Fix merge conflicts

This commit is contained in:
rohskopf
2022-07-07 09:11:28 -06:00
272 changed files with 42151 additions and 3135 deletions

View File

@ -138,6 +138,8 @@ KOKKOS, o = OPENMP, t = OPT.
* :doc:`smd/vol <compute_smd_vol>`
* :doc:`snap <compute_sna_atom>`
* :doc:`sna/atom <compute_sna_atom>`
* :doc:`sna/grid <compute_sna_atom>`
* :doc:`sna/grid/local <compute_sna_atom>`
* :doc:`snad/atom <compute_sna_atom>`
* :doc:`snav/atom <compute_sna_atom>`
* :doc:`sph/e/atom <compute_sph_e_atom>`

View File

@ -103,7 +103,7 @@ OPT.
* :doc:`lb/viscous <fix_lb_viscous>`
* :doc:`lineforce <fix_lineforce>`
* :doc:`manifoldforce <fix_manifoldforce>`
* :doc:`mdi/aimd <fix_mdi_aimd>`
* :doc:`mdi/qm <fix_mdi_qm>`
* :doc:`meso/move <fix_meso_move>`
* :doc:`mol/swap <fix_mol_swap>`
* :doc:`momentum (k) <fix_momentum>`

View File

@ -194,7 +194,7 @@ OPT.
* :doc:`lubricateU/poly <pair_lubricateU>`
* :doc:`mdpd <pair_mesodpd>`
* :doc:`mdpd/rhosum <pair_mesodpd>`
* :doc:`meam <pair_meam>`
* :doc:`meam (k) <pair_meam>`
* :doc:`meam/spline (o) <pair_meam_spline>`
* :doc:`meam/sw/spline <pair_meam_sw_spline>`
* :doc:`mesocnt <pair_mesocnt>`

View File

@ -470,6 +470,12 @@ This will most likely cause errors in kinetic fluctuations.
*More than one compute sna/atom*
Self-explanatory.
*More than one compute sna/grid*
Self-explanatory.
*More than one compute sna/grid/local*
Self-explanatory.
*More than one compute snad/atom*
Self-explanatory.

View File

@ -5,9 +5,9 @@ Client/server coupling of two (or more) codes is where one code is the
"client" and sends request messages (data) to one (or more) "server"
code(s). A server responds to each request with a reply message
(data). This enables two (or more) codes to work in tandem to perform
a simulation. LAMMPS can act as either a client or server code; it
does this by using the `MolSSI Driver Interface (MDI) library
<https://molssi-mdi.github.io/MDI_Library/html/index.html>`_,
a simulation. In this context, LAMMPS can act as either a client or
server code. It does this by using the `MolSSI Driver Interface (MDI)
library <https://molssi-mdi.github.io/MDI_Library/html/index.html>`_,
developed by the `Molecular Sciences Software Institute (MolSSI)
<https://molssi.org>`_, which is supported by the :ref:`MDI <PKG-MDI>`
package.
@ -63,22 +63,39 @@ The package also provides a :doc:`mdi plugin <mdi>` command which
enables LAMMPS to operate as an MDI driver and load an MDI engine as a
plugin library.
The package also has a `fix mdi/aimd <fix_mdi_aimd>` command in which
LAMMPS operates as an MDI driver to perform *ab initio* MD simulations
in conjunction with a quantum mechanics code. Its post_force() method
illustrates how a driver issues MDI commands to another code. This
command can be used to couple to an MDI engine which is either a
stand-alone code or a plugin library.
The package also has a `fix mdi/qm <fix_mdi_qm>` command in which
LAMMPS operates as an MDI driver in conjunction with a quantum
mechanics code as an MDI engine. The post_force() method of the
fix_mdi_qm.cpp file shows how a driver issues MDI commands to another
code. This command can be used to couple to an MDI engine which is
either a stand-alone code or a plugin library.
As explained on the `fix mdi/qm <fix_mdi_qm>` command doc page, it can
be used to perform *ab initio* MD simulations or energy minimizations,
or to evaluate the quantum energy and forces for a series of
independent systems. The examples/mdi directory has example input
scripts for all of these use cases.
----------
The examples/mdi directory contains Python scripts and LAMMPS input
script which use LAMMPS as either an MDI driver or engine or both.
Three example use cases are provided:
Currently, 5 example use cases are provided:
* Run ab initio MD (AIMD) using 2 instances of LAMMPS, one as driver
and one as an engine. As an engine, LAMMPS is a surrogate for a
quantum code.
* Run ab initio MD (AIMD) using 2 instances of LAMMPS. As a driver
LAMMPS performs the timestepping in either NVE or NPT mode. As an
engine, LAMMPS computes forces and is a surrogate for a quantum
code.
* As a driver, LAMMPS runs an MD simulation. Every N steps it passes
the current snapshot to an MDI engine to evaluate the energy,
virial, and peratom forces. As the engine LAMMPS is a surrogate for
a quantum code.
* As a driver, LAMMPS loops over a series of data files and passes the
configuration to an MDI engine to evaluate the energy, virial, and
peratom forces. As the engine LAMMPS is a surrogate for a quantum
code.
* A Python script driver invokes a sequence of unrelated LAMMPS
calculations. Calculations can be single-point energy/force
@ -91,20 +108,22 @@ Three example use cases are provided:
Note that in any of these example where LAMMPS is used as an engine,
an actual QM code (which supports MDI) could be used in its place,
without modifying other code or scripts, except to specify the name of
the QM code.
without modifying the input scripts or launch commands, except to
specify the name of the QM code.
The examples/mdi/README file explains how to launch both driver and
The examples/mdi/Run.sh file illustrates how to launch both driver and
engine codes so that they communicate using the MDI library via either
MPI or sockets.
MPI or sockets. Or using the engine as a stand-alone code or plugin
library.
-------------
Currently there are two quantum DFT codes which have direct MDI
support, `Quantum ESPRESSO (QE) <https://www.quantum-espresso.org/>`_
and `INQ <https://qsg.llnl.gov/node/101.html>`_. There are also
several QM codes which have indirect support through QCEngine or i-PI.
The former means they require a wrapper program (QCEngine) with MDI
Currently there are at least two quantum DFT codes which have direct
MDI support, `Quantum ESPRESSO (QE)
<https://www.quantum-espresso.org/>`_ and `INQ
<https://qsg.llnl.gov/node/101.html>`_. There are also several QM
codes which have indirect support through QCEngine or i-PI. The
former means they require a wrapper program (QCEngine) with MDI
support which writes/read files to pass data to the quantum code
itself. The list of QCEngine-supported and i-PI-supported quantum
codes is on the `MDI webpage

