Merge branch 'master' into lammps-icms

This commit is contained in:
Axel Kohlmeyer
2016-09-28 06:29:41 -04:00
129 changed files with 12199 additions and 4094 deletions

View File

@ -1,10 +1,46 @@
Generation of LAMMPS Documentation
LAMMPS Documentation
Depending on how you obtained LAMMPS, this directory has 2 or 3
sub-directories and optionally 2 PDF files:
src content files for LAMMPS documentation
html HTML version of the LAMMPS manual (see html/Manual.html)
tools tools and settings for building the documentation
Manual.pdf large PDF version of entire manual
Developer.pdf small PDF with info about how LAMMPS is structured
If you downloaded LAMMPS as a tarball from the web site, all these
directories and files should be included.
If you downloaded LAMMPS from the public SVN or Git repositories, then
the HTML and PDF files are not included. Instead you need to create
them, in one of three ways:
(a) You can "fetch" the current HTML and PDF files from the LAMMPS web
site. Just type "make fetch". This should create a html_www dir and
Manual_www.pdf/Developer_www.pdf files. Note that if new LAMMPS
features have been added more recently than the date of your version,
the fetched documentation will include those changes (but your source
code will not, unless you update your local repository).
(b) You can build the HTML and PDF files yourself, by typing "make
html" followed by "make pdf". Note that the PDF make requires the
HTML files already exist. This requires various tools including
Sphinx, which the build process will attempt to download and install
on your system, if not already available. See more details below.
(c) You can genererate an older, simpler, less-fancy style of HTML
documentation by typing "make old". This will create an "old"
directory. This can be useful if (b) does not work on your box for
some reason, or you want to quickly view the HTML version of a doc
page you have created or edited yourself within the src directory.
E.g. if you are planning to submit a new feature to LAMMPS.
----------------
The generation of all documentation is managed by the Makefile in this
dir.
----------------
Options:
make html # generate HTML in html dir using Sphinx
@ -51,3 +87,10 @@ Once Python 3 is installed, open a Terminal and type
pip3 install virtualenv
This will install virtualenv from the Python Package Index.
----------------
Installing prerequisites for PDF build

View File

@ -1,7 +1,7 @@
<!-- HTML_ONLY -->
<HEAD>
<TITLE>LAMMPS Users Manual</TITLE>
<META NAME="docnumber" CONTENT="21 Sep 2016 version">
<META NAME="docnumber" CONTENT="28 Sep 2016 version">
<META NAME="author" CONTENT="http://lammps.sandia.gov - Sandia National Laboratories">
<META NAME="copyright" CONTENT="Copyright (2003) Sandia Corporation. This software and manual is distributed under the GNU General Public License.">
</HEAD>
@ -21,7 +21,7 @@
<H1></H1>
LAMMPS Documentation :c,h3
21 Sep 2016 version :c,h4
28 Sep 2016 version :c,h4
Version info: :h4

View File

@ -501,6 +501,7 @@ USER-INTEL, k = KOKKOS, o = USER-OMP, t = OPT.
"bond/create"_fix_bond_create.html,
"bond/swap"_fix_bond_swap.html,
"box/relax"_fix_box_relax.html,
"cmap"_fix_cmap.html,
"controller"_fix_controller.html,
"deform (k)"_fix_deform.html,
"deposit"_fix_deposit.html,

View File

@ -105,8 +105,8 @@ web site.
If you uncomment the "dump image"_dump_image.html line(s) in the input
script a series of JPG images will be produced by the run (assuming
you built LAMMPS with JPG support; see "Section start
2.2"_Section_start.html for details). These can be viewed
you built LAMMPS with JPG support; see "Section
2.2"_Section_start.html#start_2 for details). These can be viewed
individually or turned into a movie or animated by tools like
ImageMagick or QuickTime or various Windows-based tools. See the
"dump image"_dump_image.html doc page for more details. E.g. this
@ -136,5 +136,5 @@ The USER directory has a large number of sub-directories which
correspond by name to a USER package. They contain scripts that
illustrate how to use the command(s) provided in that package. Many
of the sub-directories have their own README files which give further
instructions. See the "Section packages"_Section_packages.html doc
instructions. See the "Section 4"_Section_packages.html doc
page for more info on specific USER packages.

View File

@ -2123,7 +2123,7 @@ thermo_style custom step temp press v_pxy v_pxz v_pyz v_v11 v_v22 v_v33
run 100000
variable v equal (v_v11+v_v22+v_v33)/3.0
variable ndens equal count(all)/vol
print "average viscosity: $v \[Pa.s/] @ $T K, $\{ndens\} /A^3" :pre
print "average viscosity: $v \[Pa.s\] @ $T K, $\{ndens\} /A^3" :pre
The fifth method is related to the above Green-Kubo method,
but uses the Einstein formulation, analogous to the Einstein

