract_setting("nall")
|
||||
print("Number of local atoms ", nlocal, " Number of local and ghost atoms ", nall);
|
||||
|
||||
# access via ctypes directly
|
||||
atom_id = L.extract_atom("id")
|
||||
print("Atom IDs", atom_id[0:nlocal])
|
||||
|
||||
# access through numpy wrapper
|
||||
atom_type = L.numpy.extract_atom("type")
|
||||
print("Atom types", atom_type)
|
||||
|
||||
x = L.numpy.extract_atom("x")
|
||||
v = L.numpy.extract_atom("v")
|
||||
f = L.numpy.extract_atom("f")
|
||||
print("positions array shape", x.shape)
|
||||
print("velocity array shape", v.shape)
|
||||
# turn on communicating velocities to ghost atoms
|
||||
L.cmd.comm_modify("vel", "yes")
|
||||
v = L.numpy.extract_atom('v')
|
||||
print("velocity array shape", v.shape)
|
||||
|
||||
Some properties can also be used to set:
|
||||
Some properties can also be set from Python since internally the
|
||||
data of the C++ code is accessed directly:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
@ -295,65 +260,53 @@ Some properties can also be used to set:
|
||||
# set position in 3D simulation
|
||||
x[0] = (1.0, 0.0, 1.)
|
||||
|
||||
Evaluating thermo data
|
||||
----------------------
|
||||
------
|
||||
|
||||
Each simulation run usually produces thermo output based on system state,
|
||||
computes, fixes or variables. The trajectories of these values can be queried
|
||||
after a run via the L.runs list. This list contains a growing list of run data.
|
||||
The first element is the output of the first run, the second element that of
|
||||
the second run.
|
||||
Retrieving the values of thermodynamic data and variables
|
||||
---------------------------------------------------------
|
||||
|
||||
To access thermodynamic data from the last completed timestep,
|
||||
you can use the :py:meth:`get_thermo() <lammps.lammps.get_thermo>`
|
||||
method, and to extract the value of (compatible) variables, you
|
||||
can use the :py:meth:`extract_variable() <lammps.lammps.extract_variable>`
|
||||
method.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
L.run(1000)
|
||||
L.runs[0] # data of first 1000 time steps
|
||||
result = L.get_thermo("ke") # kinetic energy
|
||||
result = L.get_thermo("pe") # potential energy
|
||||
|
||||
L.run(1000)
|
||||
L.runs[1] # data of second 1000 time steps
|
||||
result = L.extract_variable("t") / 2.0
|
||||
|
||||
Each run contains a dictionary of all trajectories. Each trajectory is
|
||||
accessible through its thermo name:
|
||||
Error handling
|
||||
--------------
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
L.runs[0].thermo.Step # list of time steps in first run
|
||||
L.runs[0].thermo.Ke # list of kinetic energy values in first run
|
||||
|
||||
Together with matplotlib plotting data out of LAMMPS becomes simple:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
import matplotlib.plot as plt
|
||||
steps = L.runs[0].thermo.Step
|
||||
ke = L.runs[0].thermo.Ke
|
||||
plt.plot(steps, ke)
|
||||
|
||||
Error handling with PyLammps
|
||||
----------------------------
|
||||
|
||||
Using C++ exceptions in LAMMPS for errors allows capturing them on the
|
||||
C++ side and rethrowing them on the Python side. This way you can handle
|
||||
LAMMPS errors through the Python exception handling mechanism.
|
||||
We are using C++ exceptions in LAMMPS for errors and the C language
|
||||
library interface captures and records them. This allows checking
|
||||
whether errors have happened in Python during a call into LAMMPS and
|
||||
then re-throw the error as a Python exception. This way you can handle
|
||||
LAMMPS errors in the conventional way through the Python exception
|
||||
handling mechanism.
|
||||
|
||||
.. warning::
|
||||
|
||||
Capturing a LAMMPS exception in Python can still mean that the
|
||||
current LAMMPS process is in an illegal state and must be
|
||||
terminated. It is advised to save your data and terminate the Python
|
||||
terminated. It is advised to save your data and terminate the Python
|
||||
instance as quickly as possible.
|
||||
|
||||
Using LAMMPS in IPython notebooks and Jupyter
|
||||
---------------------------------------------
|
||||
|
||||
If the LAMMPS Python package is installed for the same Python interpreter as
|
||||
IPython, you can use LAMMPS directly inside of an IPython notebook inside of
|
||||
Jupyter. Jupyter is a powerful integrated development environment (IDE) for
|
||||
many dynamic languages like Python, Julia and others, which operates inside of
|
||||
any web browser. Besides auto-completion and syntax highlighting it allows you
|
||||
to create formatted documents using Markup, mathematical formulas, graphics and
|
||||
animations intermixed with executable Python code. It is a great format for
|
||||
tutorials and showcasing your latest research.
|
||||
If the LAMMPS Python package is installed for the same Python
|
||||
interpreter as IPython, you can use LAMMPS directly inside of an IPython
|
||||
notebook inside of Jupyter. Jupyter is a powerful integrated development
|
||||
environment (IDE) for many dynamic languages like Python, Julia and
|
||||
others, which operates inside of any web browser. Besides
|
||||
auto-completion and syntax highlighting it allows you to create
|
||||
formatted documents using Markup, mathematical formulas, graphics and
|
||||
animations intermixed with executable Python code. It is a great format
|
||||
for tutorials and showcasing your latest research.
|
||||
|
||||
To launch an instance of Jupyter simply run the following command inside your
|
||||
Python environment (this assumes you followed the Quick Start instructions):
|
||||
@ -365,7 +318,7 @@ Python environment (this assumes you followed the Quick Start instructions):
|
||||
Interactive Python Examples
|
||||
---------------------------
|
||||
|
||||
Examples of IPython notebooks can be found in the ``python/examples/juypter``
|
||||
Examples of IPython notebooks can be found in the ``python/examples/ipython``
|
||||
subdirectory. To open these notebooks launch ``jupyter notebook`` inside this
|
||||
directory and navigate to one of them. If you compiled and installed
|
||||
a LAMMPS shared library with PNG, JPEG and FFMPEG support
|
||||
@ -391,7 +344,7 @@ setting its position from Python, which changes the dihedral angle.
|
||||
pe = []
|
||||
for p in pos:
|
||||
x[3] = p
|
||||
L.cmd.run(0)
|
||||
L.cmd.run(0, "post", "no")
|
||||
pe.append(L.get_thermo("pe"))
|
||||
|
||||
By evaluating the potential energy for each position we can verify that
|
||||
@ -429,7 +382,7 @@ It is then disordered by moving each atom by a random delta.
|
||||
x[i][0] += dx
|
||||
x[i][1] += dy
|
||||
|
||||
L.cmd.run(0)
|
||||
L.cmd.run(0, "post", "no")
|
||||
|
||||
.. image:: JPG/pylammps_mc_disordered.jpg
|
||||
:align: center
|
||||
|
||||
Reference in New Issue
Block a user