Add files via upload

This commit is contained in:
Gabriel Alkuino
2024-11-12 11:13:43 -05:00
committed by GitHub
parent 3acb0243a7
commit 92d4bec1a3
2 changed files with 555 additions and 0 deletions

View File

@ -0,0 +1,495 @@
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
LAMMPS development team: developers@lammps.org
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Gabriel Alkuino (Syracuse University) - gsalkuin@syr.edu
Modified from fix_efield
------------------------------------------------------------------------- */
#include "fix_efield_lepton.h"
#include "atom.h"
#include "comm.h"
#include "domain.h"
#include "error.h"
#include "force.h"
#include "input.h"
#include "modify.h"
#include "region.h"
#include "respa.h"
#include "update.h"
#include <array>
#include "Lepton.h"
#include "lepton_utils.h"
using namespace LAMMPS_NS;
using namespace FixConst;
#define EPSILON 1.0e-10
/* ---------------------------------------------------------------------- */
FixEfieldLepton::FixEfieldLepton(LAMMPS *lmp, int narg, char **arg) :
Fix(lmp, narg, arg), idregion(nullptr), region(nullptr)
{
if (domain->xperiodic || domain->yperiodic || domain->zperiodic) {
error->warning(FLERR, "Fix {} uses unwrapped coordinates", style);
}
if (narg < 4) utils::missing_cmd_args(FLERR, std::string("fix ") + style, error);
scalar_flag = 1;
global_freq = 1;
extscalar = 1;
energy_global_flag = 1;
virial_global_flag = virial_peratom_flag = 1;
respa_level_support = 1;
ilevel_respa = 0;
// optional args
int iarg = 4;
while (iarg < narg) {
if (strcmp(arg[iarg], "region") == 0) {
if (iarg + 2 > narg)
utils::missing_cmd_args(FLERR, std::string("fix ") + style + " region", error);
region = domain->get_region_by_id(arg[iarg + 1]);
if (!region) error->all(FLERR, "Region {} for fix {} does not exist", arg[iarg + 1], style);
idregion = utils::strdup(arg[iarg + 1]);
iarg += 2;
} else if (strcmp(arg[iarg], "step") == 0) {
if (iarg + 2 > narg)
utils::missing_cmd_args(FLERR, std::string("fix ") + style + "step", error);
h = utils::numeric(FLERR, arg[iarg+1], false, lmp);
iarg += 2;
} else {
error->all(FLERR, "Unknown keyword for fix {} command: {}", style, arg[iarg]);
}
}
// check validity of Lepton expression
// remove whitespace and quotes from expression string and then
// check if the expression can be parsed without error
expr = LeptonUtils::condense(arg[3]);
try {
auto parsed = Lepton::Parser::parse(LeptonUtils::substitute(expr, lmp));
auto phi = parsed.createCompiledExpression();
} catch (std::exception &e) {
error->all(FLERR, e.what());
}
force_flag = 0;
fsum[0] = fsum[1] = fsum[2] = fsum[3] = 0.0;
}
/* ---------------------------------------------------------------------- */
FixEfieldLepton::~FixEfieldLepton()
{
delete[] idregion;
}
/* ---------------------------------------------------------------------- */
int FixEfieldLepton::setmask()
{
int mask = 0;
mask |= POST_FORCE;
mask |= POST_FORCE_RESPA;
mask |= MIN_POST_FORCE;
return mask;
}
/* ---------------------------------------------------------------------- */