View File

@ -68,7 +68,8 @@ liquid Ar via the GK formalism:
# Sample LAMMPS input script for viscosity of liquid Ar
units real
variable T equal 86.4956
variable T equal 200.0 # run temperature
variable Tinit equal 250.0 # equilibration temperature
variable V equal vol
variable dt equal 4.0
variable p equal 400 # correlation length
@ -99,12 +100,14 @@ liquid Ar via the GK formalism:
# equilibration and thermalization
velocity all create $T 102486 mom yes rot yes dist gaussian
fix NVT all nvt temp $T $T 10 drag 0.2
velocity all create ${Tinit} 102486 mom yes rot yes dist gaussian
fix NVT all nvt temp ${Tinit} ${Tinit} 10 drag 0.2
run 8000
# viscosity calculation, switch to NVE if desired
velocity all create $T 102486 mom yes rot yes dist gaussian
fix NVT all nvt temp $T $T 10 drag 0.2
#unfix NVT
#fix NVE all nve
@ -122,7 +125,7 @@ liquid Ar via the GK formalism:
run 100000
variable v equal (v_v11+v_v22+v_v33)/3.0
variable ndens equal count(all)/vol
print "average viscosity: $v [Pa.s] @ $T K, ${ndens} /A^3"
print "average viscosity: $v [Pa.s] @ $T K, ${ndens} atoms/A^3"
The fifth method is related to the above Green-Kubo method,
but uses the Einstein formulation, analogous to the Einstein
@ -131,9 +134,9 @@ time-integrated momentum fluxes play the role of Cartesian
coordinates, whose mean-square displacement increases linearly
with time at sufficiently long times.
The sixth is periodic perturbation method. It is also a non-equilibrium MD method.
However, instead of measure the momentum flux in response of applied velocity gradient,
it measures the velocity profile in response of applied stress.
The sixth is the periodic perturbation method, which is also a non-equilibrium MD method.
However, instead of measuring the momentum flux in response to an applied velocity gradient,
it measures the velocity profile in response to applied stress.
A cosine-shaped periodic acceleration is added to the system via the
:doc:`fix accelerate/cos <fix_accelerate_cos>` command,
and the :doc:`compute viscosity/cos<compute_viscosity_cos>` command is used to monitor the

View File

@ -1479,7 +1479,7 @@ the :doc:`Build extras <Build_extras>` page.
* lib/mdi/README
* :doc:`Howto MDI <Howto_mdi>`
* :doc:`mdi <mdi>`
* :doc:`fix mdi/aimd <fix_mdi_aimd>`
* :doc:`fix mdi/qm <fix_mdi_qm>`
* examples/PACKAGES/mdi
----------
@ -1801,6 +1801,8 @@ computes which analyze attributes of the potential.
* src/ML-SNAP: filenames -> commands
* :doc:`pair_style snap <pair_snap>`
* :doc:`compute sna/atom <compute_sna_atom>`
* :doc:`compute sna/grid <compute_sna_atom>`
* :doc:`compute sna/grid/local <compute_sna_atom>`
* :doc:`compute snad/atom <compute_sna_atom>`
* :doc:`compute snav/atom <compute_sna_atom>`
* examples/snap

View File

@ -284,6 +284,8 @@ The individual style names on the :doc:`Commands compute <Commands_compute>` pag
* :doc:`smd/vol <compute_smd_vol>` - per-particle volumes and their sum in Smooth Mach Dynamics
* :doc:`snap <compute_sna_atom>` - gradients of SNAP energy and forces w.r.t. linear coefficients and related quantities for fitting SNAP potentials
* :doc:`sna/atom <compute_sna_atom>` - bispectrum components for each atom
* :doc:`sna/grid <compute_sna_atom>` - global array of bispectrum components on a regular grid
* :doc:`sna/grid/local <compute_sna_atom>` - local array of bispectrum components on a regular grid
* :doc:`snad/atom <compute_sna_atom>` - derivative of bispectrum components for each atom
* :doc:`snav/atom <compute_sna_atom>` - virial contribution from bispectrum components for each atom
* :doc:`sph/e/atom <compute_sph_e_atom>` - per-atom internal energy of Smooth-Particle Hydrodynamics atoms

