Drafting bpm/plastic doc page

This commit is contained in:
jtclemm
2025-01-30 11:42:26 -07:00
parent 080df8cf74
commit dda72fee76

View File

@ -0,0 +1,183 @@
.. index:: bond_style bpm/spring/plastic
bond_style bpm/spring/plastic command
=====================================
Syntax
""""""
.. code-block:: LAMMPS
bond_style bpm/spring/plastic keyword value attribute1 attribute2 ...
* optional keyword = *overlay/pair* or *store/local* or *smooth* or *break*
.. parsed-literal::
*store/local* values = fix_ID N attributes ...
* fix_ID = ID of associated internal fix to store data
* N = prepare data for output every this many timesteps
* attributes = zero or more of the below attributes may be appended
*id1, id2* = IDs of two atoms in the bond
*time* = the timestep the bond broke
*x, y, z* = the center of mass position of the two atoms when the bond broke (distance units)
*x/ref, y/ref, z/ref* = the initial center of mass position of the two atoms (distance units)
*overlay/pair* value = *yes* or *no*
bonded particles will still interact with pair forces
*smooth* value = *yes* or *no*
smooths bond forces near the breaking point
*normalize* value = *yes* or *no*
normalizes bond forces by the reference length
*break* value = *yes* or *no*
indicates whether bonds break during a run
Examples
""""""""
.. code-block:: LAMMPS
bond_style bpm/spring/plastic
bond_coeff 1 1.0 0.05 0.1 0.02
bond_style bpm/spring/plastic myfix 1000 time id1 id2
dump 1 all local 1000 dump.broken f_myfix[1] f_myfix[2] f_myfix[3]
dump_modify 1 write_header no
Description
"""""""""""
.. versionadded:: TBD
The *bpm/spring/plastic* bond style computes forces based on
deviations from the initial reference state of the two atoms and the
strain history. The reference length of the bond :math:`r_0` is stored
by each bond when it is first computed in the setup of a run. Initially,
the equilibrium length of each bond :math:`r_\mathrm{eq}` is set equal
to :math:`r_0` but can evolve. data is then preserved across run commands
and is written to :doc:`binary restart files <restart>` such that restarting
the system will not modify either of these quantities.
This bond style only applies central-body forces which conserve the
translational and rotational degrees of freedom of a bonded set of
particles. The force has a magnitude of
.. math::
F = -k (r_\mathrm{eq} - r) w
where :math:`k` is a stiffness, :math:`r` is the current distance between
the two particles, and :math:`w` is an optional smoothing factor discussed
below. If the bond stretches beyond a strain of :math:`\epsilon_p`, it will
plastically activate and :math:`r_\mathrm{eq}` will evolve to ensure
:math:`|(r-r_\mathrm{eq})/r_\mathrm{eq}|` never exceeds :math:`\epsilon_p`.
Therefore, in pure tension, the force initially grows elastically before
plateauing. See :ref:`(Clemmer) <plastic-Clemmer>` for more details on
these mechanics.
Bonds will break at a strain of :math:`\epsilon_c`. This is done by setting
the bond type to 0 such that forces are no longer computed.
An additional damping force is applied to the bonded
particles. This forces is proportional to the difference in the
normal velocity of particles:
.. math::
F_D = - \gamma w (\hat{r} \bullet \vec{v})
where :math:`\gamma` is the damping strength, :math:`\hat{r}` is the
radial normal vector, and :math:`\vec{v}` is the velocity difference
between the two particles.
The smoothing factor :math:`w` is constructed such that forces smoothly
go to zero, avoiding discontinuities, as bonds approach the critical
breaking strain
.. math::
w = 1.0 - \left( \frac{r - r_0}{r_0 \epsilon_c} \right)^8 .
The following coefficients must be defined for each bond type via the
:doc:`bond_coeff <bond_coeff>` command as in the example above, or in
the data file or restart files read by the :doc:`read_data
<read_data>` or :doc:`read_restart <read_restart>` commands:
* :math:`k` (force/distance units)
* :math:`\epsilon_c` (unit less)
* :math:`\gamma` (force/velocity units)
* :math:`\epsilon_p (unit less)
See the :doc:`bpm/spring doc page <bond_bpm_spring>` for information on
the *smooth*, *normalize*, *break*, *overlay/pair*, and *store/local*
keywords.
Note that when unbroken bonds are dumped to a file via the
:doc:`dump local <dump>` command, bonds with type 0 (broken bonds)
are not included.
The :doc:`delete_bonds <delete_bonds>` command can also be used to
query the status of broken bonds or permanently delete them, e.g.:
.. code-block:: LAMMPS
delete_bonds all stats
delete_bonds all bond 0 remove
----------
Restart and other info
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
This bond style writes the reference state and plastic history of each
bond to :doc:`binary restart files <restart>`. Loading a restart
file will properly restore bonds. However, the reference state is NOT
written to data files. Therefore reading a data file will not
restore bonds and will cause their reference states to be redefined.
The potential energy and the single() function of this bond style returns zero.
The single() function also calculates two extra bond quantities, the initial
distance :math:`r_0` and the current equilbrium length :math:`r_eq`. These extra
quantities can be accessed by the :doc:`compute bond/local <compute_bond_local>`
command as *b1* and *b2*\ .
Restrictions
""""""""""""
This bond style is part of the BPM package. It is only enabled if
LAMMPS was built with that package. See the :doc:`Build package
<Build_package>` page for more info.
By default if pair interactions between bonded atoms are to be disabled,
this bond style requires setting
.. code-block:: LAMMPS
special_bonds lj 0 1 1 coul 1 1 1
and :doc:`newton <newton>` must be set to bond off. If the *overlay/pair*
keyword is set to *yes*, this bond style alternatively requires setting
.. code-block:: LAMMPS
special_bonds lj/coul 1 1 1
Related commands
""""""""""""""""
:doc:`bond_coeff <bond_coeff>`, :doc:`bond bpm/spring <bond_bpm_spring>`
Default
"""""""
The option defaults are *overlay/pair* = *no*, *smooth* = *yes*, *normalize* = *no*, and *break* = *yes*
----------
.. _plastic-Clemmer:
**(Clemmer)** Clemmer and Lechman, Powder Technology (2025).