View File

@ -71,16 +71,16 @@ Package, Description, Author(s), Doc page, Example, Library
"COMPRESS"_#COMPRESS, I/O compression, Axel Kohlmeyer (Temple U), "dump */gz"_dump.html, -, -
"CORESHELL"_#CORESHELL, adiabatic core/shell model, Hendrik Heenen (Technical U of Munich), "Section 6.6.25"_Section_howto.html#howto_25, coreshell, -
"DIPOLE"_#DIPOLE, point dipole particles, -, "pair_style dipole/cut"_pair_dipole.html, dipole, -
"GPU"_#GPU, GPU-enabled styles, Mike Brown (ORNL), "Section accelerate"_accelerate_gpu.html, gpu, lib/gpu
"GPU"_#GPU, GPU-enabled styles, Mike Brown (ORNL), "Section 5.3.1"_accelerate_gpu.html, gpu, lib/gpu
"GRANULAR"_#GRANULAR, granular systems, -, "Section 6.6.6"_Section_howto.html#howto_6, pour, -
"KIM"_#KIM, openKIM potentials, Smirichinski & Elliot & Tadmor (3), "pair_style kim"_pair_kim.html, kim, KIM
"KOKKOS"_#KOKKOS, Kokkos-enabled styles, Trott & Moore (4), "Section 5"_accelerate_kokkos.html, kokkos, lib/kokkos
"KOKKOS"_#KOKKOS, Kokkos-enabled styles, Trott & Moore (4), "Section 5.3.3"_accelerate_kokkos.html, kokkos, lib/kokkos
"KSPACE"_#KSPACE, long-range Coulombic solvers, -, "kspace_style"_kspace_style.html, peptide, -
"MANYBODY"_#MANYBODY, many-body potentials, -, "pair_style tersoff"_pair_tersoff.html, shear, -
"MEAM"_#MEAM, modified EAM potential, Greg Wagner (Sandia), "pair_style meam"_pair_meam.html, meam, lib/meam
"MC"_#MC, Monte Carlo options, -, "fix gcmc"_fix_gcmc.html, -, -
"MOLECULE"_#MOLECULE, molecular system force fields, -, "Section 6.6.3"_Section_howto.html#howto_3, peptide, -
"OPT"_#OPT, optimized pair styles, Fischer & Richie & Natoli (2), "Section accelerate"_accelerate_opt.html, -, -
"OPT"_#OPT, optimized pair styles, Fischer & Richie & Natoli (2), "Section 5.3.5"_accelerate_opt.html, -, -
"PERI"_#PERI, Peridynamics models, Mike Parks (Sandia), "pair_style peri"_pair_peri.html, peri, -
"POEMS"_#POEMS, coupled rigid body motion, Rudra Mukherjee (JPL), "fix poems"_fix_poems.html, rigid, lib/poems
"PYTHON"_#PYTHON, embed Python code in an input script, -, "python"_python.html, python, lib/python
@ -126,7 +126,6 @@ of the LAMMPS distribution. See the lib/package/README file for info
on how to build the library. If it is not listed as lib/package, then
it is a third-party library not included in the LAMMPS distribution.
See details on all of this below for individual packages.
p.s.: are we ever going to get commit messages from you? ;-)
:line
@ -149,7 +148,7 @@ make machine :pre
Make.py -p ^asphere -a machine :pre
Supporting info: "Section howto 6.14"_Section_howto.html#howto_14,
Supporting info: "Section 6.14"_Section_howto.html#howto_14,
"pair_style gayberne"_pair_gayberne.html, "pair_style
resquared"_pair_resquared.html,
"doc/PDF/pair_gayberne_extra.pdf"_PDF/pair_gayberne_extra.pdf,
@ -278,9 +277,8 @@ Contents: Compute and pair styles that implement the adiabatic
core/shell model for polarizability. The compute temp/cs command
measures the temperature of a system with core/shell particles. The
pair styles augment Born, Buckingham, and Lennard-Jones styles with
core/shell capabilities. See "Section howto
6.26"_Section_howto.html#howto_26 for an overview of how to use the
package.
core/shell capabilities. See "Section 6.26"_Section_howto.html#howto_26
for an overview of how to use the package.
To install via make or Make.py:
@ -296,8 +294,8 @@ make machine :pre
Make.py -p ^coreshell -a machine :pre
Supporting info: "Section howto
6.26"_Section_howto.html#howto_26, "compute temp/cs"_compute_temp_cs.html,
Supporting info: "Section 6.26"_Section_howto.html#howto_26,
"compute temp/cs"_compute_temp_cs.html,
"pair_style born/coul/long/cs"_pair_cs.html, "pair_style
buck/coul/long/cs"_pair_cs.html, pair_style
lj/cut/coul/long/cs"_pair_lj.html, examples/coreshell
@ -334,7 +332,7 @@ GPU package :link(GPU),h5
Contents: Dozens of pair styles and a version of the PPPM long-range
Coulombic solver for NVIDIA GPUs. All of them have a "gpu" in their
style name. "Section accelerate gpu"_accelerate_gpu.html gives
style name. "Section 5.3.1"_accelerate_gpu.html gives
details of what hardware and Cuda software is required on your system,
and how to build and use this package. See the KOKKOS package, which
also has GPU-enabled styles.
@ -379,10 +377,11 @@ make machine :pre
Make.py -p ^gpu -a machine :pre
Supporting info: src/GPU/README, lib/gpu/README, "Section
acclerate"_Section_accelerate.html, "Section accelerate
gpu"_accelerate_gpu.html, Pair Styles section of "Section commands
3.5"_Section_commands.html#cmd_5 for any pair style listed with a (g),
Supporting info: src/GPU/README, lib/gpu/README,
"Section 5.3"_Section_accelerate.html#acc_3,
"Section 5.3.1"_accelerate_gpu.html,
Pair Styles section of "Section 3.5"_Section_commands.html#cmd_5
for any pair style listed with a (g),
"kspace_style"_kspace_style.html, "package gpu"_package.html,
examples/accelerate, bench/FERMI, bench/KEPLER
@ -408,7 +407,7 @@ make machine :pre
Make.py -p ^granular -a machine :pre
Supporting info: "Section howto 6.6"_Section_howto.html#howto_6, "fix
Supporting info: "Section 6.6"_Section_howto.html#howto_6, "fix
pour"_fix_pour.html, "fix wall/gran"_fix_wall_gran.html, "pair_style
gran/hooke"_pair_gran.html, "pair_style
gran/hertz/history"_pair_gran.html, examples/pour, bench/in.chute
@ -452,7 +451,7 @@ Contents: Dozens of atom, pair, bond, angle, dihedral, improper styles
which run with the Kokkos library to provide optimization for
multicore CPUs (via OpenMP), NVIDIA GPUs, or the Intel Xeon Phi (in
native mode). All of them have a "kk" in their style name. "Section
accelerate kokkos"_accelerate_kokkos.html gives details of what
5.3.3"_accelerate_kokkos.html gives details of what
hardware and software is required on your system, and how to build and
use this package. See the GPU, OPT, USER-INTEL, USER-OMP packages,
which also provide optimizations for the same range of hardware.
@ -472,9 +471,8 @@ the KOKKOS_ARCH setting in Makefile.kokkos_cuda), Or, as illustrated
below, you can use the Make.py script with its "-kokkos" option to
choose which hardware to build for. Type "python src/Make.py -h
-kokkos" to see the details. If these methods do not work on your
system, you will need to read the "Section accelerate
kokkos"_accelerate_kokkos.html doc page for details of what
Makefile.machine settings are needed.
system, you will need to read the "Section 5.3.3"_accelerate_kokkos.html
doc page for details of what Makefile.machine settings are needed.
To install via make or Make.py for each of 3 hardware options:
@ -494,11 +492,11 @@ make machine :pre
Make.py -p ^kokkos -a machine :pre
Supporting info: src/KOKKOS/README, lib/kokkos/README, "Section
acclerate"_Section_accelerate.html, "Section accelerate
kokkos"_accelerate_kokkos.html, Pair Styles section of "Section
commands 3.5"_Section_commands.html#cmd_5 for any pair style listed
with a (k), "package kokkos"_package.html,
Supporting info: src/KOKKOS/README, lib/kokkos/README,
"Section 5.3"_Section_accelerate.html#acc_3,
"Section 5.3.3"_accelerate_kokkos.html,
Pair Styles section of "Section 3.5"_Section_commands.html#cmd_5
for any pair style listed with a (k), "package kokkos"_package.html,
examples/accelerate, bench/FERMI, bench/KEPLER
:line
@ -513,7 +511,7 @@ particle-mesh (PPPM), and multilevel summation method (MSM) solvers.
Building with the KSPACE package requires a 1d FFT library be present
on your system for use by the PPPM solvers. This can be the KISS FFT
library provided with LAMMPS, or 3rd party libraries like FFTW or a
vendor-supplied FFT library. See step 6 of "Section start
vendor-supplied FFT library. See step 6 of "Section
2.2.2"_Section_start.html#start_2_2 of the manual for details of how
to select different FFT options in your machine Makefile. The Make.py
tool has an "-fft" option which can insert these settings into your
@ -535,12 +533,13 @@ make machine :pre
Make.py -p ^kspace -a machine :pre
Supporting info: "kspace_style"_kspace_style.html,
"doc/PDF/kspace.pdf"_PDF/kspace.pdf, "Section howto
6.7"_Section_howto.html#howto_7, "Section howto
6.8"_Section_howto.html#howto_8, "Section howto
6.9"_Section_howto.html#howto_9, "pair_style coul"_pair_coul.html,
other pair style command doc pages which have "long" or "msm" in their
style name, examples/peptide, bench/in.rhodo
"doc/PDF/kspace.pdf"_PDF/kspace.pdf,
"Section 6.7"_Section_howto.html#howto_7,
"Section 6.8"_Section_howto.html#howto_8,
"Section 6.9"_Section_howto.html#howto_9,
"pair_style coul"_pair_coul.html, other pair style command doc pages
which have "long" or "msm" in their style name,
examples/peptide, bench/in.rhodo
:line
@ -567,7 +566,7 @@ Make.py -p ^manybody -a machine :pre
Supporting info:
Examples: Pair Styles section of "Section commands
Examples: Pair Styles section of "Section
3.5"_Section_commands.html#cmd_5, examples/comb, examples/eim,
examples/nb3d, examples/vashishta
@ -699,9 +698,9 @@ Supporting info:"atom_style"_atom_style.html,
"dihedral_style"_dihedral_style.html,
"improper_style"_improper_style.html, "pair_style
hbond/dreiding/lj"_pair_hbond_dreiding.html, "pair_style
lj/charmm/coul/charmm"_pair_charmm.html, "Section howto
6.3"_Section_howto.html#howto_3, examples/micelle, examples/peptide,
bench/in.chain, bench/in.rhodo
lj/charmm/coul/charmm"_pair_charmm.html,
"Section 6.3"_Section_howto.html#howto_3,
examples/micelle, examples/peptide, bench/in.chain, bench/in.rhodo
:line
@ -737,7 +736,7 @@ OPT package :link(OPT),h5
Contents: A handful of pair styles with an "opt" in their style name
which are optimized for improved CPU performance on single or multiple
cores. These include EAM, LJ, CHARMM, and Morse potentials. "Section
accelerate opt"_accelerate_opt.html gives details of how to build and
5.3.5"_accelerate_opt.html gives details of how to build and
use this package. See the KOKKOS, USER-INTEL, and USER-OMP packages,
which also have styles optimized for CPU performance.
@ -762,10 +761,10 @@ make machine :pre
Make.py -p ^opt -a machine :pre
Supporting info: "Section acclerate"_Section_accelerate.html, "Section
accelerate opt"_accelerate_opt.html, Pair Styles section of "Section
commands 3.5"_Section_commands.html#cmd_5 for any pair style listed
with an (o), examples/accelerate, bench/KEPLER
Supporting info: "Section 5.3"_Section_accelerate.html#acc_3,
"Section 5.3.5"_accelerate_opt.html, Pair Styles section of
"Section 3.5"_Section_commands.html#cmd_5 for any pair style
listed with an (t), examples/accelerate, bench/KEPLER
:line
@ -844,14 +843,14 @@ PYTHON package :link(PYTHON),h5
Contents: A "python"_python.html command which allow you to execute
Python code from a LAMMPS input script. The code can be in a separate
file or embedded in the input script itself. See "Section python
11.2"_Section_python.html" for an overview of using Python from
file or embedded in the input script itself. See "Section
11.2"_Section_python.html#py_2 for an overview of using Python from
LAMMPS and for other ways to use LAMMPS and Python together.
Building with the PYTHON package assumes you have a Python shared
library available on your system, which needs to be a Python 2
version, 2.6 or later. Python 3 is not supported. The build uses the
contents of the lib/python/Makefile.lammps file to find all the Python
version, 2.6 or later. Python 3 is not yet supported. The build uses
the contents of the lib/python/Makefile.lammps file to find all the Python
files required in the build/link process. See the lib/python/README
file if the settings in that file do not work on your system. Note
that the Make.py script has a "-python" option to allow an alternate
@ -949,7 +948,7 @@ REPLICA package :link(REPLICA),h5
Contents: A collection of multi-replica methods that are used by
invoking multiple instances (replicas) of LAMMPS
simulations. Communication between individual replicas is performed in
different ways by the different methods. See "Section howto
different ways by the different methods. See "Section
6.5"_Section_howto.html#howto_5 for an overview of how to run
multi-replica simulations in LAMMPS. Multi-replica methods included
in the package are nudged elastic band (NEB), parallel replica
@ -972,7 +971,7 @@ make machine :pre
Make.py -p ^replica -a machine :pre
Supporting info: "Section howto 6.5"_Section_howto.html#howto_5,
Supporting info: "Section 6.5"_Section_howto.html#howto_5,
"neb"_neb.html, "prd"_prd.html, "tad"_tad.html, "temper"_temper.html,
"run_style verlet/split"_run_style.html, examples/neb, examples/prd,
examples/tad
@ -1147,13 +1146,13 @@ Package, Description, Author(s), Doc page, Example, Pic/movie, Library
"USER-EFF"_#USER-EFF, electron force field, Andres Jaramillo-Botero (Caltech), "pair_style eff/cut"_pair_eff.html, USER/eff, "eff"_eff, -
"USER-FEP"_#USER-FEP, free energy perturbation, Agilio Padua (U Blaise Pascal Clermont-Ferrand), "compute fep"_compute_fep.html, USER/fep, -, -
"USER-H5MD"_#USER-H5MD, dump output via HDF5, Pierre de Buyl (KU Leuven), "dump h5md"_dump_h5md.html, -, -, lib/h5md
"USER-INTEL"_#USER-INTEL, Vectorized CPU and Intel(R) coprocessor styles, W. Michael Brown (Intel), "Section accelerate"_accelerate_intel.html, examples/intel, -, -
"USER-INTEL"_#USER-INTEL, Vectorized CPU and Intel(R) coprocessor styles, W. Michael Brown (Intel), "Section 5.3.2"_accelerate_intel.html, examples/intel, -, -
"USER-LB"_#USER-LB, Lattice Boltzmann fluid, Colin Denniston (U Western Ontario), "fix lb/fluid"_fix_lb_fluid.html, USER/lb, -, -
"USER-MGPT"_#USER-MGPT, fast MGPT multi-ion potentials, Tomas Oppelstrup & John Moriarty (LLNL), "pair_style mgpt"_pair_mgpt.html, USER/mgpt, -, -
"USER-MISC"_#USER-MISC, single-file contributions, USER-MISC/README, USER-MISC/README, -, -, -
"USER-MANIFOLD"_#USER-MANIFOLD, motion on 2d surface, Stefan Paquay (Eindhoven U of Technology), "fix manifoldforce"_fix_manifoldforce.html, USER/manifold, "manifold"_manifold, -
"USER-MOLFILE"_#USER-MOLFILE, "VMD"_VMD molfile plug-ins, Axel Kohlmeyer (Temple U), "dump molfile"_dump_molfile.html, -, -, VMD-MOLFILE
"USER-OMP"_#USER-OMP, OpenMP threaded styles, Axel Kohlmeyer (Temple U), "Section accelerate"_accelerate_omp.html, -, -, -
"USER-OMP"_#USER-OMP, OpenMP threaded styles, Axel Kohlmeyer (Temple U), "Section 5.3.4"_accelerate_omp.html, -, -, -
"USER-PHONON"_#USER-PHONON, phonon dynamical matrix, Ling-Ti Kong (Shanghai Jiao Tong U), "fix phonon"_fix_phonon.html, USER/phonon, -, -
"USER-QMMM"_#USER-QMMM, QM/MM coupling, Axel Kohlmeyer (Temple U), "fix qmmm"_fix_qmmm.html, USER/qmmm, -, lib/qmmm
"USER-QTB"_#USER-QTB, quantum nuclear effects, Yuan Shen (Stanford), "fix qtb"_fix_qtb.html "fix qbmsst"_fix_qbmsst.html, qtb, -, -
@ -1352,12 +1351,12 @@ USER-DRUDE package :link(USER-DRUDE),h5
Contents: This package contains methods for simulating polarizable
systems using thermalized Drude oscillators. It has computes, fixes,
and pair styles for this purpose. See "Section howto
and pair styles for this purpose. See "Section
6.27"_Section_howto.html#howto_27 for an overview of how to use the
package. See src/USER-DRUDE/README for additional details. There are
auxiliary tools for using this package in tools/drude.
Supporting info: "Section howto 6.27"_Section_howto.html#howto_27,
Supporting info: "Section 6.27"_Section_howto.html#howto_27,
src/USER-DRUDE/README, "fix drude"_fix_drude.html, "fix
drude/transform/*"_fix_drude_transform.html, "compute
temp/drude"_compute_temp_drude.html, "pair thole"_pair_thole.html,
@ -1431,7 +1430,7 @@ USER-INTEL package :link(USER-INTEL),h5
Contents: Dozens of pair, bond, angle, dihedral, and improper styles
that are optimized for Intel CPUs and the Intel Xeon Phi (in offload
mode). All of them have an "intel" in their style name. "Section
accelerate intel"_accelerate_intel.html gives details of what hardware
5.3.2"_accelerate_intel.html gives details of what hardware
and compilers are required on your system, and how to build and use
this package. Also see src/USER-INTEL/README for more details. See
the KOKKOS, OPT, and USER-OMP packages, which also have CPU and
@ -1439,7 +1438,7 @@ Phi-enabled styles.
Supporting info: examples/accelerate, src/USER-INTEL/TEST
"Section 5"_Section_accelerate.html#acc_3
"Section 5.3"_Section_accelerate.html#acc_3
Author: Mike Brown at Intel (michael.w.brown at intel.com). Contact
him directly if you have questions.
@ -1531,7 +1530,7 @@ More information about each feature can be found by reading its doc
page in the LAMMPS doc directory. The doc page which lists all LAMMPS
input script commands is as follows:
"Section 3"_Section_commands.html#cmd_5
"Section 3.5"_Section_commands.html#cmd_5
User-contributed features are listed at the bottom of the fix,
compute, pair, etc sections.
@ -1608,7 +1607,7 @@ styles, and fix styles.
See this section of the manual to get started:
"Section 5"_Section_accelerate.html#acc_3
"Section 5.3"_Section_accelerate.html#acc_3
The person who created this package is Axel Kohlmeyer at Temple U
(akohlmey at gmail.com). Contact him directly if you have questions.