View File

@ -2,6 +2,8 @@
.. index:: compute snad/atom
.. index:: compute snav/atom
.. index:: compute snap
.. index:: compute sna/grid
.. index:: compute sna/grid/local
compute sna/atom command
========================
@ -15,6 +17,12 @@ compute snav/atom command
compute snap command
====================
compute sna/grid command
========================
compute sna/grid/local command
==============================
Syntax
""""""
@ -24,6 +32,9 @@ Syntax
compute ID group-ID snad/atom rcutfac rfac0 twojmax R_1 R_2 ... w_1 w_2 ... keyword values ...
compute ID group-ID snav/atom rcutfac rfac0 twojmax R_1 R_2 ... w_1 w_2 ... keyword values ...
compute ID group-ID snap rcutfac rfac0 twojmax R_1 R_2 ... w_1 w_2 ... keyword values ...
compute ID group-ID snap rcutfac rfac0 twojmax R_1 R_2 ... w_1 w_2 ... keyword values ...
compute ID group-ID sna/grid nx ny nz rcutfac rfac0 twojmax R_1 R_2 ... w_1 w_2 ... keyword values ...
compute ID group-ID sna/grid/local nx ny nz rcutfac rfac0 twojmax R_1 R_2 ... w_1 w_2 ... keyword values ...
* ID, group-ID are documented in :doc:`compute <compute>` command
* sna/atom = style name of this compute command
@ -32,6 +43,7 @@ Syntax
* twojmax = band limit for bispectrum components (non-negative integer)
* R_1, R_2,... = list of cutoff radii, one for each type (distance units)
* w_1, w_2,... = list of neighbor weights, one for each type
* nx, ny, nz = number of grid points in x, y, and z directions (positive integer)
* zero or more keyword/value pairs may be appended
* keyword = *rmin0* or *switchflag* or *bzeroflag* or *quadraticflag* or *chem* or *bnormflag* or *wselfallflag* or *bikflag* or *switchinnerflag* or *sinner* or *dinner* or *dgradflag*
@ -81,6 +93,7 @@ Examples
compute snap all snap 1.4 0.95 6 2.0 1.0
compute snap all snap 1.0 0.99363 6 3.81 3.83 1.0 0.93 chem 2 0 1
compute snap all snap 1.0 0.99363 6 3.81 3.83 1.0 0.93 switchinnerflag 1 sinner 1.35 1.6 dinner 0.25 0.3
compute bgrid all sna/grid/local 200 200 200 1.4 0.95 6 2.0 1.0
Description
"""""""""""
@ -215,6 +228,46 @@ command:
See section below on output for a detailed explanation of the data
layout in the global array.
The compute *sna/grid* and *sna/grid/local* commands calculate
bispectrum components for a regular grid of points.
These are calculated from the local density of nearby atoms *i'*
around each grid point, as if there was a central atom *i*
at the grid point. This is useful for characterizing fine-scale
structure in a configuration of atoms, and it is used
in the `MALA package <https://github.com/casus/mala>`_
to build machine-learning surrogates for finite-temperature Kohn-Sham
density functional theory (:ref:`Ellis et al. <Ellis2021>`)
Neighbor atoms not in the group do not contribute to the
bispectrum components of the grid points. The distance cutoff :math:`R_{ii'}`
assumes that *i* has the same type as the neighbor atom *i'*.
Compute *sna/grid* calculates a global array containing bispectrum
components for a regular grid of points.
The grid is aligned with the current box dimensions, with the
first point at the box origin, and forming a regular 3d array with
*nx*, *ny*, and *nz* points in the x, y, and z directions. For triclinic
boxes, the array is congruent with the periodic lattice vectors
a, b, and c. The array contains one row for each of the
:math:`nx \times ny \times nz` grid points, looping over the index for *ix* fastest,
then *iy*, and *iz* slowest. Each row of the array contains the *x*, *y*,
and *z* coordinates of the grid point, followed by the bispectrum
components. See section below on output for a detailed explanation of the data
layout in the global array.
Compute *sna/grid/local* calculates bispectrum components of a regular
grid of points similarly to compute *sna/grid* described above.
However, because the array is local, it contains only rows for grid points
that are local to the processor sub-domain. The global grid
of :math:`nx \times ny \times nz` points is still laid out in space the same as for *sna/grid*,
but grid points are strictly partitioned, so that every grid point appears in
one and only one local array. The array contains one row for each of the
local grid points, looping over the global index *ix* fastest,
then *iy*, and *iz* slowest. Each row of the array contains
the global indexes *ix*, *iy*, and *iz* first, followed by the *x*, *y*,
and *z* coordinates of the grid point, followed by the bispectrum
components. See section below on output for a detailed explanation of the data
layout in the global array.
The value of all bispectrum components will be zero for atoms not in
the group. Neighbor atoms not in the group do not contribute to the
bispectrum of atoms in the group.
@ -428,6 +481,21 @@ number of columns in the global array generated by *snap* are 31, and
931, respectively, while the number of rows is 1+3\*\ *N*\ +6, where *N*
is the total number of atoms.
Compute *sna/grid* evaluates a global array.
The array contains one row for each of the
:math:`nx \times ny \times nz` grid points, looping over the index for *ix* fastest,
then *iy*, and *iz* slowest. Each row of the array contains the *x*, *y*,
and *z* coordinates of the grid point, followed by the bispectrum
components.
Compute *sna/grid/local* evaluates a local array.
The array contains one row for each of the
local grid points, looping over the global index *ix* fastest,
then *iy*, and *iz* slowest. Each row of the array contains
the global indexes *ix*, *iy*, and *iz* first, followed by the *x*, *y*,
and *z* coordinates of the grid point, followed by the bispectrum
components.
If the *quadratic* keyword value is set to 1, then additional columns
are generated, corresponding to the products of all distinct pairs of
bispectrum components. If the number of bispectrum components is *K*,
@ -509,8 +577,7 @@ The optional keyword defaults are *rmin0* = 0,
.. _Thompson20141:
**(Thompson)** Thompson, Swiler, Trott, Foiles, Tucker, under review, preprint
available at `arXiv:1409.3880 <http://arxiv.org/abs/1409.3880>`_
**(Thompson)** Thompson, Swiler, Trott, Foiles, Tucker, J Comp Phys, 285, 316, (2015).
.. _Bartok20101:
@ -531,4 +598,8 @@ of Angular Momentum, World Scientific, Singapore (1987).
.. _Cusentino2020:
**(Cusentino)** Cusentino, Wood, and Thompson, J Phys Chem A, xxx, xxxxx, (2020)
**(Cusentino)** Cusentino, Wood, Thompson, J Phys Chem A, 124, 5456, (2020)
.. _Ellis2021:
**(Ellis)** Ellis, Fiedler, Popoola, Modine, Stephens, Thompson, Cangi, Rajamanickam, Phys Rev B, 104, 035120, (2021)