void FixEfieldLepton::init()
{
if (!atom->q_flag && !atom->mu_flag)
error->all(FLERR, "Fix {} requires atom attribute q or mu", style);
if (atom->mu_flag && !atom->torque_flag)
error->all(FLERR, "Dipoles must be finite-sized to rotate", style);
// set index and check validity of region
if (idregion) {
region = domain->get_region_by_id(idregion);
if (!region) error->all(FLERR, "Region {} for fix {} does not exist", idregion, style);
}
if (utils::strmatch(update->integrate_style, "^respa")) {
ilevel_respa = (dynamic_cast<Respa *>(update->integrate))->nlevels - 1;
if (respa_level >= 0) ilevel_respa = MIN(respa_level, ilevel_respa);
}
// unit conversion factors and restrictions (see issue #1377)
char *unit_style = update->unit_style;
qe2f = force->qe2f;
mue2e = qe2f;
if (strcmp(unit_style, "electron") == 0 || strcmp(unit_style, "micro") == 0 || strcmp(unit_style, "nano") == 0) {
error->all(FLERR, "Fix {} does not support {} units", style, unit_style);
}
}
/* ---------------------------------------------------------------------- */
void FixEfieldLepton::setup(int vflag)
{
if (utils::strmatch(update->integrate_style, "^respa")) {
auto respa = dynamic_cast<Respa *>(update->integrate);
respa->copy_flevel_f(ilevel_respa);
post_force_respa(vflag, ilevel_respa, 0);
respa->copy_f_flevel(ilevel_respa);
} else {
post_force(vflag);
}
}
/* ---------------------------------------------------------------------- */
void FixEfieldLepton::min_setup(int vflag)
{
post_force(vflag);
}
/* ----------------------------------------------------------------------
Apply F = qE,
F = (mu . D) E,
T = mu x E
------------------------------------------------------------------------- */
void FixEfieldLepton::post_force(int vflag)
{
double **f = atom->f;
double **x = atom->x;
int *mask = atom->mask;
imageint *image = atom->image;
int nlocal = atom->nlocal;
auto parsed = Lepton::Parser::parse(LeptonUtils::substitute(expr, lmp)).optimize();
Lepton::CompiledExpression phi;
auto dphi_x = parsed.differentiate("x").createCompiledExpression();
auto dphi_y = parsed.differentiate("y").createCompiledExpression();
auto dphi_z = parsed.differentiate("z").createCompiledExpression();
std::vector<Lepton::CompiledExpression*> dphis = {&dphi_x, &dphi_y, &dphi_z};
// check if reference to x, y, z exist
const std::array<std::string, 3> variableNames = {"x", "y", "z"};
std::array<bool, 3> phi_has_ref = {true, true, true};
if (atom->q_flag){
phi = parsed.createCompiledExpression();
for (size_t i = 0; i < 3; i++) {
try {
phi.getVariableReference(variableNames[i]);
}
catch (Lepton::Exception &) {
phi_has_ref[i] = false;
}
}
}
std::vector<std::array<bool, 3>> dphis_has_ref;
bool e_uniform = true;
for (auto &dphi : dphis) {
dphis_has_ref.push_back({false, false, false});
for (size_t i = 0; i < 3; i++) {
try {
(*dphi).getVariableReference(variableNames[i]);
dphis_has_ref.back()[i] = true;
e_uniform = false;
}
catch (Lepton::Exception &) {
// do nothing
}
}
}
if (!e_uniform && atom->mu_flag && h < 0) {