View File

@ -51,7 +51,7 @@ of these 5 problems on 1 or 4 cores of Linux desktop. The bench/FERMI
and bench/KEPLER dirs have input files and scripts and instructions
for running the same (or similar) problems using OpenMP or GPU or Xeon
Phi acceleration options. See the README files in those dirs and the
"Section accelerate"_Section_accelerate.html doc pages for
"Section 5.3"_Section_accelerate.html#acc_3 doc pages for
instructions on how to build LAMMPS and run on that kind of hardware.
The bench/POTENTIALS directory has input files which correspond to the

View File

@ -21,7 +21,6 @@ experienced users.
2.8 "Screen output"_#start_8
2.9 "Tips for users of previous versions"_#start_9 :all(b)
:line
:line
2.1 What's in the LAMMPS distribution :h4,link(start_1)
@ -70,12 +69,12 @@ launch a LAMMPS Windows executable on a Windows box.
This section has the following sub-sections:
"Read this first"_#start_2_1
"Steps to build a LAMMPS executable"_#start_2_2
"Common errors that can occur when making LAMMPS"_#start_2_3
"Additional build tips"_#start_2_4
"Building for a Mac"_#start_2_5
"Building for Windows"_#start_2_6 :ul
2.2.1 "Read this first"_#start_2_1
2.2.1 "Steps to build a LAMMPS executable"_#start_2_2
2.2.3 "Common errors that can occur when making LAMMPS"_#start_2_3
2.2.4 "Additional build tips"_#start_2_4
2.2.5 "Building for a Mac"_#start_2_5
2.2.6 "Building for Windows"_#start_2_6 :all(b)
:line
@ -559,8 +558,7 @@ Typing "make clean-all" or "make clean-machine" will delete *.o object
files created when LAMMPS is built, for either all builds or for a
particular machine.
Changing the LAMMPS size limits via -DLAMMPS_SMALLBIG or
-DLAMMPS_BIGBIG or -DLAMMPS_SMALLSMALL :h6
Changing the LAMMPS size limits via -DLAMMPS_SMALLBIG or -DLAMMPS_BIGBIG or -DLAMMPS_SMALLSMALL :h6
As explained above, any of these 3 settings can be specified on the
LMP_INC line in your low-level src/MAKE/Makefile.foo.
@ -612,7 +610,7 @@ neighbor lists and would run very slowly in terms of CPU secs/timestep.
Building for a Mac :h5,link(start_2_5)
OS X is BSD Unix, so it should just work. See the
OS X is a derivative of BSD Unix, so it should just work. See the
src/MAKE/MACHINES/Makefile.mac and Makefile.mac_mpi files.
:line
@ -637,9 +635,9 @@ happy to distribute contributed instructions and modifications, but
we cannot provide support for those.
With the so-called "Anniversary Update" to Windows 10, there is a
Ubuntu subsystem available for Windows, that can be installed and
then it can be used to compile/install LAMMPS as if you are running
on a Ubuntu Linux system.
Ubuntu Linux subsystem available for Windows, that can be installed
and then used to compile/install LAMMPS as if you are running on a
Ubuntu Linux system instead of Windows.
As an alternative, you can download "daily builds" (and some older
versions) of the installer packages from
@ -654,10 +652,10 @@ many examples, but no source code.
This section has the following sub-sections:
"Package basics"_#start_3_1
"Including/excluding packages"_#start_3_2
"Packages that require extra libraries"_#start_3_3
"Packages that require Makefile.machine settings"_#start_3_4 :ul
2.3.1 "Package basics"_#start_3_1
2.3.2 "Including/excluding packages"_#start_3_2
2.3.3 "Packages that require extra libraries"_#start_3_3
2.3.4 "Packages that require Makefile.machine settings"_#start_3_4 :all(b)
Note that the following "Section 2.4"_#start_4 describes the Make.py
tool which can be used to install/un-install packages and build the
@ -673,7 +671,7 @@ are always included, plus optional packages. Packages are groups of
files that enable a specific set of features. For example, force
fields for molecular systems or granular systems are in packages.
"Section packages"_Section_packages.html in the manual has details
"Section 4"_Section_packages.html in the manual has details
about all the packages, including specific instructions for building
LAMMPS with each package, which are covered in a more general manner
below.
@ -727,15 +725,15 @@ before building LAMMPS. From the src directory, this is typically as
simple as:
make yes-colloid
make g++ :pre
make mpi :pre
or
make no-manybody
make g++ :pre
make mpi :pre
NOTE: You should NOT include/exclude packages and build LAMMPS in a
single make command using multiple targets, e.g. make yes-colloid g++.
single make command using multiple targets, e.g. make yes-colloid mpi.
This is because the make procedure creates a list of source files that
will be out-of-date for the build if the package configuration changes
within the same command.
@ -826,7 +824,7 @@ where to find them.
For libraries with provided code, the sub-directory README file
(e.g. lib/atc/README) has instructions on how to build that library.
This information is also summarized in "Section
packages"_Section_packages.html. Typically this is done by typing
4"_Section_packages.html. Typically this is done by typing
something like:
make -f Makefile.g++ :pre
@ -885,17 +883,17 @@ A few packages require specific settings in Makefile.machine, to
either build or use the package effectively. These are the
USER-INTEL, KOKKOS, USER-OMP, and OPT packages, used for accelerating
code performance on CPUs or other hardware, as discussed in "Section
acclerate"_Section_accelerate.html.
5.3"_Section_accelerate.html#acc_3.
A summary of what Makefile.machine changes are needed for each of
these packages is given in "Section packages"_Section_packages.html.
these packages is given in "Section 4"_Section_packages.html.
The details are given on the doc pages that describe each of these
accelerator packages in detail:
"USER-INTEL package"_accelerate_intel.html
"KOKKOS package"_accelerate_kokkos.html
"USER-OMP package"_accelerate_omp.html
"OPT package"_accelerate_opt.html :ul
5.3.1 "USER-INTEL package"_accelerate_intel.html
5.3.3 "KOKKOS package"_accelerate_kokkos.html
5.3.4 "USER-OMP package"_accelerate_omp.html
5.3.5 "OPT package"_accelerate_opt.html :all(b)
You can also look at the following machine Makefiles in
src/MAKE/OPTIONS, which include the changes. Note that the USER-INTEL
@ -1367,7 +1365,7 @@ Note that the keywords do not use a leading minus sign. I.e. the
keyword is "t", not "-t". Also note that each of the keywords has a
default setting. Example of when to use these options and what
settings to use on different platforms is given in "Section
5.8"_Section_accelerate.html#acc_3.
5.3"_Section_accelerate.html#acc_3.
d or device
g or gpus

View File

@ -107,9 +107,10 @@ The ch2lmp sub-directory contains tools for converting files
back-and-forth between the CHARMM MD code and LAMMPS.
They are intended to make it easy to use CHARMM as a builder and as a
post-processor for LAMMPS. Using charmm2lammps.pl, you can convert an
ensemble built in CHARMM into its LAMMPS equivalent. Using
lammps2pdb.pl you can convert LAMMPS atom dumps into pdb files.
post-processor for LAMMPS. Using charmm2lammps.pl, you can convert a
PDB file with associated CHARMM info, including CHARMM force field
data, into its LAMMPS equivalent. Using lammps2pdb.pl you can convert
LAMMPS atom dumps into PDB files.
See the README file in the ch2lmp sub-directory for more information.

View File

@ -156,19 +156,25 @@ CPU-only (run all-MPI or with OpenMP threading):
cd lammps/src
make yes-kokkos
make g++ KOKKOS_DEVICES=OpenMP :pre
make kokkos_omp :pre
Intel Xeon Phi:
CPU-only (only MPI, no threading):
cd lammps/src
make yes-kokkos
make g++ KOKKOS_DEVICES=OpenMP KOKKOS_ARCH=KNC :pre
make kokkos_mpi :pre
CPUs and GPUs:
Intel Xeon Phi (Intel Compiler, Intel MPI):
cd lammps/src
make yes-kokkos
make cuda KOKKOS_DEVICES=Cuda :pre
make kokkos_phi :pre
CPUs and GPUs (with MPICH):
cd lammps/src
make yes-kokkos
make kokkos_cuda_mpich :pre
These examples set the KOKKOS-specific OMP, MIC, CUDA variables on the
make command line which requires a GNU-compatible make command. Try
@ -180,26 +186,6 @@ first two examples above, then you *must* perform a "make clean-all"
or "make clean-machine" before each build. This is to force all the
KOKKOS-dependent files to be re-compiled with the new options.
You can also hardwire these make variables in the specified machine
makefile, e.g. src/MAKE/Makefile.g++ in the first two examples above,
with a line like:
KOKKOS_ARCH = KNC :pre
Note that if you build LAMMPS multiple times in this manner, using
different KOKKOS options (defined in different machine makefiles), you
do not have to worry about doing a "clean" in between. This is
because the targets will be different.
NOTE: The 3rd example above for a GPU, uses a different machine
makefile, in this case src/MAKE/Makefile.cuda, which is included in
the LAMMPS distribution. To build the KOKKOS package for a GPU, this
makefile must use the NVIDA "nvcc" compiler. And it must have a
KOKKOS_ARCH setting that is appropriate for your NVIDIA hardware and
installed software. Typical values for KOKKOS_ARCH are given below,
as well as other settings that must be included in the machine
makefile, if you create your own.
NOTE: Currently, there are no precision options with the KOKKOS
package. All compilation and computation is performed in double
precision.
@ -246,7 +232,7 @@ used if running with KOKKOS_DEVICES=Pthreads for pthreads. It is not
necessary for KOKKOS_DEVICES=OpenMP for OpenMP, because OpenMP
provides alternative methods via environment variables for binding
threads to hardware cores. More info on binding threads to cores is
given in "this section"_Section_accelerate.html#acc_3.
given in "Section 5.3"_Section_accelerate.html#acc_3.
KOKKOS_ARCH=KNC enables compiler switches needed when compling for an
Intel Phi processor.

View File

@ -7,7 +7,7 @@
:line
"Return to Section accelerate overview"_Section_accelerate.html
"Return to Section 5 overview"_Section_accelerate.html
5.3.4 USER-OMP package :h5
@ -103,8 +103,8 @@ USER-OMP style (in serial or parallel) with a single thread per MPI
task, versus running standard LAMMPS with its standard un-accelerated
styles (in serial or all-MPI parallelization with 1 task/core). This
is because many of the USER-OMP styles contain similar optimizations
to those used in the OPT package, described in "Section accelerate
5.3.6"_accelerate_opt.html.
to those used in the OPT package, described in "Section
5.3.5"_accelerate_opt.html.
With multiple threads/task, the optimal choice of number of MPI
tasks/node and OpenMP threads/task can vary a lot and should always be