View File

@ -27,6 +27,9 @@ dump command
:doc:`dump custom/adios <dump_adios>` command
=============================================
:doc:`dump cfg/uef <dump_cfg_uef>` command
==========================================
Syntax
""""""
@ -36,7 +39,7 @@ Syntax
* ID = user-assigned name for the dump
* group-ID = ID of the group of atoms to be dumped
* style = *atom* or *atom/gz* or *atom/zstd or *atom/mpiio* or *cfg* or *cfg/gz* or *cfg/zstd* or *cfg/mpiio* or *custom* or *custom/gz* or *custom/zstd* or *custom/mpiio* or *dcd* or *h5md* or *image* or *local* or *local/gz* or *local/zstd* or *molfile* or *movie* or *netcdf* or *netcdf/mpiio* or *vtk* or *xtc* or *xyz* or *xyz/gz* or *xyz/zstd* or *xyz/mpiio* or *yaml*
* style = *atom* or *atom/gz* or *atom/zstd or *atom/mpiio* or *cfg* or *cfg/gz* or *cfg/zstd* or *cfg/mpiio* or *cfg/uef* or *custom* or *custom/gz* or *custom/zstd* or *custom/mpiio* or *dcd* or *h5md* or *image* or *local* or *local/gz* or *local/zstd* or *molfile* or *movie* or *netcdf* or *netcdf/mpiio* or *vtk* or *xtc* or *xyz* or *xyz/gz* or *xyz/zstd* or *xyz/mpiio* or *yaml*
* N = dump every this many timesteps
* file = name of file to write dump info to
* args = list of arguments for a particular style
@ -47,22 +50,23 @@ Syntax
*atom/gz* args = none
*atom/zstd* args = none
*atom/mpiio* args = none
*atom/adios* args = none, discussed on :doc:`dump atom/adios <dump_adios>` doc page
*atom/adios* args = none, discussed on :doc:`dump atom/adios <dump_adios>` page
*cfg* args = same as *custom* args, see below
*cfg/gz* args = same as *custom* args, see below
*cfg/zstd* args = same as *custom* args, see below
*cfg/mpiio* args = same as *custom* args, see below
*cfg/uef* args = same as *custom* args, discussed on :doc:`dump cfg/uef <dump_cfg_uef>` page
*custom*, *custom/gz*, *custom/zstd*, *custom/mpiio* args = see below
*custom/adios* args = same as *custom* args, discussed on :doc:`dump custom/adios <dump_adios>` doc page
*custom/adios* args = same as *custom* args, discussed on :doc:`dump custom/adios <dump_adios>` page
*dcd* args = none
*h5md* args = discussed on :doc:`dump h5md <dump_h5md>` doc page
*image* args = discussed on :doc:`dump image <dump_image>` doc page
*h5md* args = discussed on :doc:`dump h5md <dump_h5md>` page
*image* args = discussed on :doc:`dump image <dump_image>` page
*local*, *local/gz*, *local/zstd* args = see below
*molfile* args = discussed on :doc:`dump molfile <dump_molfile>` doc page
*movie* args = discussed on :doc:`dump image <dump_image>` doc page
*netcdf* args = discussed on :doc:`dump netcdf <dump_netcdf>` doc page
*netcdf/mpiio* args = discussed on :doc:`dump netcdf <dump_netcdf>` doc page
*vtk* args = same as *custom* args, see below, also :doc:`dump vtk <dump_vtk>` doc page
*molfile* args = discussed on :doc:`dump molfile <dump_molfile>` page
*movie* args = discussed on :doc:`dump image <dump_image>` page
*netcdf* args = discussed on :doc:`dump netcdf <dump_netcdf>` page
*netcdf/mpiio* args = discussed on :doc:`dump netcdf <dump_netcdf>` page
*vtk* args = same as *custom* args, see below, also :doc:`dump vtk <dump_vtk>` page
*xtc* args = none
*xyz* args = none
*xyz/gz* args = none
@ -155,7 +159,7 @@ timesteps in one of several styles. The *image* and *movie* styles are
the exception: the *image* style renders a JPG, PNG, or PPM image file
of the atom configuration every N timesteps while the *movie* style
combines and compresses them into a movie file; both are discussed in
detail on the :doc:`dump image <dump_image>` doc page. The timesteps on
detail on the :doc:`dump image <dump_image>` page. The timesteps on
which dump output is written can also be controlled by a variable.
See the :doc:`dump_modify every <dump_modify>` command.
@ -194,7 +198,7 @@ or multiple smaller files).
For the *atom*, *custom*, *cfg*, and *local* styles, sorting is off by
default. For the *dcd*, *xtc*, *xyz*, and *molfile* styles, sorting
by atom ID is on by default. See the :doc:`dump_modify <dump_modify>`
doc page for details.
page for details.
The *atom/gz*, *cfg/gz*, *custom/gz*, *local/gz*, and *xyz/gz* styles
are identical in command syntax to the corresponding styles without
@ -204,7 +208,7 @@ alternative approach to writing compressed files via a pipe, as done
by the regular dump styles, which may be required on clusters where
the interface to the high-speed network disallows using the fork()
library call (which is needed for a pipe). For the remainder of this
doc page, you should thus consider the *atom* and *atom/gz* styles
page, you should thus consider the *atom* and *atom/gz* styles
(etc) to be inter-changeable, with the exception of the required
filename suffix.
@ -218,7 +222,7 @@ As explained below, the *atom/mpiio*, *cfg/mpiio*, *custom/mpiio*, and
*xyz/mpiio* styles are identical in command syntax and in the format
of the dump files they create, to the corresponding styles without
"mpiio", except the single dump file they produce is written in
parallel via the MPI-IO library. For the remainder of this doc page,
parallel via the MPI-IO library. For the remainder of this page,
you should thus consider the *atom* and *atom/mpiio* styles (etc) to
be inter-changeable. The one exception is how the filename is
specified for the MPI-IO styles, as explained below.
@ -664,7 +668,7 @@ so that each value is 0.0 to 1.0. If the simulation box is triclinic
(tilted), then all atom coords will still be between 0.0 and 1.0.
I.e. actual unscaled (x,y,z) = xs\*A + ys\*B + zs\*C, where (A,B,C) are
the non-orthogonal vectors of the simulation box edges, as discussed
on the :doc:`Howto triclinic <Howto_triclinic>` doc page.
on the :doc:`Howto triclinic <Howto_triclinic>` page.
Use *xu*, *yu*, *zu* if you want the coordinates "unwrapped" by the
image flags for each atom. Unwrapped means that if the atom has
@ -787,7 +791,7 @@ more info.
The *atom/mpiio*, *cfg/mpiio*, *custom/mpiio*, and *xyz/mpiio* styles
are part of the MPIIO package. They are only enabled if LAMMPS was
built with that package. See the :doc:`Build package <Build_package>`
doc page for more info.
page for more info.
The *xtc*, *dcd* and *yaml* styles are part of the EXTRA-DUMP package.
They are only enabled if LAMMPS was built with that package. See the
@ -797,12 +801,12 @@ Related commands
""""""""""""""""
:doc:`dump atom/adios <dump_adios>`, :doc:`dump custom/adios <dump_adios>`,
:doc:`dump h5md <dump_h5md>`, :doc:`dump image <dump_image>`,
:doc:`dump molfile <dump_molfile>`, :doc:`dump_modify <dump_modify>`,
:doc:`undump <undump>`
:doc:`dump cfg/uef <dump_cfg_uef>`, :doc:`dump h5md <dump_h5md>`,
:doc:`dump image <dump_image>`, :doc:`dump molfile <dump_molfile>`,
:doc:`dump_modify <dump_modify>`, :doc:`undump <undump>`, :doc:`write_dump <write_dump>`
Default
"""""""
The defaults for the *image* and *movie* styles are listed on the
:doc:`dump image <dump_image>` doc page.
:doc:`dump image <dump_image>` page.

View File

@ -246,7 +246,7 @@ accelerated styles exist.
* :doc:`lb/viscous <fix_lb_viscous>` -
* :doc:`lineforce <fix_lineforce>` - constrain atoms to move in a line
* :doc:`manifoldforce <fix_manifoldforce>` - restrain atoms to a manifold during minimization
* :doc:`mdi/aimd <fix_mdi_aimd>` - LAMMPS operates as driver for ab initio MD (AIMD) via the MolSSI Driver Interface (MDI)
* :doc:`mdi/qm <fix_mdi_qm>` - LAMMPS operates as driver for a quantum code via the MolSSI Driver Interface (MDI)
* :doc:`meso/move <fix_meso_move>` - move mesoscopic SPH/SDPD particles in a prescribed fashion
* :doc:`mol/swap <fix_mol_swap>` - Monte Carlo atom type swapping with a molecule
* :doc:`momentum <fix_momentum>` - zero the linear and/or angular momentum of a group of atoms

View File

@ -116,13 +116,6 @@ potential energy of the system as part of :doc:`thermodynamic output
<thermo_style>`. The default setting for this fix is :doc:`fix_modify
energy yes <fix_modify>`.
The :doc:`fix_modify <fix_modify>` *virial* option is supported by
this fix to add the contribution compute by LATTE to the global
pressure of the system via the :doc:`compute pressure
<compute_pressure>` command. This can be accessed by
:doc:`thermodynamic output <thermo_style>`. The default setting for
this fix is :doc:`fix_modify virial yes <fix_modify>`.
The :doc:`fix_modify <fix_modify>` *virial* option is supported by
this fix to add the contribution computed by LATTE to the global
pressure of the system as part of :doc:`thermodynamic output
@ -137,7 +130,7 @@ energy discussed above. The scalar value calculated by this fix is
No parameter of this fix can be used with the *start/stop* keywords of
the :doc:`run <run>` command.
The DFTB forces computed by LATTE via this fix are imposed during an
The DFTB forces computed by LATTE via this fix are used during an
energy minimization, invoked by the :doc:`minimize <minimize>`
command.

