This commit is contained in:
Axel Kohlmeyer
2023-04-12 03:35:37 -04:00
parent e506dd738b
commit bfe40a324a

View File

@ -94,22 +94,22 @@ The formulas for the AMOEBA energy terms are:
.. math:: .. math::
U_{hal} = \epsilon_{ij} \left( \frac{1.07}{\rho_{ij} + 0.07} \right)^7 \left( \frac{1.12}{\rho_{ij}^7 + 0.12} - 2 \right) U_{hal} = & \epsilon_{ij} \left( \frac{1.07}{\rho_{ij} + 0.07} \right)^7 \left( \frac{1.12}{\rho_{ij}^7 + 0.12} - 2 \right) \\
U_{multipole} = \vec{M_i}\bold{T_{ij}}\vec{M_j} U_{multipole} = & \vec{M}_i\boldsymbol{T_{ij}}\vec{M}_j, \quad \mbox{with} \quad
\vec{M} = \left( q, \vec{\mu_{perm}}, \bold{\Theta} \right) \vec{M} = \left(q, \vec{\mu}_{perm}, \boldsymbol{\Theta} \right) \\
U_{polar} = \frac{1}{2}\vec{\mu_i}^{ind} \vec{E_i}^{perm} U_{polar} = & \frac{1}{2}\vec{\mu}_i^{ind} \vec{E}_i^{perm}
The formulas for the HIPPO energy terms are: The formulas for the HIPPO energy terms are:
.. math:: .. math::
U_{multipole} = Z_i \frac{1}{r_{ij}} Z_j + Z_i T_{ij}^{damp} \vec{M_j} + Z_j T_{ji}^{damp} \vec{M_i} + \vec{M_i} T_{ij}^{damp} \vec{M_j} U_{multipole} = & Z_i \frac{1}{r_{ij}} Z_j + Z_i T_{ij}^{damp} \vec{M}_j + Z_j T_{ji}^{damp} \vec{M}_i + \vec{M}_i T_{ij}^{damp} \vec{M}_j, \quad \mbox{with} \quad
\vec{M} = \left( Q, \vec{\mu_{perm}}, \bold{\Theta} \right) \vec{M} = \left(q, \vec{\mu}_{perm}, \boldsymbol{\Theta} \right) \\
U_{polar} = \frac{1}{2}\vec{\mu_i}^{ind} \vec{E_i}^{perm} U_{polar} = & \frac{1}{2}\vec{\mu}_i^{ind} \vec{E}_i^{perm} \\
U_{qxfer} = \epsilon_i e^{-\eta_j r_{ij}} + \epsilon_j e^{-\eta_i r_{ij}} U_{qxfer} = & \epsilon_i e^{-\eta_j r_{ij}} + \epsilon_j e^{-\eta_i r_{ij}} \\
U_{repulsion} = \frac{K_i K_j}{r_{ij}} S^2 U_{repulsion} = & \frac{K_i K_j}{r_{ij}} S^2
S^2 = \left( \int{\phi_i \phi_j} dv \right)^2 = \vec{M_i}\bold{T_{ij}^{repulsion}}\vec{M_j} S^2 = \left( \int{\phi_i \phi_j} dv \right)^2 = \vec{M}_i\boldsymbol{T_{ij}^{repulsion}}\vec{M}_j \\
U_{dispersion} = -\frac{C_6^iC_6^j}{r_{ij}^6} \left( f_{damp}^{dispersion} \right)_{ij}^2 U_{dispersion} = & -\frac{C_6^iC_6^j}{r_{ij}^6} \left( f_{damp}^{dispersion} \right)_{ij}^2
.. note:: .. note::