View File

@ -10,7 +10,7 @@ balance command :h3
[Syntax:]
balance thresh style args ... keyword value ... :pre
balance thresh style args ... keyword args ... :pre
thresh = imbalance threshhold that must be exceeded to perform a re-balance :ulb,l
one style/arg pair can be used (or multiple for {x},{y},{z}) :l
@ -32,24 +32,24 @@ style = {x} or {y} or {z} or {shift} or {rcb} :l
Niter = # of times to iterate within each dimension of dimstr sequence
stopthresh = stop balancing when this imbalance threshhold is reached
{rcb} args = none :pre
zero or more optional keywords with their respective arguments may be appended :l
keyword = {out} or {weight} :l
{out} arg = filename
filename = write each processor's sub-domain to a file
{weight} style args = use weighted atom counts to compute the per processor load
zero or more keyword/arg pairs may be appended :l
keyword = {weight} or {out} :l
{weight} style args = use weighted particle counts for the balancing
{style} = {group} or {neigh} or {time} or {var} or {store}
{group} args = Ngroup groupID-1 weight-1 groupID-2 weight-2...
{group} args = Ngroup group1 weight1 group2 weight2 ...
Ngroup = number of groups with assigned weights
groupID-1, groupID-2, ... = group names
weight-1, weight-2, ... = corresponding weight factors
group1, group2, ... = group IDs
weight1, weight2, ... = corresponding weight factors
{neigh} factor = compute weight based on number of neighbors
factor = scaling factor (> 0)
{time} factor = compute weight based on time spend computing
factor = scaling factor (> 0)
{var} name = take weight from atom-style variable
name = name of the atom style variable
{store} name = store weight in custom atom property
name = name of the atom property (without d_ prefix) :pre
name = name of the atom-style variable
{store} name = store weight in custom atom property defined by "fix property/atom"_fix_property_atom.html command
name = atom property name (without d_ prefix)
{out} arg = filename
filename = write each processor's sub-domain to a file :pre
:ule
[Examples:]
@ -65,69 +65,35 @@ balance 1.0 shift x 20 1.0 out tmp.balance :pre
[Description:]
This command adjusts the size and shape of processor sub-domains
within the simulation box, to attempt to balance the number of
particles and thus indirectly the computational cost (load)
more evenly across processors. The load balancing is "static"
in the sense that this command performs the balancing once, before
or between simulations.
The processor sub-domains will then remain static during the
subsequent run. To perform "dynamic" balancing, see the "fix
within the simulation box, to attempt to balance the number of atoms
or particles and thus indirectly the computational cost (load) more
evenly across processors. The load balancing is "static" in the sense
that this command performs the balancing once, before or between
simulations. The processor sub-domains will then remain static during
the subsequent run. To perform "dynamic" balancing, see the "fix
balance"_fix_balance.html command, which can adjust processor
sub-domain sizes and shapes on-the-fly during a "run"_run.html.
With the optional {weight} keyword different weight factors can be
assigned to particles according several styles and balancing will
be performed on the weighted particle counts. Multiple weight
styles may be given and they are processed in order by multiplying
the existing weight factor, which defaults to 1.0 with the newly
computed weight factor. The {store} weight style is an exception,
as does not compute a weight, but instead stores the current
accumulated weights in a custom per-atom property defined with
"fix property/atom"_fix_property_atom.html.
The {group} weight style assigns fixed weight factors according
to which group atoms belong to. The {group} style keyword is
followed by the number of groups with custom weights
(default weight is 1.0) and pairs of group ID and the corresponding
weight factor. The final weight for each atom is the product of
all individual weight factors from the groups it belongs to.
An atom with a total weight of 5 then be will be considered to
have 5x the computational cost than an atom with the default weight
of 1.0.
The {neigh} weight style assigns weights computed from the number
of neighbors divided by the avergage number of neighbors. The
scaling factor argument determines the relative impact of this
weight factor. This weight style will use the first suitable neighbor
list that is internally available and by inactive and print a
warning, if there is not suitable list available. This is typically
the case before the first "run"_run.html or "minimize"_minimize.html
command is issued.
The {time} weight style allows to incorporate "timer data"_timer.html
into the load balancing cost function. The required weight factor
rgument (a number > 0) determines to which degree timing information
is included. The timer information is taken from the preceding run.
If no such information is available, e.g. at the beginning of an input,
of when the "timer"_timer.html level is set to either {loop} or {off},
this style is ignored.
The {var} weight style allows to set per-atom weights from an
atom-style "variable"_variable.html into the load balancing cost
function.
Load-balancing is typically most useful if the particles in the
simulation box have a spatially-varying density distribution or
where the computational cost varies signficantly between different
atoms. E.g. a model of a vapor/liquid interface, or a solid with
an irregular-shaped geometry containing void regions, or
"hybrid pair style simulations"_pair_hybrid.html which combine
pair styles with different computational cost. In these cases, the
LAMMPS default of dividing the simulation box volume into a
regular-spaced grid of 3d bricks, with one equal-volume sub-domain
per procesor, may assign numbers of particles per processor in a
way that the computational effort varies significantly. This can
lead to poor performance when the simulation is run in parallel.
simulation box have a spatially-varying density distribution or when
the computational cost varies signficantly between different
particles. E.g. a model of a vapor/liquid interface, or a solid with
an irregular-shaped geometry containing void regions, or "hybrid pair
style simulations"_pair_hybrid.html which combine pair styles with
different computational cost. In these cases, the LAMMPS default of
dividing the simulation box volume into a regular-spaced grid of 3d
bricks, with one equal-volume sub-domain per procesor, may assign
numbers of particles per processor in a way that the computational
effort varies significantly. This can lead to poor performance when
the simulation is run in parallel.
The balancing can be performed with or without per-particle weighting.
With no weighting, the balancing attempts to assign an equal number of
particles to each processor. With weighting, the balancing attempts
to assign an equal aggregate computational weight to each processor,
which typically inducces a diffrent number of atoms assigned to each
processor. Details on the various weighting options and examples for
how they can be used are "given below"_#weighted_balance.
Note that the "processors"_processors.html command allows some control
over how the box volume is split across processors. Specifically, for
@ -140,9 +106,9 @@ sub-domains will still have the same shape and same volume.
The requested load-balancing operation is only performed if the
current "imbalance factor" in particles owned by each processor
exceeds the specified {thresh} parameter. The imbalance factor is
defined as the maximum number of particles owned by any processor,
divided by the average number of particles per processor. Thus an
imbalance factor of 1.0 is perfect balance.
defined as the maximum number of particles (or weight) owned by any
processor, divided by the average number of particles (or weight) per
processor. Thus an imbalance factor of 1.0 is perfect balance.
As an example, for 10000 particles running on 10 processors, if the
most heavily loaded processor has 1200 particles, then the factor is
@ -196,11 +162,11 @@ The {x}, {y}, {z}, and {shift} styles are "grid" methods which produce
a logical 3d grid of processors. They operate by changing the cutting
planes (or lines) between processors in 3d (or 2d), to adjust the
volume (area in 2d) assigned to each processor, as in the following 2d
diagram where processor sub-domains are shown and atoms are colored by
the processor that owns them. The leftmost diagram is the default
partitioning of the simulation box across processors (one sub-box for
each of 16 processors); the middle diagram is after a "grid" method
has been applied.
diagram where processor sub-domains are shown and particles are
colored by the processor that owns them. The leftmost diagram is the
default partitioning of the simulation box across processors (one
sub-box for each of 16 processors); the middle diagram is after a
"grid" method has been applied.
:image(JPG/balance_uniform_small.jpg,JPG/balance_uniform.jpg),image(JPG/balance_nonuniform_small.jpg,JPG/balance_nonuniform.jpg),image(JPG/balance_rcb_small.jpg,JPG/balance_rcb.jpg)
:c
@ -208,9 +174,8 @@ has been applied.
The {rcb} style is a "tiling" method which does not produce a logical
3d grid of processors. Rather it tiles the simulation domain with
rectangular sub-boxes of varying size and shape in an irregular
fashion so as to have equal numbers of particles (or an equal
load in case weighted load-balancing is requested) in each sub-box,
as in the rightmost diagram above.
fashion so as to have equal numbers of particles (or weight) in each
sub-box, as in the rightmost diagram above.
The "grid" methods can be used with either of the
"comm_style"_comm_style.html command options, {brick} or {tiled}. The
@ -325,21 +290,129 @@ the longest dimension, leaving one new box on either side of the cut.
All the processors are also partitioned into 2 groups, half assigned
to the box on the lower side of the cut, and half to the box on the
upper side. (If the processor count is odd, one side gets an extra
processor.) The cut is positioned so that the number of atoms in the
lower box is exactly the number that the processors assigned to that
box should own for load balance to be perfect. This also makes load
balance for the upper box perfect. The positioning is done
iteratively, by a bisectioning method. Note that counting atoms on
either side of the cut requires communication between all processors
at each iteration.
processor.) The cut is positioned so that the number of particles in
the lower box is exactly the number that the processors assigned to
that box should own for load balance to be perfect. This also makes
load balance for the upper box perfect. The positioning is done
iteratively, by a bisectioning method. Note that counting particles
on either side of the cut requires communication between all
processors at each iteration.
That is the procedure for the first cut. Subsequent cuts are made
recursively, in exactly the same manner. The subset of processors
assigned to each box make a new cut in the longest dimension of that
box, splitting the box, the subset of processsors, and the atoms in
the box in two. The recursion continues until every processor is
assigned a sub-box of the entire simulation domain, and owns the atoms
in that sub-box.
box, splitting the box, the subset of processsors, and the particles
in the box in two. The recursion continues until every processor is
assigned a sub-box of the entire simulation domain, and owns the
particles in that sub-box.
:line
This sub-section describes how to perform weighted load balancing
using the {weight} keyword. :link(weighted_balance)
By default, all particles have a weight of 1.0, which means each
particle is assumed to require the same amount of computation during a
timestep. There are, however, scenarios where this is not a good
assumption. Measuring the computational cost for each particle
accurately would be impractical and slow down the computation.
Instead the {weight} keyword implements several ways to influence the
per-particle weights empirically by properties readily available or
using the user's knowledge of the system. Note that the absolute
value of the weights are not important; their ratio is what is used to
assign particles to processors. A particle with a weight of 2.5 is
assumed to require 5x more computational than a particle with a weight
of 0.5.
Below is a list of possible weight options with a short description of
their usage and some example scenarios where they might be applicable.
It is possible to apply multiple weight flags and the weightins they
induce will be combined through multiplication. Most of the time,
however, it is sufficient to use just one method.
The {group} weight style assigns weight factors to specified
"groups"_group.html of particles. The {group} style keyword is
followed by the number of groups, then pairs of group IDs and the
corresponding weight factor. If a particle belongs to none of the
specified groups, its weight is not changed. If it belongs to
multiple groups, its weight is the product of the weight factors.
This weight style is useful in combination with pair style
"hybrid"_pair_hybrid.html, e.g. when combining a more costly manybody
potential with a fast pair-wise potential. It is also useful when
using "run_style respa"_run_style.html where some portions of the
system have many bonded interactions and others none. It assumes that
the computational cost for each group remains constant over time.
This is a purely empirical weighting, so a series test runs to tune
the assigned weight factors for optimal performance is recommended.
The {neigh} weight style assigns a weight to each particle equal to
its number of neighbors divided by the avergage number of neighbors
for all particles. The {factor} setting is then appied as an overall
scale factor to all the {neigh} weights which allows tuning of the
impact of this style. A {factor} smaller than 1.0 (e.g. 0.8) often
results in the best performance, since the number of neighbors is
likely to overestimate the ideal weight.
This weight style is useful for systems where there are different
cutoffs used for different pairs of interations, or the density
fluctuates, or a large number of particles are in the vicinity of a
wall, or a combination of these effects. If a simulation uses
multiple neighbor lists, this weight style will use the first suitable
neighbor list it finds. It will not request or compute a new list. A
warning will be issued if there is no suitable neighbor list available
or if it is not current, e.g. if the balance command is used before a
"run"_run.html or "minimize"_minimize.html command is used, in which
case the neighbor list may not yet have been built. In this case no
weights are computed. Inserting a "run 0 post no"_run.html command
before issuing the {balance} command, may be a workaround for this
case, as it will induce the neighbor list to be built.
The {time} weight style uses "timer data"_timer.html to estimate a
weight for each particle. It uses the same information as is used for
the "MPI task timing breakdown"_Section_start.html#start_8, namely,
the timings for sections {Pair}, {Bond}, {Kspace}, and {Neigh}. The
time spent in these sections of the timestep are measured for each MPI
rank, summed up, then converted into a cost for each MPI rank relative
to the average cost over all MPI ranks for the same sections. That
cost then evenly distributed over all the particles owned by that
rank. Finally, the {factor} setting is then appied as an overall
scale factor to all the {time} weights as a way to fine tune the
impact of this weight style. Good {factor} values to use are
typically between 0.5 and 1.2.
For the {balance} command the timing data is taken from the preceding
run command, i.e. the timings are for the entire previous run. For
the {fix balance} command the timing data is for only the timesteps
since the last balancing operation was performed. If timing
information for the required sections is not available, e.g. at the
beginning of a run, or when the "timer"_timer.html command is set to
either {loop} or {off}, a warning is issued. In this case no weights
are computed.
This weight style is the most generic one, and should be tried first,
if neither the {group} or {neigh} styles are easily applicable.
However, since the computed cost function is averaged over all local
particles this weight style may not be highly accurate. This style
can also be effective as a secondary weight in combination with either
{group} or {neigh} to offset some of inaccuracies in either of those
heuristics.
The {var} weight style assigns per-particle weights by evaluating an
"atom-style variable"_variable.html specified by {name}. This is
provided as a more flexible alternative to the {group} weight style,
allowing definition of a more complex heuristics based on information
(global and per atom) available inside of LAMMPS. For example,
atom-style variables can reference the position of a particle, its
velocity, the volume of its Voronoi cell, etc.
The {store} weight style does not compute a weight factor. Instead it
stores the current accumulated weights in a custom per-atom property
specified by {name}. This must be a property defined as {d_name} via
the "fix property/atom"_fix_property_atom.html command. Note that
these custom per-atom properties can be output in a "dump"_dump.html
file, so this is a way to examine, debug, or visualize the
per-particle weights computed during the load-balancing operation.
:line