View File

@ -1,93 +0,0 @@
.. index:: fix mdi/aimd
fix mdi/aimd command
======================
Syntax
""""""
.. parsed-literal::
fix ID group-ID mdi/aimd keyword
* ID, group-ID are documented in :doc:`fix <fix>` command
* mdi/aimd = style name of this fix command
Examples
""""""""
.. code-block:: LAMMPS
fix 1 all mdi/aimd
Description
"""""""""""
This command enables LAMMPS to act as a client with another server
code to couple the two codes together to perform ab initio MD (AIMD)
simulations.
More specifically, this command causes LAMMPS to begin using the `MDI
Library <https://molssi-mdi.github.io/MDI_Library/html/index.html>`_
to run as an MDI driver (client), which sends MDI commands to an
external MDI engine code (server) which in the case of AIMD is a
quantum mechanics (QM) code, or could be LAMMPS itself, acting as a
surrogate for a QM code. See the :doc:`Howto mdi <Howto_mdi>` page
for more information about how LAMMPS can operate as either an MDI
driver or engine.
The examples/mdi directory contains input scripts performing AIMD in
this manner with LAMMPS acting as both a driver and an engine
(surrogate for a QM code). The examples/mdi/README file explains how
to launch both driver and engine codes so that they communicate using
the MDI library via either MPI or sockets. Any QM code that supports
MDI could be used in place of LAMMPS acting as a QM surrogate. See
the :doc:`Howto mdi <Howto_mdi>` page for a current list (March 2022)
of such QM codes.
The engine code can run either as a stand-alone code, launched at the
same time as LAMMPS, or as a plugin library. See the :doc:`mdi plugin
<mdi>` command for how to trigger LAMMPS to load the plugin library.
Again, the examples/mdi/README file explains how to launch both driver
and engine codes so that engine is used in plugin mode.
----------
This fix performs the timestepping portion of an AIMD simulation.
Both LAMMPS and the engine code (QM or LAMMPS) should define the same
system (simulation box, atoms and their types) in their respective
input scripts. LAMMPS then begins its timestepping.
At the point in each timestep when LAMMPS needs the force on each
atom, it communicates with the engine code. It sends the current
simulation box size and shape (if they change dynamically, e.g. during
an NPT simulation), and the current atom coordinates. The engine code
computes quantum forces on each atom and returns them to LAMMPS. If
LAMMPS also needs the system energy and/or virial, it requests those
values from the engine code as well.
Restrictions
""""""""""""
This command is part of the MDI package. It is only enabled if
LAMMPS was built with that package. See the :doc:`Build package
<Build_package>` page for more info.
To use LAMMPS as an MDI driver in conjunction with other MDI-enabled
atomistic codes, the :doc:`units <units>` command should be used to
specify *real* or *metal* units. This will ensure the correct unit
conversions between LAMMPS and MDI units, which the other codes will
also perform in their preferred units.
LAMMPS can also be used as an MDI driver in other unit choices it
supports, e.g. *lj*, but then no unit conversion is performed.
Related commands
""""""""""""""""
:doc:`mdi engine <mdi>`
Default
"""""""
none