error->all(FLERR, "Fix {} requires keyword `step' for dipoles in a non-uniform electric field", style);
}
// virial setup
v_init(vflag);
// update region if necessary
if (region) region->prematch();
// fsum[0] = "potential energy" for added force
// fsum[123] = extra force added to atoms
fsum[0] = fsum[1] = fsum[2] = fsum[3] = 0.0;
force_flag = 0;
double ex, ey, ez;
double fx, fy, fz;
double v[6], unwrap[3];
double xf, yf, zf, xb, yb, zb;
double exf, eyf, ezf, exb, eyb, ezb;
double tx, ty, tz;
double mu_norm, h_mu;
if (atom->q_flag && atom->mu_flag) {
double *q = atom->q;
double **mu = atom->mu;
double **t = atom->torque;
for (int i = 0; i < nlocal; i++) {
if (mask[i] & groupbit) {
if (region && !region->match(x[i][0], x[i][1], x[i][2])) continue;
domain->unmap(x[i], image[i], unwrap);
// evaluate e-field, used by q and mu
for (size_t j = 0; j < 3; j++) {
if (dphis_has_ref[j][0]) (*dphis[j]).getVariableReference("x") = unwrap[0];
if (dphis_has_ref[j][1]) (*dphis[j]).getVariableReference("y") = unwrap[1];
if (dphis_has_ref[j][2]) (*dphis[j]).getVariableReference("z") = unwrap[2];
}
ex = -dphi_x.evaluate();
ey = -dphi_y.evaluate();
ez = -dphi_z.evaluate();
if (phi_has_ref[0]) phi.getVariableReference("x") = unwrap[0];
if (phi_has_ref[1]) phi.getVariableReference("y") = unwrap[1];
if (phi_has_ref[2]) phi.getVariableReference("z") = unwrap[2];
// charges
// force = q E
fx = qe2f * q[i] * ex;
fy = qe2f * q[i] * ey;
fz = qe2f * q[i] * ez;
// potential energy = q phi
fsum[0] += qe2f * q[i] * phi.evaluate();
// dipoles
mu_norm = sqrt(mu[i][0]*mu[i][0] + mu[i][1]*mu[i][1] + mu[i][2]*mu[i][2]);
if (mu_norm > EPSILON) {
// torque = mu cross E
t[i][0] += mue2e * (ez * mu[i][1] - ey * mu[i][2]);
t[i][1] += mue2e * (ex * mu[i][2] - ez * mu[i][0]);
t[i][2] += mue2e * (ey * mu[i][0] - ex * mu[i][1]);
// potential energy = - mu dot E
fsum[0] -= mue2e * (mu[i][0] * ex + mu[i][1] * ey + mu[i][2] * ez);
// force = (mu dot D) E
// using central difference method
h_mu = h / mu_norm;
xf = unwrap[0] + h_mu * mu[i][0];
yf = unwrap[1] + h_mu * mu[i][1];
zf = unwrap[2] + h_mu * mu[i][2];
for (size_t j = 0; j < 3; j++) {
if (dphis_has_ref[j][0]) (*dphis[j]).getVariableReference("x") = xf;
if (dphis_has_ref[j][1]) (*dphis[j]).getVariableReference("y") = yf;
if (dphis_has_ref[j][2]) (*dphis[j]).getVariableReference("z") = zf;
}
exf = -dphi_x.evaluate();
eyf = -dphi_y.evaluate();
ezf = -dphi_z.evaluate();
xb = unwrap[0] - h_mu * mu[i][0];
yb = unwrap[1] - h_mu * mu[i][1];
zb = unwrap[2] - h_mu * mu[i][2];
for (size_t j = 0; j < 3; j++) {
if (dphis_has_ref[j][0]) (*dphis[j]).getVariableReference("x") = xb;
if (dphis_has_ref[j][1]) (*dphis[j]).getVariableReference("y") = yb;
if (dphis_has_ref[j][2]) (*dphis[j]).getVariableReference("z") = zb;
}
exb = -dphi_x.evaluate();
eyb = -dphi_y.evaluate();
ezb = -dphi_z.evaluate();
fx += qe2f * (exf - exb) / 2.0 / h_mu;
fy += qe2f * (eyf - eyb) / 2.0 / h_mu;
fz += qe2f * (ezf - ezb) / 2.0 / h_mu;
}
f[i][0] += fx;
f[i][1] += fy;
f[i][2] += fz;
fsum[1] += fx;
fsum[2] += fy;