View File

@ -35,7 +35,12 @@ group/group"_compute_group_group.html only that the data is
accumulated directly during the non-bonded force computation. The
computes {force/tally}, {pe/tally}, {stress/tally}, and
{heat/flux/tally} are primarily provided as example how to program
additional, more sophisticated computes using the tally mechanism.
additional, more sophisticated computes using the tally callback
mechanism. Compute {pe/mol/tally} is one such style, that can
- through using this mechanism - separately tally intermolecular
and intramolecular energies. Something that would otherwise be
impossible without integrating this as a core functionality into
the based classes of LAMMPS.
:line
@ -56,7 +61,7 @@ atom scalar (the contributions of the single atom to the global
scalar). Compute {pe/mol/tally} calculates a global 4-element vector
containing (in this order): {evdwl} and {ecoul} for intramolecular pairs
and {evdwl} and {ecoul} for intermolecular pairs. Since molecules are
identified my their molecule IDs, the partitioning does not have to be
identified by their molecule IDs, the partitioning does not have to be
related to molecules, but the energies are tallied into the respective
slots depending on whether the molecule IDs of a pair are the same or
different. Compute {force/tally} calculates a global scalar (the force

View File

@ -328,8 +328,8 @@ bonds and colors.
Note that {atom}, {custom}, {dcd}, {xtc}, and {xyz} style dump files
can be read directly by "VMD"_http://www.ks.uiuc.edu/Research/vmd, a
popular molecular viewing program. See "Section
tools"_Section_tools.html#vmd of the manual and the
popular molecular viewing program. See
"Section 9"_Section_tools.html#vmd of the manual and the
tools/lmp2vmd/README.txt file for more information about support in
VMD for reading and visualizing LAMMPS dump files.
@ -390,7 +390,7 @@ Using MPI-IO requires two steps. First, build LAMMPS with its MPIIO
package installed, e.g.
make yes-mpiio # installs the MPIIO package
make g++ # build LAMMPS for your platform :pre
make mpi # build LAMMPS for your platform :pre
Second, use a dump filename which contains ".mpiio". Note that it
does not have to end in ".mpiio", just contain those characters.
@ -531,7 +531,7 @@ so that each value is 0.0 to 1.0. If the simulation box is triclinic
(tilted), then all atom coords will still be between 0.0 and 1.0.
I.e. actual unscaled (x,y,z) = xs*A + ys*B + zs*C, where (A,B,C) are
the non-orthogonal vectors of the simulation box edges, as discussed
in "Section howto 6.12"_Section_howto.html#howto_12.
in "Section 6.12"_Section_howto.html#howto_12.
Use {xu}, {yu}, {zu} if you want the coordinates "unwrapped" by the
image flags for each atom. Unwrapped means that if the atom has

View File

@ -34,7 +34,7 @@ to one or more files every N timesteps in one of several formats.
Only information for atoms in the specified group is dumped. This
specific dump style uses molfile plugins that are bundled with the
"VMD"_http://www.ks.uiuc.edu/Research/vmd molecular visualization and
analysis program. See "Section tools"_Section_tools.html#vmd of the
analysis program. See "Section 9"_Section_tools.html#vmd of the
manual and the tools/lmp2vmd/README.txt file for more information
about support in VMD for reading and visualizing native LAMMPS dump
files.

View File

@ -10,7 +10,7 @@ fix balance command :h3
[Syntax:]
fix ID group-ID balance Nfreq thresh style args keyword value ... :pre
fix ID group-ID balance Nfreq thresh style args keyword args ... :pre
ID, group-ID are documented in "fix"_fix.html command :ulb,l
balance = style name of this fix command :l
@ -22,24 +22,24 @@ style = {shift} or {rcb} :l
Niter = # of times to iterate within each dimension of dimstr sequence
stopthresh = stop balancing when this imbalance threshhold is reached
{rcb} args = none :pre
zero or more optional keywords with their respective arguments may be appended :l
keyword = {out} or {weight} :l
{out} arg = filename
filename = write each processor's sub-domain to a file
{weight} style args = use weighted atom counts to compute the per processor load
zero or more keyword/arg pairs may be appended :l
keyword = {weight} or {out} :l
{weight} style args = use weighted particle counts for the balancing
{style} = {group} or {neigh} or {time} or {var} or {store}
{group} args = Ngroup groupID-1 weight-1 groupID-2 weight-2...
{group} args = Ngroup group1 weight1 group2 weight2 ...
Ngroup = number of groups with assigned weights
groupID-1, groupID-2, ... = group names
weight-1, weight-2, ... = corresponding weight factors
group1, group2, ... = group IDs
weight1, weight2, ... = corresponding weight factors
{neigh} factor = compute weight based on number of neighbors
factor = scaling factor (> 0)
{time} factor = compute weight based on time spend computing
factor = scaling factor (> 0)
{var} name = take weight from atom-style variable
name = name of the atom style variable
{store} name = store weight in custom atom property
name = name of the atom property (without d_ prefix) :pre
name = name of the atom-style variable
{store} name = store weight in custom atom property defined by "fix property/atom"_fix_property_atom.html command
name = atom property name (without d_ prefix)
{out} arg = filename
filename = write each processor's sub-domain to a file, at each re-balancing :pre
:ule
[Examples:]
@ -61,47 +61,6 @@ rebalancing is performed periodically during the simulation. To
perform "static" balancing, before or between runs, see the
"balance"_balance.html command.
With the optional {weight} keyword different weight factors can be
assigned to particles according several styles and balancing will
be performed on the weighted particle counts. Multiple weight
styles may be given and they are processed in order by multiplying
the existing weight factor, which defaults to 1.0 with the newly
computed weight factor. The {store} weight style is an exception,
as does not compute a weight, but instead stores the current
accumulated weights in a custom per-atom property defined with
"fix property/atom"_fix_property_atom.html.
The {group} weight style assigns fixed weight factors according
to which group atoms belong to. The {group} style keyword is
followed by the number of groups with custom weights
(default weight is 1.0) and pairs of group ID and the corresponding
weight factor. The final weight for each atom is the product of
all individual weight factors from the groups it belongs to.
An atom with a total weight of 5 then be will be considered to
have 5x the computational cost than an atom with the default weight
of 1.0.
The {neigh} weight style assigns weights computed from the number
of neighbors divided by the avergage number of neighbors. The
scaling factor argument determines the relative impact of this
weight factor. This weight style will use the first suitable neighbor
list that is internally available and by inactive and print a
warning, if there is not suitable list available. This is typically
the case before the first "run"_run.html or "minimize"_minimize.html
command is issued.
The {time} weight style allows to incorporate "timer data"_timer.html
into the load balancing cost function. The required weight factor
rgument (a number > 0) determines to which degree timing information
is included. The timer information is taken from the preceding run.
If no such information is available, e.g. at the beginning of an input,
of when the "timer"_timer.html level is set to either {loop} or {off},
this style is ignored.
The {var} weight style allows to set per-atom weights from an
atom-style "variable"_variable.html into the load balancing cost
function.
Load-balancing is typically most useful if the particles in the
simulation box have a spatially-varying density distribution or
where the computational cost varies signficantly between different
@ -115,6 +74,20 @@ per procesor, may assign numbers of particles per processor in a
way that the computational effort varies significantly. This can
lead to poor performance when the simulation is run in parallel.
The balancing can be performed with or without per-particle weighting.
With no weighting, the balancing attempts to assign an equal number of
particles to each processor. With weighting, the balancing attempts
to assign an equal aggregate computational weight to each processor,
which typically inducces a diffrent number of atoms assigned to each
processor.
NOTE: The weighting options listed above are documented with the
"balance"_balance.html command in "this section of the balance
command"_balance.html#weighted_balance doc page. That section
describes the various weighting options and gives a few examples of
how they can be used. The weighting options are the same for both the
fix balance and "balance"_balance.html commands.
Note that the "processors"_processors.html command allows some control
over how the box volume is split across processors. Specifically, for
a Px by Py by Pz grid of processors, it allows choice of Px, Py, and
@ -126,9 +99,9 @@ sub-domains will still have the same shape and same volume.
On a particular timestep, a load-balancing operation is only performed
if the current "imbalance factor" in particles owned by each processor
exceeds the specified {thresh} parameter. The imbalance factor is
defined as the maximum number of particles owned by any processor,
divided by the average number of particles per processor. Thus an
imbalance factor of 1.0 is perfect balance.
defined as the maximum number of particles (or weight) owned by any
processor, divided by the average number of particles (or weight) per
processor. Thus an imbalance factor of 1.0 is perfect balance.
As an example, for 10000 particles running on 10 processors, if the
most heavily loaded processor has 1200 particles, then the factor is
@ -179,9 +152,8 @@ applied.
The {rcb} style is a "tiling" method which does not produce a logical
3d grid of processors. Rather it tiles the simulation domain with
rectangular sub-boxes of varying size and shape in an irregular
fashion so as to have equal numbers of particles (or an equal
load in case weighted load-balancing is requested) in each sub-box,
as in the rightmost diagram above.
fashion so as to have equal numbers of particles (or weight) in each
sub-box, as in the rightmost diagram above.
The "grid" methods can be used with either of the
"comm_style"_comm_style.html command options, {brick} or {tiled}. The
@ -202,10 +174,9 @@ from scratch.
:line
The {group-ID} is currently ignored. Load-balancing will always affect
all atoms. However the different impact of different groups of atoms in
a simulation can be considered through the {group} weight style and
assigning different weight factors != 1.0 to atoms in these groups.
The {group-ID} is ignored. However the impact of balancing on
different groups of atoms can be affected by using the {group} weight
style as described below.
The {Nfreq} setting determines how often a rebalance is performed. If
{Nfreq} > 0, then rebalancing will occur every {Nfreq} steps. Each
@ -311,10 +282,10 @@ in that sub-box.
:line
The {out} keyword writes a text file to the specified {filename} with
the results of each rebalancing operation. The file contains the
bounds of the sub-domain for each processor after the balancing
operation completes. The format of the file is compatible with the
The {out} keyword writes text to the specified {filename} with the
results of each rebalancing operation. The file contains the bounds
of the sub-domain for each processor after the balancing operation
completes. The format of the file is compatible with the
"Pizza.py"_pizza {mdump} tool which has support for manipulating and
visualizing mesh files. An example is shown here for a balancing by 4
processors for a 2d problem:

132
doc/src/fix_cmap.txt Normal file
View File

@ -0,0 +1,132 @@
"LAMMPS WWW Site"_lws - "LAMMPS Documentation"_ld - "LAMMPS Commands"_lc :c
:link(lws,http://lammps.sandia.gov)
:link(ld,Manual.html)
:link(lc,Section_commands.html#comm)
:line
fix cmap command :h3
[Syntax:]
fix ID group-ID cmap filename :pre
ID, group-ID are documented in "fix"_fix.html command
cmap = style name of this fix command
filename = force-field file with CMAP coefficients :ul
[Examples:]
fix myCMAP all cmap ../potentials/cmap36.data
read_data proteinX.data fix myCMAP crossterm CMAP
fix_modify myCMAP energy yes :pre
[Description:]
This command enables CMAP crossterms to be added to simulations which
use the CHARMM force field. These are relevant for any CHARMM model
of a peptide or protein sequences that is 3 or more amino-acid
residues long; see "(Buck)"_#Buck and "(Brooks)"_#Brooks for details,
including the analytic energy expressions for CMAP interactions. The
CMAP crossterms add additional potential energy contributions to pairs
of overlapping phi-psi dihedrals of amino-acids, which are important
to properly represent their conformational behavior.
The examples/cmap directory has a sample input script and data file
for a small peptide, that illustrates use of the fix cmap command.
As in the example above, this fix should be used before reading a data
file that contains a listing of CMAP interactions. The {filename}
specified should contain the CMAP parameters for a particular version
of the CHARMM force field. Two such files are including in the
lammps/potentials directory: charmm22.cmap and charmm36.cmap.
The data file read by the "read_data" must contain the topology of all
the CMAP interactions, similar to the topology data for bonds, angles,
dihedrals, etc. Specically it should have a line like this
in its header section:
N crossterms :pre
where N is the number of CMAP crossterms. It should also have a section
in the body of the data file like this with N lines:
CMAP :pre
1 1 8 10 12 18 20
2 5 18 20 22 25 27
\[...\]
N 3 314 315 317 318 330 :pre
The first column is an index from 1 to N to enumerate the CMAP terms;
it is ignored by LAMMPS. The 2nd column is the "type" of the
interaction; it is an index into the CMAP force field file. The
remaining 5 columns are the atom IDs of the atoms in the two 4-atom
dihedrals that overlap to create the CMAP 5-body interaction. Note
that the "crossterm" and "CMAP" keywords for the header and body
sections match those specified in the read_data command following the
data file name; see the "read_data"_read_data.html doc page for
more details.
A data file containing CMAP crossterms can be generated from a PDB
file using the charmm2lammps.pl script in the tools/ch2lmp directory
of the LAMMPS distribution. The script must be invoked with the
optional "-cmap" flag to do this; see the tools/ch2lmp/README file for
more information.
The potential energy associated with CMAP interactions can be output
as described below. It can also be included in the total potential
energy of the system, as output by the
"thermo_style"_thermo_style.html command, if the "fix_modify
energy"_fix_modify.html command is used, as in the example above. See
the note below about how to include the CMAP energy when performing an
"energy minimization"_minimize.html.
:line
[Restart, fix_modify, output, run start/stop, minimize info:]
No information about this fix is written to "binary restart
files"_restart.html.
The "fix_modify"_fix_modify.html {energy} option is supported by this
fix to add the potential "energy" of the CMAP interactions system's
potential energy as part of "thermodynamic output"_thermo_style.html.
This fix computes a global scalar which can be accessed by various
"output commands"_Section_howto.html#howto_15. The scalar is the
potential energy discussed above. The scalar value calculated by this
fix is "extensive".
No parameter of this fix can be used with the {start/stop} keywords of
the "run"_run.html command.
The forces due to this fix are imposed during an energy minimization,
invoked by the "minimize"_minimize.html command.
NOTE: If you want the potential energy associated with the CMAP terms
forces to be included in the total potential energy of the system (the
quantity being minimized), you MUST enable the
"fix_modify"_fix_modify.html {energy} option for this fix.
[Restrictions:]
This fix can only be used if LAMMPS was built with the MOLECULE
package (which it is by default). See the "Making
LAMMPS"_Section_start.html#start_3 section for more info on packages.
[Related commands:]
"fix_modify"_fix_modify.html, "read_data"_read_data.html
[Default:] none
:line
:link(Buck)
[(Buck)] Buck, Bouguet-Bonnet, Pastor, MacKerell Jr., Biophys J, 90, L36
(2006).
:link(Brooks)
[(Brooks)] Brooks, Brooks, MacKerell Jr., J Comput Chem, 30, 1545 (2009).

View File

@ -99,8 +99,8 @@ center-of-mass fixed during the thermodynamic integration. A nonzero
total velocity will result in divergences during the integration due
to the fact that the atoms are 'attached' to their equilibrium
positions by the Einstein crystal. Check the option {zero} of "fix
langevin"_fix_langevin_html and "velocity"_velocity.html. The use of
the Nose-Hoover thermostat ("fix nvt"_fix_nvt.html) is {NOT}
langevin"_fix_langevin.html and "velocity"_velocity.html. The use of
the Nose-Hoover thermostat ("fix nvt"_fix_nh.html) is {NOT}
recommended due to its well documented issues with the canonical
sampling of harmonic degrees of freedom (notice that the {chain}
option will {NOT} solve this problem). The Langevin thermostat ("fix

View File

@ -24,6 +24,7 @@ Fixes :h1
fix_bond_create
fix_bond_swap
fix_box_relax
fix_cmap
fix_colvars
fix_controller
fix_deform
@ -138,7 +139,6 @@ Fixes :h1
fix_temp_rescale_eff
fix_tfmc
fix_thermal_conductivity
fix_ti_rs
fix_ti_spring
fix_tmd
fix_ttm

View File

@ -147,6 +147,7 @@ fix_bond_break.html
fix_bond_create.html
fix_bond_swap.html
fix_box_relax.html
fix_cmap.html
fix_colvars.html
fix_controller.html
fix_deform.html

View File

@ -48,17 +48,14 @@ follows the discussion in these 3 papers: "(HenkelmanA)"_#HenkelmanA,
Each replica runs on a partition of one or more processors. Processor
partitions are defined at run-time using the -partition command-line
switch; see "Section 2.7"_Section_start.html#start_7 of the
manual. Note that if you have MPI installed, you can run a
multi-replica simulation with more replicas (partitions) than you have
physical processors, e.g you can run a 10-replica simulation on just
one or two processors. You will simply not get the performance
speed-up you would see with one or more physical processors per
replica. See "this section"_Section_howto.html#howto_5 of the manual
for further discussion.
NOTE: The current NEB implementation in LAMMPS only allows there to be
one processor per replica.
switch; see "Section 2.7"_Section_start.html#start_7 of the manual.
Note that if you have MPI installed, you can run a multi-replica
simulation with more replicas (partitions) than you have physical
processors, e.g you can run a 10-replica simulation on just one or two
processors. You will simply not get the performance speed-up you
would see with one or more physical processors per replica. See
"Section 6.5"_Section_howto.html#howto_5 of the manual for further
discussion.
NOTE: As explained below, a NEB calculation perfoms a damped dynamics
minimization across all the replicas. The mimimizer uses whatever
@ -255,12 +252,6 @@ An atom map must be defined which it is not by default for "atom_style
atomic"_atom_style.html problems. The "atom_modify
map"_atom_modify.html command can be used to do this.
The "atom_modify sort 0 0.0" command should be used to turn off atom
sorting.
NOTE: This sorting restriction will be removed in a future version of
NEB in LAMMPS.
The minimizers in LAMMPS operate on all atoms in your system, even
non-NEB atoms, as defined above. To prevent non-NEB atoms from moving
during the minimization, you should use the "fix

View File

@ -142,7 +142,7 @@ the style options are set, either to default values or to specified
settings. I.e. settings from previous invocations do not persist
across multiple invocations.
See the "Section Accelerate"_Section_accelerate.html section of the
See the "Section 5.3"_Section_accelerate.html#acc_3 section of the
manual for more details about using the various accelerator packages
for speeding up LAMMPS simulations.

View File

@ -63,7 +63,7 @@ solvent simulations of salt ions "(Lenart)"_#Lenart and of surfactants
"(Jusufi)"_#Jusufi. In these instances the Gaussian potential mimics
the hydration barrier between a pair of particles. The hydration
barrier is located at r_mh and has a width of sigma_h. The prefactor
determines the hight of the potential barrier.
determines the height of the potential barrier.
The following coefficients must be defined for each pair of atom types
via the "pair_coeff"_pair_coeff.html command as in the example above,
@ -73,9 +73,11 @@ commands:
H (energy * distance units)
r_mh (distance units)
sigma_h (distance units) :ul
sigma_h (distance units)
cutoff (distance units) :ul
The global cutoff (r_c) specified in the pair_style command is used.
The last coefficient is optional. If not specified, the global cutoff
is used.
:line

View File

@ -63,14 +63,14 @@ event to occur.
Each replica runs on a partition of one or more processors. Processor
partitions are defined at run-time using the -partition command-line
switch; see "Section 2.7"_Section_start.html#start_7 of the
manual. Note that if you have MPI installed, you can run a
multi-replica simulation with more replicas (partitions) than you have
physical processors, e.g you can run a 10-replica simulation on one or
two processors. For PRD, this makes little sense, since this offers
no effective parallel speed-up in searching for infrequent events. See
"Section 6.5"_Section_howto.html#howto_5 of the manual for further
discussion.
switch; see "Section 2.7"_Section_start.html#start_7 of the manual.
Note that if you have MPI installed, you can run a multi-replica
simulation with more replicas (partitions) than you have physical
processors, e.g you can run a 10-replica simulation on one or two
processors. However for PRD, this makes little sense, since running a
replica on virtual instead of physical processors,offers no effective
parallel speed-up in searching for infrequent events. See "Section
6.5"_Section_howto.html#howto_5 of the manual for further discussion.
When a PRD simulation is performed, it is assumed that each replica is
running the same model, though LAMMPS does not check for this.
@ -163,7 +163,7 @@ runs for {N} timesteps. If the {time} value is {clock}, then the
simulation runs until {N} aggregate timesteps across all replicas have
elapsed. This aggregate time is the "clock" time defined below, which
typically advances nearly M times faster than the timestepping on a
single replica.
single replica, where M is the number of replicas.
:line
@ -183,25 +183,26 @@ coincident events, and the replica number of the chosen event.
The timestep is the usual LAMMPS timestep, except that time does not
advance during dephasing or quenches, but only during dynamics. Note
that are two kinds of dynamics in the PRD loop listed above. The
first is when all replicas are performing independent dynamics,
waiting for an event to occur. The second is when correlated events
are being searched for and only one replica is running dynamics.
that are two kinds of dynamics in the PRD loop listed above that
contribute to this timestepping. The first is when all replicas are
performing independent dynamics, waiting for an event to occur. The
second is when correlated events are being searched for, but only one
replica is running dynamics.
The CPU time is the total processor time since the start of the PRD
run.
The CPU time is the total elapsed time on each processor, since the
start of the PRD run.
The clock is the same as the timestep except that it advances by M
steps every timestep during the first kind of dynamics when the M
steps per timestep during the first kind of dynamics when the M
replicas are running independently. The clock advances by only 1 step
per timestep during the second kind of dynamics, since only a single
per timestep during the second kind of dynamics, when only a single
replica is checking for a correlated event. Thus "clock" time
represents the aggregate time (in steps) that effectively elapses
represents the aggregate time (in steps) that has effectively elapsed
during a PRD simulation on M replicas. If most of the PRD run is
spent in the second stage of the loop above, searching for infrequent
events, then the clock will advance nearly M times faster than it
would if a single replica was running. Note the clock time between
events will be drawn from p(t).
successive events should be drawn from p(t).
The event number is a counter that increments with each event, whether
it is uncorrelated or correlated.
@ -212,14 +213,15 @@ replicas are running independently. The correlation flag will be 1
when a correlated event occurs during the third stage of the loop
listed above, i.e. when only one replica is running dynamics.
When more than one replica detects an event at the end of the second
stage, then one of them is chosen at random. The number of coincident
events is the number of replicas that detected an event. Normally, we
expect this value to be 1. If it is often greater than 1, then either
the number of replicas is too large, or {t_event} is too large.
When more than one replica detects an event at the end of the same
event check (every {t_event} steps) during the the second stage, then
one of them is chosen at random. The number of coincident events is
the number of replicas that detected an event. Normally, this value
should be 1. If it is often greater than 1, then either the number of
replicas is too large, or {t_event} is too large.
The replica number is the ID of the replica (from 0 to M-1) that
found the event.
The replica number is the ID of the replica (from 0 to M-1) in which
the event occurred.
:line
@ -286,7 +288,7 @@ This command can only be used if LAMMPS was built with the REPLICA
package. See the "Making LAMMPS"_Section_start.html#start_3 section
for more info on packages.
{N} and {t_correlate} settings must be integer multiples of
The {N} and {t_correlate} settings must be integer multiples of
{t_event}.
Runs restarted from restart file written during a PRD run will not

View File

@ -97,7 +97,7 @@ be passed to various commands as arguments, so that the variable is
evaluated during a simulation run.
A broader overview of how Python can be used with LAMMPS is
given in "Section python"_Section_python.html. There is an
given in "Section 11"_Section_python.html. There is an
examples/python directory which illustrates use of the python
command.

View File

@ -124,7 +124,7 @@ MPI-IO requires two steps. First, build LAMMPS with its MPIIO package
installed, e.g.
make yes-mpiio # installs the MPIIO package
make g++ # build LAMMPS for your platform :pre
make mpi # build LAMMPS for your platform :pre
Second, use a restart filename which contains ".mpiio". Note that it
does not have to end in ".mpiio", just contain those characters.