276
doc/src/fix_mdi_qm.rst Normal file
View File

@ -0,0 +1,276 @@
.. index:: fix mdi/qm
fix mdi/qm command
======================
Syntax
""""""
.. parsed-literal::
fix ID group-ID mdi/qm keyword
* ID, group-ID are documented in :doc:`fix <fix>` command
* mdi/qm = style name of this fix command
* zero or more keyword/value pairs may be appended
* keyword = *virial* or *add* or *every* or *connect* or *elements*
.. parsed-literal::
*virial* args = *yes* or *no*
yes = request virial tensor from server code
no = do not request virial tensor from server code
*add* args = *yes* or *no*
yes = add returned value from server code to LAMMPS quantities
no = do not add returned values to LAMMPS quantities
*every* args = Nevery
Nevery = request values from server code once every Nevery steps
*connect* args = *yes* or *no*
yes = perform a one-time connection to the MDI engine code
no = do not perform the connection operation
*elements* args = N_1 N_2 ... N_ntypes
N_1,N_2,...N_ntypes = atomic number for each of ntypes LAMMPS atom types
Examples
""""""""
.. code-block:: LAMMPS
fix 1 all mdi/qm
fix 1 all mdi/qm virial yes
fix 1 all mdi/qm add no every 100 elements 13 29
Description
"""""""""""
This command enables LAMMPS to act as a client with another server
code that will compute the total energy, per-atom forces, and total
virial for atom conformations and simulation box size/shapes that
LAMMPS sends it.
Typically the server code will be a quantum mechanics (QM) code, hence
the name of the fix. However this is not required, the server code
could be another classical molecular dynamics code or LAMMPS itself.
The server code must support use of the `MDI Library
<https://molssi-mdi.github.io/MDI_Library/html/index.html>`_ as
explained below.
These are example use cases for this fix, discussed further below:
* perform an ab initio MD (AIMD) simulation with quantum forces
* perform an energy minimization with quantum forces
* perform a nudged elastic band (NEB) calculation with quantum forces
* perform a QM calculation for a series of independent systems which LAMMPS reads or generates
The code coupling performed by this command is done via the `MDI
Library <https://molssi-mdi.github.io/MDI_Library/html/index.html>`_.
LAMMPS runs as an MDI driver (client), and sends MDI commands to an
external MDI engine code (server), e.g. a QM code which has support
for MDI. See the :doc:`Howto mdi <Howto_mdi>` page for more
information about how LAMMPS can operate as either an MDI driver or
engine.
The examples/mdi directory contains input scripts using this fix in
the various use cases discussed below. In each case, two instances of
LAMMPS are used, once as an MDI driver, once as an MDI engine
(surrogate for a QM code). The examples/mdi/README file explains how
to launch two codes so that they communicate via the MDI library using
either MPI or sockets. Any QM code that supports MDI could be used in
place of LAMMPS acting as a QM surrogate. See the :doc:`Howto mdi
<Howto_mdi>` page for a current list (March 2022) of such QM codes.
Note that an engine code can support MDI in either or both of two
modes. It can be used as a stand-alone code, launched at the same
time as LAMMPS. Or it can be used as a plugin library, which LAMMPS
loads. See the :doc:`mdi plugin <mdi>` command for how to trigger
LAMMPS to load a plugin library. The examples/mdi/README file
explains how to launch the two codes in either mode.
----------
The *virial* keyword setting of yes or no determines whether
LAMMPS will request the QM code to also compute and return
a 6-element symmetric virial tensor for the system.
The *add* keyword setting of *yes* or *no* determines whether the
energy and forces and virial returned by the QM code will be added to
the LAMMPS internal energy and forces and virial or not. If the
setting is *no* then the default :doc:`fix_modify energy <fix_modify>`
and :doc:`fix_modify virial <fix_modify>` settings are also set to
*no* and your input scripts should not set them to yes. See more
details on these fix_modify settings below.
Whatever the setting for the *add* keyword, the QM energy, forces, and
virial will be stored by the fix, so they can be accessed by other
commands. See details below.
The *every* keyword determines how often the QM code will be invoked
during a dynamics run with the current LAMMPS simulation box and
configuration of atoms. The QM code will be called once every
*Nevery* timesteps.
The *connect* keyword determines whether this fix performs a one-time
connection to the QM code. The default is *yes*. The only time a
*no* is needed is if this command is used multiple times in an input
script. E.g. if it used inside a loop which also uses the :doc:`clear
<clear>` command to destroy the system (including any defined fixes).
See the examples/mdi/in.series.driver script as an example of this,
where LAMMPS is using the QM code to compute energy and forces for a
series of system configurations. In this use case *connect no*
is used along with the :doc:`mdi connect and exit <mdi>` command
to one-time initiate/terminate the connection outside the loop.
The *elements* keyword allows specification of what element each
LAMMPS atom type corresponds to. This is specified by the atomic
number of the element, e.g. 13 for Al. An atomic number must be
specified for each of the ntypes LAMMPS atom types. Ntypes is
typically specified via the create_box command or in the data file
read by the read_data command. If this keyword is not specified, then
this fix will send the LAMMPS atom type for each atom to the MDI
engine. If both the LAMMPS driver and the MDI engine are initialized
so that atom type values are consistent in both codes, then the
*elements* keyword is not needed. Otherwise the keyword can be used
to insure the two codes are consistent in their definition of atomic
species.
----------
The following 3 example use cases are illustrated in the examples/mdi
directory. See its README file for more details.
(1) To run an ab initio MD (AIMD) dynamics simulation, or an energy
minimization with QM forces, or a multi-replica NEB calculation, use
*add yes* and *every 1* (the defaults). This is so that every time
LAMMPS needs energy and forces, the QM code will be invoked.
Both LAMMPS and the QM code should define the same system (simulation
box, atoms and their types) in their respective input scripts. Note
that on this scenario, it may not be necessary for LAMMPS to define a
pair style or use a neighbor list.
LAMMPS will then perform the timestepping or minimization iterations
for the simulation. At the point in each timestep or iteration when
LAMMPS needs the force on each atom, it communicates with the engine
code. It sends the current simulation box size and shape (if they
change dynamically, e.g. during an NPT simulation), and the current
atom coordinates. The engine code computes quantum forces on each
atom and the total energy of the system and returns them to LAMMPS.
Note that if the AIMD simulation is an NPT or NPH model, or the energy
minimization includes :doc:`fix box relax <fix_box_relax>` to
equilibrate the box size/shape, then LAMMPS computes a pressure. This
means the *virial* keyword should be set to *yes* so that the QM
contribution to the pressure can be included.
(2) To run dynamics with a LAMMPS interatomic potential, and evaluate
the QM energy and forces once every 1000 steps, use *add no* and
*every 1000*. This could be useful for using an MD run to generate
randomized configurations which are then passed to the QM code to
produce training data for a machine learning potential. A :doc:`dump
custom <dump>` command could be invoked every 1000 steps to dump the
atom coordinates and QM forces to a file. Likewise the QM energy and
virial could be output with the :doc:`thermo_style custom
<thermo_style>` command.
(3) To do a QM evaluation of energy and forces for a series of *N*
independent systems (simulation box and atoms), use *add no* and
*every 1*. Write a LAMMPS input script which loops over the *N*
systems. See the :doc:`Howto multiple <Howto_multiple>` doc page for
details on looping and removing old systems. The series of systems
could be initialized by reading them from data files with
:doc:`read_data <read_data>` commands. Or, for example, by using the
:doc:`lattice <lattice>` , :doc:`create_atoms <create_atoms>`,
:doc:`delete_atoms <delete_atoms>`, and/or :doc:`displace_atoms
random <displace_atoms>` commands to generate a series of different
systems. At the end of the loop perform :doc:`run 0 <run>` and
:doc:`write_dump <write_dump>` commands to invoke the QM code and
output the QM energy and forces. As in (2) this be useful to produce
QM data for training a machine learning potential.
----------
Restart, fix_modify, output, run start/stop, minimize info
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
No information about this fix is written to :doc:`binary restart files
<restart>`.
The :doc:`fix_modify <fix_modify>` *energy* option is supported by
this fix to add the potential energy computed by the QM code to the
global potential energy of the system as part of :doc:`thermodynamic
output <thermo_style>`. The default setting for this fix is
:doc:`fix_modify energy yes <fix_modify>`, unless the *add* keyword is
set to *no*, in which case the default setting is *no*.
The :doc:`fix_modify <fix_modify>` *virial* option is supported by
this fix to add the contribution computed by the QM code to the global
pressure of the system as part of :doc:`thermodynamic output
<thermo_style>`. The default setting for this fix is :doc:`fix_modify
virial yes <fix_modify>`, unless the *add* keyword is set to *no*, in
which case the default setting is *no*.
This fix computes a global scalar which can be accessed by various
:doc:`output commands <Howto_output>`. The scalar is the energy
returned by the QM code. The scalar value calculated by this fix is
"extensive".
This fix also computes a global vector with of length 6 which contains
the symmetric virial tensor values returned by the QM code. It can
likewise be accessed by various :doc:`output commands <Howto_output>`.
The ordering of values in the symmetric virial tensor is as follows:
vxx, vyy, vzz, vxy, vxz, vyz. The values will be in pressure
:doc:`units <units>`.
This fix also computes a peratom array with 3 columns which contains
the peratom forces returned by the QM code. It can likewise be
accessed by various :doc:`output commands <Howto_output>`.
No parameter of this fix can be used with the *start/stop* keywords of
the :doc:`run <run>` command.
Assuming the *add* keyword is set to *yes* (the default), the forces
computed by the QM code are used during an energy minimization,
invoked by the :doc:`minimize <minimize>` command.
.. note::
If you want the potential energy associated with the QM forces to
be included in the total potential energy of the system (the
quantity being minimized), you MUST not disable the
:doc:`fix_modify <fix_modify>` *energy* option for this fix, which
means the *add* keyword should also be set to *yes* (the default).
Restrictions
""""""""""""
This command is part of the MDI package. It is only enabled if
LAMMPS was built with that package. See the :doc:`Build package
<Build_package>` page for more info.
The QM code does not currently compute and return per-atom energy or
per-atom virial contributions. So they will not show up as part of
the calculations performed by the :doc:`compute pe/atom
<compute_pe_atom>` or :doc:`compute stress/atom <compute_stress_atom>`
commands.
To use LAMMPS as an MDI driver in conjunction with other MDI-enabled
codes (MD or QM codes), the :doc:`units <units>` command should be
used to specify *real* or *metal* units. This will ensure the correct
unit conversions between LAMMPS and MDI units. The other code will
also perform similar unit conversions into its preferred units.
LAMMPS can also be used as an MDI driver in other unit choices it
supports, e.g. *lj*, but then no unit conversion is performed.
Related commands
""""""""""""""""
:doc:`mdi plugin <mdi>`, :doc:`mdi engine <mdi>`
Default
"""""""
The default for the optional keywords are virial = no, add = yes,
every = 1, connect = yes.