fsum[3] += fz;
if (evflag) {
v[0] = fx * unwrap[0];
v[1] = fy * unwrap[1];
v[2] = fz * unwrap[2];
v[3] = fx * unwrap[1];
v[4] = fx * unwrap[2];
v[5] = fy * unwrap[2];
v_tally(i, v);
}
}
}
} else if (atom->q_flag && !atom->mu_flag) {
double *q = atom->q;
for (int i = 0; i < nlocal; i++) {
if (mask[i] & groupbit) {
if (region && !region->match(x[i][0], x[i][1], x[i][2])) continue;
domain->unmap(x[i], image[i], unwrap);
for (size_t j = 0; j < 3; j++) {
if (dphis_has_ref[j][0]) (*dphis[j]).getVariableReference("x") = unwrap[0];
if (dphis_has_ref[j][1]) (*dphis[j]).getVariableReference("y") = unwrap[1];
if (dphis_has_ref[j][2]) (*dphis[j]).getVariableReference("z") = unwrap[2];
}
ex = -dphi_x.evaluate();
ey = -dphi_y.evaluate();
ez = -dphi_z.evaluate();
if (phi_has_ref[0]) phi.getVariableReference("x") = unwrap[0];
if (phi_has_ref[1]) phi.getVariableReference("y") = unwrap[1];
if (phi_has_ref[2]) phi.getVariableReference("z") = unwrap[2];
// force = q E
fx = qe2f * q[i] * ex;
fy = qe2f * q[i] * ey;
fz = qe2f * q[i] * ez;
// potential energy = q phi
fsum[0] += qe2f * q[i] * phi.evaluate();
f[i][0] += fx;
f[i][1] += fy;
f[i][2] += fz;
fsum[1] += fx;
fsum[2] += fy;
fsum[3] += fz;
if (evflag) {
v[0] = fx * unwrap[0];
v[1] = fy * unwrap[1];
v[2] = fz * unwrap[2];
v[3] = fx * unwrap[1];
v[4] = fx * unwrap[2];
v[5] = fy * unwrap[2];
v_tally(i, v);
}
}
}
} else if (!atom->q_flag && atom->mu_flag) {
double **mu = atom->mu;
double **t = atom->torque;
for (int i = 0; i < nlocal; i++) {
if (mask[i] & groupbit) {
if (region && !region->match(x[i][0], x[i][1], x[i][2])) continue;
mu_norm = sqrt(mu[i][0]*mu[i][0] + mu[i][1]*mu[i][1] + mu[i][2]*mu[i][2]);
if (mu_norm > EPSILON) continue;
domain->unmap(x[i], image[i], unwrap);
for (size_t j = 0; j < 3; j++) {
if (dphis_has_ref[j][0]) (*dphis[j]).getVariableReference("x") = unwrap[0];
if (dphis_has_ref[j][1]) (*dphis[j]).getVariableReference("y") = unwrap[1];
if (dphis_has_ref[j][2]) (*dphis[j]).getVariableReference("z") = unwrap[2];
}
ex = -dphi_x.evaluate();
ey = -dphi_y.evaluate();
ez = -dphi_z.evaluate();
// torque = mu cross E
t[i][0] += mue2e * (ez * mu[i][1] - ey * mu[i][2]);
t[i][1] += mue2e * (ex * mu[i][2] - ez * mu[i][0]);
t[i][2] += mue2e * (ey * mu[i][0] - ex * mu[i][1]);
// potential energy = - mu dot E
fsum[0] -= mue2e * (mu[i][0] * ex + mu[i][1] * ey + mu[i][2] * ez);
// force = (mu dot D) E
// using central difference method
h_mu = h / sqrt(mu[i][0]*mu[i][0] + mu[i][1]*mu[i][1] + mu[i][2]*mu[i][2]);
xf = unwrap[0] + h_mu * mu[i][0];
yf = unwrap[1] + h_mu * mu[i][1];
zf = unwrap[2] + h_mu * mu[i][2];
for (size_t j = 0; j < 3; j++) {
if (dphis_has_ref[j][0]) (*dphis[j]).getVariableReference("x") = xf;
if (dphis_has_ref[j][1]) (*dphis[j]).getVariableReference("y") = yf;
if (dphis_has_ref[j][2]) (*dphis[j]).getVariableReference("z") = zf;
}
exf = -dphi_x.evaluate();
eyf = -dphi_y.evaluate();
ezf = -dphi_z.evaluate();
xb = unwrap[0] - h_mu * mu[i][0];
yb = unwrap[1] - h_mu * mu[i][1];
zb = unwrap[2] - h_mu * mu[i][2];
for (size_t j = 0; j < 3; j++) {