View File

@ -186,7 +186,7 @@ functions, and include "thermo_style"_thermo_style.html command
keywords for the simulation box parameters and timestep and elapsed
time. Thus it is easy to specify a time-dependent radius.
See "Section_howto 12"_Section_howto.html#howto_12 of the doc pages
See "Section 6.12"_Section_howto.html#howto_12 of the doc pages
for a geometric description of triclinic boxes, as defined by LAMMPS,
and how to transform these parameters to and from other commonly used
triclinic representations.
@ -361,7 +361,7 @@ sub-regions can be defined with the {open} keyword.
Styles with a {kk} suffix are functionally the same as the
corresponding style without the suffix. They have been optimized to
run faster, depending on your available hardware, as discussed in
"Section_accelerate"_Section_accelerate.html of the manual. The
"Section 5"_Section_accelerate.html of the manual. The
accelerated styles take the same arguments and should produce the same
results, except for round-off and precision issues.
@ -378,7 +378,7 @@ by including their suffix, or you can use the "-suffix command-line
switch"_Section_start.html#start_7 when you invoke LAMMPS, or you can
use the "suffix"_suffix.html command in your input script.
See "Section_accelerate"_Section_accelerate.html of the manual for
See "Section 5"_Section_accelerate.html of the manual for
more instructions on how to use the accelerated styles effectively.
:line

View File

@ -82,7 +82,7 @@ versions 2.0 and above. Using MPI-IO requires two steps. First,
build LAMMPS with its MPIIO package installed, e.g.
make yes-mpiio # installs the MPIIO package
make g++ # build LAMMPS for your platform :pre
make mpi # build LAMMPS for your platform :pre
Second, use a restart filename which contains ".mpiio". Note that it
does not have to end in ".mpiio", just contain those characters.

View File

@ -1121,7 +1121,7 @@ with a leading $ sign (e.g. $x or $\{abc\}) versus with a leading "v_"
(e.g. v_x or v_abc). The former can be used in any input script
command, including a variable command. The input script parser
evaluates the reference variable immediately and substitutes its value
into the command. As explained in "Section commands
into the command. As explained in "Section
3.2"_Section_commands.html#cmd_2 for "Parsing rules", you can also use
un-named "immediate" variables for this purpose. For example, a
string like this $((xlo+xhi)/2+sqrt(v_area)) in an input script

View File

@ -139,7 +139,7 @@ if rot = yes, the angular momentum is zeroed.
If specified, the {temp} keyword is used by {create} and {scale} to
specify a "compute"_compute.html that calculates temperature in a
desired way, e.g. by first subtracting out a velocity bias, as
discussed in "Section howto 16"_Section_howto.html#howto_15 of the doc
discussed in "Section 6.16"_Section_howto.html#howto_16 of the doc
pages. If this keyword is not specified, {create} and {scale}
calculate temperature using a compute that is defined internally as
follows:
@ -161,8 +161,8 @@ The {bias} keyword with a {yes} setting is used by {create} and
If the temperature compute also calculates a velocity bias, the the
bias is subtracted from atom velocities before the {create} and
{scale} operations are performed. After the operations, the bias is
added back to the atom velocities. See "Section howto
16"_Section_howto.html#howto_15 of the doc pages for more discussion
added back to the atom velocities. See "Section
6.16"_Section_howto.html#howto_16 of the doc pages for more discussion
of temperature computes with biases. Note that the velocity bias is
only applied to atoms in the temperature compute specified with the
{temp} keyword.

View File

@ -55,7 +55,7 @@ versions 2.0 and above. Using MPI-IO requires two steps. First,
build LAMMPS with its MPIIO package installed, e.g.
make yes-mpiio # installs the MPIIO package
make g++ # build LAMMPS for your platform :pre
make mpi # build LAMMPS for your platform :pre
Second, use a restart filename which contains ".mpiio". Note that it
does not have to end in ".mpiio", just contain those characters.

View File

@ -90,3 +90,24 @@ def promote_doc_keywords(content):
def filter_multiple_horizontal_rules(content):
return re.sub(r"----------[\s\n]+----------", '', content)
def merge_preformatted_sections(content):
mergable_section_pattern = re.compile(r"\.\. parsed-literal::\n"
r"\n"
r"(?P<listingA>(( [^\n]+\n)|(^\n))+)\n\s*"
r"^\.\. parsed-literal::\n"
r"\n"
r"(?P<listingB>(( [^\n]+\n)|(^\n))+)\n", re.MULTILINE | re.DOTALL)
m = mergable_section_pattern.search(content)
while m:
content = mergable_section_pattern.sub(r".. parsed-literal::\n"
r"\n"
r"\g<listingA>"
r"\g<listingB>"
r"\n", content)
m = mergable_section_pattern.search(content)
return content

View File

@ -73,10 +73,13 @@ class RSTMarkup(Markup):
def unescape_rst_chars(self, text):
text = text.replace('\\*', '*')
text = text.replace('\\^', '^')
text = text.replace('\\_', '_')
text = self.unescape_underscore(text)
text = text.replace('\\|', '|')
return text
def unescape_underscore(self, text):
return text.replace('\\_', '_')
def inline_math(self, text):
start_pos = text.find("\\(")
end_pos = text.find("\\)")
@ -136,6 +139,7 @@ class RSTFormatting(Formatting):
return content.strip()
def preformat(self, content):
content = self.markup.unescape_underscore(content)
if self.indent_level > 0:
return self.list_indent("\n.. parsed-literal::\n\n" + self.indent(content.rstrip()), self.indent_level)
return "\n.. parsed-literal::\n\n" + self.indent(content.rstrip())
@ -355,6 +359,7 @@ class Txt2Rst(TxtParser):
self.document_filters.append(lammps_filters.detect_and_add_command_to_index)
self.document_filters.append(lammps_filters.filter_multiple_horizontal_rules)
self.document_filters.append(lammps_filters.promote_doc_keywords)
self.document_filters.append(lammps_filters.merge_preformatted_sections)
def is_ignored_textblock_begin(self, line):
return line.startswith('<!-- HTML_ONLY -->')

View File

@ -169,6 +169,13 @@ class TestFormatting(unittest.TestCase):
" Hello\n"
" World\n\n", s)
def test_preformat_formatting_with_underscore(self):
s = self.txt2rst.convert("if MPI.COMM_WORLD.rank == 0:\n"
" print(\"Potential energy: \", L.eval(\"pe\")) :pre\n")
self.assertEqual("\n.. parsed-literal::\n\n"
" if MPI.COMM_WORLD.rank == 0:\n"
" print(\"Potential energy: \", L.eval(\"pe\"))\n\n", s)
def test_header_formatting(self):
s = self.txt2rst.convert("Level 1 :h1\n"
"Level 2 :h2\n"

View File

@ -61,6 +61,7 @@ sub-directories:
accelerate: use of all the various accelerator packages
balance: dynamic load balancing, 2d system
body: body particles, 2d system
cmap: CMAP 5-body contributions to CHARMM force field
colloid: big colloid particles in a small particle solvent, 2d system
coreshell: adiabatic core/shell model
comb: models using the COMB potential

View File

@ -0,0 +1,55 @@
# 3d Lennard-Jones melt
units lj
atom_style atomic
processors * 1 1
lattice fcc 0.8442
region box block 0 10 0 10 0 10
create_box 3 box
create_atoms 1 box
mass * 1.0
region long block 3 6 0 10 0 10
set region long type 2
velocity all create 1.0 87287
pair_style lj/cut 2.5
pair_coeff * * 1.0 1.0 2.5
pair_coeff * 2 1.0 1.0 5.0
neighbor 0.3 bin
neigh_modify every 2 delay 4 check yes
fix p all property/atom d_WEIGHT
compute p all property/atom d_WEIGHT
fix 0 all balance 50 1.0 shift x 10 1.0 &
weight time 1.0 weight store WEIGHT
variable maximb equal f_0[1]
variable iter equal f_0[2]
variable prev equal f_0[3]
variable final equal f_0
#fix 3 all print 50 "${iter} ${prev} ${final} ${maximb}"
fix 1 all nve
#dump id all atom 50 dump.melt
#dump id all custom 50 dump.lammpstrj id type x y z c_p
#dump 2 all image 25 image.*.jpg type type &
# axes yes 0.8 0.02 view 60 -30
#dump_modify 2 pad 3
#dump 3 all movie 25 movie.mpg type type &
# axes yes 0.8 0.02 view 60 -30
#dump_modify 3 pad 3
thermo 50
run 500
run 500
fix 0 all balance 50 1.0 shift x 5 1.0 &
weight neigh 0.5 weight time 0.66 weight store WEIGHT
run 500
run 500

View File

@ -0,0 +1,48 @@
# 3d Lennard-Jones melt
units lj
atom_style atomic
processors * 1 1
variable factor index 1.0
lattice fcc 0.8442
region box block 0 10 0 10 0 10
create_box 3 box
create_atoms 1 box
mass * 1.0
region long block 3 6 0 10 0 10
set region long type 2
velocity all create 1.0 87287
pair_style lj/cut 2.5
pair_coeff * * 1.0 1.0 2.5
pair_coeff * 2 1.0 1.0 5.0
neighbor 0.3 bin
neigh_modify every 2 delay 4 check yes
group fast type 1
group slow type 2
balance 1.0 shift x 5 1.1 weight time 1.0 # out unweighted.txt
fix 1 all nve
#dump id all atom 50 dump.melt
#dump 2 all image 25 image.*.jpg type type &
# axes yes 0.8 0.02 view 60 -30
#dump_modify 2 pad 3
#dump 3 all movie 25 movie.mpg type type &
# axes yes 0.8 0.02 view 60 -30
#dump_modify 3 pad 3
thermo 50
run 250
balance 1.0 shift x 5 1.1 weight time 1.0 # out unweighted.txt
run 250
balance 1.0 shift x 5 1.1 weight time 1.0 # out unweighted.txt
run 250

View File

@ -0,0 +1,47 @@
# 3d Lennard-Jones melt
units lj
atom_style atomic
processors * 1 1
variable factor index 1.0
lattice fcc 0.8442
region box block 0 10 0 10 0 10
create_box 3 box
create_atoms 1 box
mass * 1.0
region long block 3 6 0 10 0 10
set region long type 2
velocity all create 1.0 87287
pair_style lj/cut 2.5
pair_coeff * * 1.0 1.0 2.5
pair_coeff * 2 1.0 1.0 5.0
neighbor 0.3 bin
neigh_modify every 2 delay 4 check yes
group fast type 1
group slow type 2
balance 1.0 shift x 5 1.1 &
weight group 2 fast 1.0 slow ${factor} # out weighted.txt
fix 0 all balance 10 1.0 shift x 5 1.1 &
weight group 2 fast 1.0 slow ${factor}
fix 1 all nve
#dump id all atom 50 dump.melt
#dump 2 all image 25 image.*.jpg type type &
# axes yes 0.8 0.02 view 60 -30
#dump_modify 2 pad 3
#dump 3 all movie 25 movie.mpg type type &
# axes yes 0.8 0.02 view 60 -30
#dump_modify 3 pad 3
thermo 50
run 250

View File

@ -0,0 +1,54 @@
# 3d Lennard-Jones melt
units lj
atom_style atomic
processors * 1 1
variable factor index 1.0
lattice fcc 0.8442
region box block 0 10 0 10 0 10
create_box 3 box
create_atoms 1 box
mass * 1.0
region long block 3 6 0 10 0 10
set region long type 2
velocity all create 1.0 87287
pair_style lj/cut 2.5
pair_coeff * * 1.0 1.0 2.5
pair_coeff * 2 1.0 1.0 5.0
neighbor 0.3 bin
neigh_modify every 2 delay 4 check yes
balance 1.0 shift x 5 1.1 # out unweighted.txt
balance 1.0 x uniform
variable weight atom (type==1)*1.0+(type==2)*v_factor
balance 1.0 shift x 5 1.1 weight var weight # out weighted_var.txt
balance 1.0 x uniform
group fast type 1
group slow type 2
balance 1.0 shift x 5 1.1 &
weight group 2 fast 1.0 slow ${factor} # out weighted_group.txt
fix 1 all nve
#dump id all atom 50 dump.melt
#dump 2 all image 25 image.*.jpg type type &
# axes yes 0.8 0.02 view 60 -30
#dump_modify 2 pad 3
#dump 3 all movie 25 movie.mpg type type &
# axes yes 0.8 0.02 view 60 -30
#dump_modify 3 pad 3
thermo 50
run 250