View File

@ -156,27 +156,28 @@ and Boolean operators:
Each A and B is a number or string or a variable reference like $a or
${abc}, or A or B can be another Boolean expression.
If a variable is used it can produce a number when evaluated, like an
:doc:`equal-style variable <variable>`. Or it can produce a string,
like an :doc:`index-style variable <variable>`. For an individual
Boolean operator, A and B must both be numbers or must both be
strings. You cannot compare a number to a string.
Note that all variables used will be substituted for before the
Boolean expression in evaluated. A variable can produce a number,
like an :doc:`equal-style variable <variable>`. Or it can produce a
string, like an :doc:`index-style variable <variable>`.
The Boolean operators "==" and "!=" can operate on a pair or strings
or numbers. They cannot compare a number to a string. All the other
Boolean operations can only operate on numbers.
Expressions are evaluated left to right and have the usual C-style
precedence: the unary logical NOT operator "!" has the highest
precedence, the 4 relational operators "<", "<=", ">", and ">=" are
next; the two remaining relational operators "==" and "!=" are next;
then the logical AND operator "&&"; and finally the logical OR
operator "\|\|" and logical XOR (exclusive or) operator "\|\^" have the
lowest precedence. Parenthesis can be used to group one or more
operator "\|\|" and logical XOR (exclusive or) operator "\|\^" have
the lowest precedence. Parenthesis can be used to group one or more
portions of an expression and/or enforce a different order of
evaluation than what would occur with the default precedence.
When the 6 relational operators (first 6 in list above) compare 2
numbers, they return either a 1.0 or 0.0 depending on whether the
relationship between A and B is TRUE or FALSE. When the 6 relational
operators compare 2 strings, they also return a 1.0 or 0.0 for TRUE or
FALSE, but the comparison is done by the C function strcmp().
relationship between A and B is TRUE or FALSE.
When the 3 logical operators (last 3 in list above) compare 2 numbers,
they also return either a 1.0 or 0.0 depending on whether the
@ -190,8 +191,16 @@ returns 1.0 if its argument is 0.0, else it returns 0.0. The 3
logical operators can only be used to operate on numbers, not on
strings.
The overall Boolean expression produces a TRUE result if the result is
non-zero. If the result is zero, the expression result is FALSE.
The overall Boolean expression produces a TRUE result if the numeric
result is non-zero. If the result is zero, the expression result is
FALSE.
.. note::
If the Boolean expression is a single numeric value with no Boolean
operators, it will be FALSE if the value = 0.0, otherwise TRUE. If
the Boolean expression is a single string, an error message will be
issued.
----------

View File

@ -8,21 +8,26 @@ Syntax
.. parsed-literal::
mdi mode args
mdi option args
* mode = *engine* or *plugin*
* option = *engine* or *plugin* or *connect* or *exit*
.. parsed-literal::
*engine* args = none
*plugin* args = name keyword value keyword value
*engine* args = zero or more keyword arg pairs
keywords = *elements*
*elements* args = N_1 N_2 ... N_ntypes
N_1,N_2,...N_ntypes = atomic number for each of ntypes LAMMPS atom types
*plugin* args = name keyword value keyword value ...
name = name of plugin library, e.g. lammps means a liblammps.so library will be loaded
keyword/value pairs in any order, some are required, some are optional
keywords = *mdi* or *infile* or *extra* or *command*
*mdi* value = args passed to MDI for driver to operate with plugins
*infile* value = filename the engine will read at start-up
*mdi* value = args passed to MDI for driver to operate with plugins (required)
*infile* value = filename the engine will read at start-up (optional)
*extra* value = aditional command-line args to pass to engine library when loaded
*command* value = a LAMMPS input script command to execute
*command* value = a LAMMPS input script command to execute (required)
*connect* args = none
*exit* args = none
Examples
""""""""
@ -30,26 +35,19 @@ Examples
.. code-block:: LAMMPS
mdi engine
mdi engine elements 13 29
mdi plugin lammps mdi "-role ENGINE -name lammps -method LINK" &
infile in.aimd.engine extra "-log log.aimd.engine.plugin" &
command "run 5"
mdi connect
mdi exit
Description
"""""""""""
This command implements two high-level operations within LAMMPS to use
the `MDI Library
<https://molssi-mdi.github.io/MDI_Library/html/index.html>` for
coupling to other codes in a client/server protocol.
The *engine* mode enables LAMMPS to act as an MDI engine (server),
responding to requests from an MDI driver (client) code.
The *plugin* mode enables LAMMPS to act as an MDI driver (client), and
load the MDI engine (server) code as a library plugin. In this case
the MDI engine is a library plugin. It can also be a stand-alone
code, launched separately from LAMMPS, in which case the mdi plugin
command is not used.
This command implements operations within LAMMPS to use the `MDI
Library <https://molssi-mdi.github.io/MDI_Library/html/index.html>`
for coupling to other codes in a client/server protocol.
See the Howto MDI doc page for a discussion of all the different ways
2 or more codes can interact via MDI.
@ -61,6 +59,22 @@ stand-alone code or as a plugin. The README file in that directory
shows how to launch and couple codes for all the 4 usage modes, and so
they communicate via the MDI library using either MPI or sockets.
The scripts in that directory illustrate the use of all the options
for this command.
The *engine* option enables LAMMPS to act as an MDI engine (server),
responding to requests from an MDI driver (client) code.
The *plugin* option enables LAMMPS to act as an MDI driver (client),
and load the MDI engine (server) code as a library plugin. In this
case the MDI engine is a library plugin. An MDI engine can also be a
stand-alone code, launched separately from LAMMPS, in which case the
mdi plugin command is not used.
The *connect* and *exit* options are only used when LAMMPS is acting
as an MDI driver. As explained below, these options are normally not
needed, except for a specific kind of use case.
----------
The *mdi engine* command is used to make LAMMPS operate as an MDI
@ -100,6 +114,8 @@ commands, which are described further below.
- Send/request charge on each atom (N values)
* - >COORDS or <COORDS
- Send/request coordinates of each atom (3N values)
* - >ELEMENTS
- Send elements (atomic numbers) for each atom (N values)
* - <ENERGY
- Request total energy (potential + kinetic) of the system (1 value)
* - >FORCES or <FORCES
@ -121,11 +137,11 @@ commands, which are described further below.
* - <PE
- Request potential energy of the system (1 value)
* - <STRESS
- Request stress tensor (virial) of the system (6 values)
- Request symmetric stress tensor (virial) of the system (9 values)
* - >TOLERANCE
- Send 4 tolerance parameters for next MD minimization via OPTG command
* - >TYPES or <TYPES
- Send/request the numeric type of each atom (N values)
- Send/request the LAMMPS atom type for each atom (N values)
* - >VELOCITIES or <VELOCITIES
- Send/request the velocity of each atom (3N values)
* - @INIT_MD or @INIT_OPTG
@ -145,9 +161,25 @@ commands, which are described further below.
builds. If the change in atom positions is large (since the
previous >COORDS command), then LAMMPS will do a more expensive
operation to migrate atoms to new processors as needed and
re-neighbor. If the >NATOMS or >TYPES commands have been sent
(since the previous >COORDS command), then LAMMPS assumes the
system is new and re-initializes an entirely new simulation.
re-neighbor. If the >NATOMS or >TYPES or >ELEMENTS commands have
been sent (since the previous >COORDS command), then LAMMPS assumes
the system is new and re-initializes an entirely new simulation.
.. note::
The >TYPES or >ELEMENTS commands are how the MDI driver tells the
LAMMPS engine which LAMMPS atom type to assign to each atom. If
both the MDI driver and the LAMMPS engine are initialized so that
atom type values are consistent in both codes, then the >TYPES
command can be used. If not, the optional *elements* keyword can
be used to specify what element each LAMMPS atom type corresponds
to. This is specified by the atomic number of the element, e.g. 13
for Al. An atomic number must be specified for each of the ntypes
LAMMPS atom types. Ntypes is typically specified via the
create_box command or in the data file read by the read_data
command. In this has been done, the MDI driver can send an
>ELEMENTS command to the LAMMPS driver with the atomic number of
each atom.
The MD and OPTG commands perform an entire MD simulation or energy
minimization (to convergence) with no communication from the driver
@ -270,7 +302,7 @@ The *command* keyword is required. It specifies a LAMMPS input script
command (as a single argument in quotes if it is multiple words).
Once the plugin library is launched, LAMMPS will execute this command.
Other previously-defined commands in the input script, such as the
:doc:`fix mdi/aimd <fix_mdi_aimd>` command, should perform MDI
:doc:`fix mdi/qm <fix_mdi_qm>` command, should perform MDI
communication with the engine, while the specified *command* executes.
Note that if *command* is an :doc:`include <include>` command, then it
could specify a filename with multiple LAMMPS commands.
@ -284,6 +316,31 @@ could specify a filename with multiple LAMMPS commands.
"mdi plugin" command could then load the same library plugin or
a different one if desired.
----------
The *mdi connect* and *mdi exit* commands are only used when LAMMPS is
operating as an MDI driver. And when other LAMMPS command(s) which
send MDI commands and associated data to/from the MDI engine are not
able to initiate and terminate the connection to the engine code.
The only current MDI driver command in LAMMPS is the :doc:`fix mdi/qm
<fix_mdi_qm>` command. If it is only used once in an input script
then it can initiate and terminate the connection. But if it is being
issued multiple times, e.g. in a loop that issues a :doc:`clear
<clear>` command, then it cannot initiate or terminate the connection
multiple times. Instead, the *mdi connect* and *mdi exit* commands
should be used outside the loop to initiate or terminate the connection.
See the examples/mdi/in.series.driver script for an example of how
this is done. The LOOP in that script is reading a series of data
file configurations and passing them to an MDI engine (e.g. quantum
code) for energy and force evaluation. A *clear* command inside the
loop wipes out the current system so a new one can be defined. This
operation also destroys all fixes. So the :doc:`fix mdi/qm
<fix_mdi_qm>` command is issued once per loop iteration. Note that it
includes a "connect no" option which disables the initiate/terminate
logic within that fix.
Restrictions
""""""""""""
@ -304,7 +361,7 @@ supports, e.g. *lj*, but then no unit conversion is performed.
Related commands
""""""""""""""""
:doc:`fix mdi/aimd <fix_mdi_aimd>`
:doc:`fix mdi/qm <fix_mdi_qm>`
Default
"""""""