if (dphis_has_ref[j][0]) (*dphis[j]).getVariableReference("x") = xb;
if (dphis_has_ref[j][1]) (*dphis[j]).getVariableReference("y") = yb;
if (dphis_has_ref[j][2]) (*dphis[j]).getVariableReference("z") = zb;
}
exb = -dphi_x.evaluate();
eyb = -dphi_y.evaluate();
ezb = -dphi_z.evaluate();
fx = qe2f * (exf - exb) / 2.0 / h_mu;
fy = qe2f * (eyf - eyb) / 2.0 / h_mu;
fz = qe2f * (ezf - ezb) / 2.0 / h_mu;
f[i][0] += fx;
f[i][1] += fy;
f[i][2] += fz;
fsum[1] += fx;
fsum[2] += fy;
fsum[3] += fz;
if (evflag) {
v[0] = fx * unwrap[0];
v[1] = fy * unwrap[1];
v[2] = fz * unwrap[2];
v[3] = fx * unwrap[1];
v[4] = fx * unwrap[2];
v[5] = fy * unwrap[2];
v_tally(i, v);
}
}
}
}
}
/* ---------------------------------------------------------------------- */
void FixEfieldLepton::post_force_respa(int vflag, int ilevel, int /*iloop*/)
{
if (ilevel == ilevel_respa) post_force(vflag);
}
/* ---------------------------------------------------------------------- */
void FixEfieldLepton::min_post_force(int vflag)
{
post_force(vflag);
}
/* ----------------------------------------------------------------------
return energy added by fix
------------------------------------------------------------------------- */
double FixEfieldLepton::compute_scalar()
{
if (force_flag == 0) {
MPI_Allreduce(fsum, fsum_all, 4, MPI_DOUBLE, MPI_SUM, world);
force_flag = 1;
}
return fsum_all[0];
}
/* ----------------------------------------------------------------------
return total extra force due to fix
------------------------------------------------------------------------- */
double FixEfieldLepton::compute_vector(int n)
{
if (force_flag == 0) {
MPI_Allreduce(fsum, fsum_all, 4, MPI_DOUBLE, MPI_SUM, world);
force_flag = 1;
}
return fsum_all[n + 1];
}

View File

@ -0,0 +1,60 @@
/* -*- c++ -*- ----------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
LAMMPS development team: developers@lammps.org
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
/* ----------------------------------------------------------------------
Contributing author: Gabriel Alkuino (Syracuse University) - gsalkuin@syr.edu
Modified from fix_efield
------------------------------------------------------------------------- */
#ifdef FIX_CLASS
// clang-format off
FixStyle(efield/lepton,FixEfieldLepton);
// clang-format on
#else
#ifndef LMP_FIX_EFIELD_LEPTON_H
#define LMP_FIX_EFIELD_LEPTON_H
#include "fix.h"
namespace LAMMPS_NS {
class FixEfieldLepton : public Fix {
public:
FixEfieldLepton(class LAMMPS *, int, char **);
~FixEfieldLepton() override;
int setmask() override;
void init() override;
void setup(int) override;
void min_setup(int) override;
void post_force(int) override;
void post_force_respa(int, int, int) override;
void min_post_force(int) override;
double compute_scalar() override;
double compute_vector(int) override;
protected:
char *idregion;
class Region *region;
int ilevel_respa;
std::string expr;
int force_flag;
double h = -1.0;
double qe2f, mue2e;
double fsum[4], fsum_all[4];
};
} // namespace LAMMPS_NS
#endif
#endif