View File

@ -71,7 +71,7 @@ Syntax
*no_affinity* values = none
*kokkos* args = keyword value ...
zero or more keyword/value pairs may be appended
keywords = *neigh* or *neigh/qeq* or *neigh/thread* or *newton* or *binsize* or *comm* or *comm/exchange* or *comm/forward* *comm/pair/forward* *comm/fix/forward* or *comm/reverse* or *gpu/aware* or *pair/only*
keywords = *neigh* or *neigh/qeq* or *neigh/thread* or *newton* or *binsize* or *comm* or *comm/exchange* or *comm/forward* *comm/pair/forward* *comm/fix/forward* or *comm/reverse* or *comm/pair/reverse* or *gpu/aware* or *pair/only*
*neigh* value = *full* or *half*
full = full neighbor list
half = half neighbor list built in thread-safe manner
@ -96,6 +96,7 @@ Syntax
*comm/pair/forward* value = *no* or *device*
*comm/fix/forward* value = *no* or *device*
*comm/reverse* value = *no* or *host* or *device*
*comm/pair/reverse* value = *no* or *device*
no = perform communication pack/unpack in non-KOKKOS mode
host = perform pack/unpack on host (e.g. with OpenMP threading)
device = perform pack/unpack on device (e.g. on GPU)
@ -500,7 +501,7 @@ rule of thumb may give too large a binsize and the default should be
overridden with a smaller value.
The *comm* and *comm/exchange* and *comm/forward* and *comm/pair/forward*
and *comm/fix/forward* and comm/reverse*
and *comm/fix/forward* and *comm/reverse* and *comm/pair/reverse*
keywords determine whether the host or device performs the packing and
unpacking of data when communicating per-atom data between processors.
"Exchange" communication happens only on timesteps that neighbor lists
@ -521,9 +522,16 @@ packing/unpacking data for the communication. A value of *host* means to
use the host, typically a multi-core CPU, and perform the
packing/unpacking in parallel with threads. A value of *device* means to
use the device, typically a GPU, to perform the packing/unpacking
operation. If a value of *host* is used for the *comm/pair/forward* or
*comm/fix/forward* keyword, it will be automatically be changed to *no*
since these keywords don't support *host* mode.
operation.
For the *comm/pair/forward* or *comm/fix/forward* or *comm/pair/reverse*
keywords, if a value of *host* is used it will be automatically
be changed to *no* since these keywords don't support *host* mode. The
value of *no* will also always be used when running on the CPU, i.e. setting
the value to *device* will have no effect if the pair/fix style is
running on the CPU. For the *comm/fix/forward* or *comm/pair/reverse*
keywords, not all styles support *device* mode and in that case will run
in *no* mode instead.
The optimal choice for these keywords depends on the input script and
the hardware used. The *no* value is useful for verifying that the

View File

@ -1,8 +1,11 @@
.. index:: pair_style meam
.. index:: pair_style meam/kk
pair_style meam command
=========================
Accelerator Variants: *meam/kk*
Syntax
""""""
@ -347,6 +350,12 @@ Most published MEAM parameter sets use the default values *attrac* = *repulse* =
Setting *repuls* = *attrac* = *delta* corresponds to the form used in several
recent published MEAM parameter sets, such as :ref:`(Valone) <Valone>`
----------
.. include:: accel_styles.rst
----------
.. note::
The default form of the *erose* expression in LAMMPS was corrected