View File

@ -0,0 +1,47 @@
# 3d Lennard-Jones melt
units lj
#atom_style charge
processors * 1 1
lattice fcc 0.8442
region box block 0 10 0 10 0 10
create_box 3 box
create_atoms 1 box
mass * 1.0
region long block 3 6 0 10 0 10
set region long type 2
#set type 1:2 charge 0.0
velocity all create 1.0 87287
pair_style lj/long/coul/long long off 2.5
pair_coeff * * 1.0 1.0 2.5
pair_coeff * 2 1.0 1.0 5.0
kspace_style pppm/disp 1.0e-4
kspace_modify gewald/disp 0.1
neighbor 0.3 bin
neigh_modify every 2 delay 4 check yes
group fast type 1
group slow type 2
fix 0 all balance 20 1.0 shift x 5 1.0 &
weight group 2 fast 1.0 slow 2.0 weight time 0.66
fix 1 all nve
#dump id all atom 50 dump.melt
#dump 2 all image 25 image.*.jpg type type &
# axes yes 0.8 0.02 view 60 -30
#dump_modify 2 pad 3
#dump 3 all movie 25 movie.mpg type type &
# axes yes 0.8 0.02 view 60 -30
#dump_modify 3 pad 3
thermo 50
run 500

View File

@ -0,0 +1,53 @@
# 3d Lennard-Jones melt
units lj
atom_style atomic
processors * 1 1
lattice fcc 0.8442
region box block 0 10 0 10 0 10
create_box 3 box
create_atoms 1 box
mass * 1.0
region long block 3 6 0 10 0 10
set region long type 2
velocity all create 1.0 87287
pair_style lj/cut 2.5
pair_coeff * * 1.0 1.0 2.5
pair_coeff * 2 1.0 1.0 5.0
neighbor 0.3 bin
neigh_modify every 2 delay 4 check yes
fix p all property/atom d_WEIGHT
fix 0 all balance 50 1.0 shift x 5 1.0 &
weight neigh 0.8 weight store WEIGHT
compute p all property/atom d_WEIGHT
variable maximb equal f_0[1]
variable iter equal f_0[2]
variable prev equal f_0[3]
variable final equal f_0
#fix 3 all print 50 "${iter} ${prev} ${final} ${maximb}"
fix 1 all nve
#dump id all atom 50 dump.melt
#dump id all custom 50 dump.lammpstrj id type x y z c_p
#dump 2 all image 25 image.*.jpg type type &
# axes yes 0.8 0.02 view 60 -30
#dump_modify 2 pad 3
#dump 3 all movie 25 movie.mp4 c_p type &
# axes yes 0.8 0.02 view 60 -30
#dump_modify 3 pad 3 amap 0.0 2.0 cf 0.1 3 min blue 0.5 green max red
thermo 50
run 500
run 500
run 500
run 500

View File

@ -0,0 +1,53 @@
# 3d Lennard-Jones melt
units lj
atom_style atomic
processors * 1 1
lattice fcc 0.8442
region box block 0 10 0 10 0 10
create_box 3 box
create_atoms 1 box
mass * 1.0
region long block 3 6 0 10 0 10
set region long type 2
velocity all create 1.0 87287
pair_style lj/cut 2.5
pair_coeff * * 1.0 1.0 2.5
pair_coeff * 2 1.0 1.0 5.0
comm_style tiled
neighbor 0.3 bin
neigh_modify every 2 delay 4 check yes
fix p all property/atom d_WEIGHT
fix 0 all balance 50 1.0 rcb weight neigh 0.8 weight store WEIGHT
compute p all property/atom d_WEIGHT
variable maximb equal f_0[1]
variable iter equal f_0[2]
variable prev equal f_0[3]
variable final equal f_0
#fix 3 all print 50 "${iter} ${prev} ${final} ${maximb}"
fix 1 all nve
#dump id all atom 50 dump.melt
#dump id all custom 50 dump.lammpstrj id type x y z c_p
#dump 2 all image 25 image.*.jpg type type &
# axes yes 0.8 0.02 view 60 -30
#dump_modify 2 pad 3
#dump 3 all movie 25 movie.mpg type type &
# axes yes 0.8 0.02 view 60 -30
#dump_modify 3 pad 3
thermo 50
run 250
run 250

View File

@ -0,0 +1,51 @@
# 3d Lennard-Jones melt
units lj
atom_style atomic
processors * 1 1
variable factor index 1.0
lattice fcc 0.8442
region box block 0 10 0 10 0 10
create_box 3 box
create_atoms 1 box
mass * 1.0
region long block 3 6 0 10 0 10
set region long type 2
velocity all create 1.0 87287
pair_style lj/cut 2.5
pair_coeff * * 1.0 1.0 2.5
pair_coeff * 2 1.0 1.0 5.0
neighbor 0.3 bin
neigh_modify every 2 delay 4 check yes
balance 1.0 shift x 10 1.0 weight neigh 0.8 # out weighted_var.txt
fix 1 all nve
#dump id all atom 50 dump.melt
#dump 2 all image 25 image.*.jpg type type &
# axes yes 0.8 0.02 view 60 -30
#dump_modify 2 pad 3
#dump 3 all movie 25 movie.mpg type type &
# axes yes 0.8 0.02 view 60 -30
#dump_modify 3 pad 3
thermo 50
run 250 post no
balance 1.0 shift x 10 1.0 weight neigh 0.8
run 250 post no
balance 1.0 shift x 10 1.0 weight neigh 0.8
run 250 post no
balance 1.0 shift x 10 1.0 weight neigh 0.8 weight time 0.6
run 250
balance 1.0 shift x 10 1.0 weight neigh 0.8 weight time 0.6
run 250

View File

@ -0,0 +1,66 @@
# 3d Lennard-Jones melt
units lj
atom_style atomic
processors * 1 1
lattice fcc 0.8442
region box block 0 10 0 10 0 10
create_box 3 box
create_atoms 1 box
mass * 1.0
region long block 3 6 0 10 0 10
set region long type 2
velocity all create 1.0 87287
pair_style lj/cut 2.5
pair_coeff * * 1.0 1.0 2.5
pair_coeff * 2 1.0 1.0 5.0
neighbor 0.3 bin
neigh_modify every 2 delay 4 check yes
fix p all property/atom d_WEIGHT
compute p all property/atom d_WEIGHT
group fast type 1
group slow type 2
balance 1.0 shift x 10 1.0 &
weight group 2 fast 0.8 slow 2.5 weight store WEIGHT
variable lastweight atom c_p
fix 0 all balance 50 1.0 shift x 10 1.0 &
weight var lastweight weight time 0.5 weight store WEIGHT
variable maximb equal f_0[1]
variable iter equal f_0[2]
variable prev equal f_0[3]
variable final equal f_0
#fix 3 all print 50 "${iter} ${prev} ${final} ${maximb}"
fix 1 all nve
#dump id all atom 50 dump.melt
#dump id all custom 50 dump.lammpstrj id type x y z c_p
#dump 2 all image 25 image.*.jpg type type &
# axes yes 0.8 0.02 view 60 -30
#dump_modify 2 pad 3
#dump 3 all movie 25 movie.mpg type type &
# axes yes 0.8 0.02 view 60 -30
#dump_modify 3 pad 3
thermo 50
run 500
run 500
balance 1.0 shift x 10 1.0 &
weight group 2 fast 0.8 slow 2.5 weight store WEIGHT
fix 0 all balance 50 1.0 shift x 5 1.0 &
weight var lastweight weight neigh 0.5 weight store WEIGHT
run 500
run 500

View File

@ -1,225 +0,0 @@
LAMMPS (15 Feb 2016)
# 2d circle of particles inside a box with LJ walls
variable b index 0
variable x index 50
variable y index 20
variable d index 20
variable v index 5
variable w index 2
units lj
dimension 2
atom_style bond
boundary f f p
lattice hex 0.85
Lattice spacing in x,y,z = 1.16553 2.01877 1.16553
region box block 0 $x 0 $y -0.5 0.5
region box block 0 50 0 $y -0.5 0.5
region box block 0 50 0 20 -0.5 0.5
create_box 1 box bond/types 1 extra/bond/per/atom 6
Created orthogonal box = (0 0 -0.582767) to (58.2767 40.3753 0.582767)
1 by 1 by 1 MPI processor grid
region circle sphere $(v_d/2+1) $(v_d/2/sqrt(3.0)+1) 0.0 $(v_d/2)
region circle sphere 11 $(v_d/2/sqrt(3.0)+1) 0.0 $(v_d/2)
region circle sphere 11 6.7735026918962581988 0.0 $(v_d/2)
region circle sphere 11 6.7735026918962581988 0.0 10
create_atoms 1 region circle
Created 361 atoms
mass 1 1.0
velocity all create 0.5 87287 loop geom
velocity all set $v $w 0 sum yes
velocity all set 5 $w 0 sum yes
velocity all set 5 2 0 sum yes
pair_style lj/cut 2.5
pair_coeff 1 1 10.0 1.0 2.5
bond_style harmonic
bond_coeff 1 10.0 1.2
# need to preserve 1-3, 1-4 pairwise interactions during hard collisions
special_bonds lj/coul 0 1 1
0 = max # of 1-2 neighbors
1 = max # of special neighbors
create_bonds all all 1 1.0 1.5
Neighbor list info ...
2 neighbor list requests
update every 1 steps, delay 10 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 2.8
ghost atom cutoff = 2.8
binsize = 1.4 -> bins = 42 29 1
Added 1014 bonds, new total = 1014
6 = max # of 1-2 neighbors
6 = max # of special neighbors
neighbor 0.3 bin
neigh_modify delay 0 every 1 check yes
fix 1 all nve
fix 2 all wall/lj93 xlo 0.0 1 1 2.5 xhi $x 1 1 2.5
fix 2 all wall/lj93 xlo 0.0 1 1 2.5 xhi 50 1 1 2.5
fix 3 all wall/lj93 ylo 0.0 1 1 2.5 yhi $y 1 1 2.5
fix 3 all wall/lj93 ylo 0.0 1 1 2.5 yhi 20 1 1 2.5
comm_style tiled
comm_modify cutoff 7.5
fix 10 all balance 50 0.9 rcb
#compute 1 all property/atom proc
#variable p atom (c_1%10)+1
#dump 2 all custom 50 tmp.dump id v_p x y z
#dump 3 all image 50 image.*.jpg v_p type bond atom 0.25 # adiam 1.0 view 0 0 zoom 1.8 subbox yes 0.02
#variable colors string # "red green blue yellow white # purple pink orange lime gray"
#dump_modify 3 pad 5 amap 0 10 sa 1 10 ${colors}
thermo_style custom step temp epair press f_10[3] f_10
thermo 100
run 10000
Neighbor list info ...
1 neighbor list requests
update every 1 steps, delay 0 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 2.8
ghost atom cutoff = 7.5
binsize = 1.4 -> bins = 42 29 1
Memory usage per processor = 4.44301 Mbytes
Step Temp E_pair Press 10[3] 10
0 25.701528 -2.2032569 3.1039469 1 1
100 27.623422 -6.228166 2.6542136 1 1
200 33.35302 -15.746749 3.2018248 1 1
300 39.17734 -24.1557 4.9116986 1 1
400 41.660701 -27.615203 8.6214678 1 1
500 37.154935 -24.096962 3.2656162 1 1
600 35.061294 -21.52655 2.3693223 1 1
700 37.204395 -22.313267 2.7108913 1 1
800 39.050704 -24.972147 5.5398741 1 1
900 38.37275 -24.777769 3.9291488 1 1
1000 39.147816 -26.003699 4.3586203 1 1
1100 36.084337 -24.88638 4.5496174 1 1
1200 32.404559 -20.810803 6.0760128 1 1
1300 32.625538 -19.709411 4.3718289 1 1
1400 32.246777 -18.785184 3.435959 1 1
1500 29.174368 -17.434726 2.2702916 1 1
1600 27.359273 -15.40756 1.033659 1 1
1700 26.046626 -14.318045 0.87714473 1 1
1800 24.540401 -13.017686 0.84464169 1 1
1900 26.259688 -12.777739 0.80954004 1 1
2000 27.491023 -13.363863 1.4519188 1 1
2100 27.839831 -13.709118 3.0184763 1 1
2200 26.669065 -12.710422 1.4560094 1 1
2300 26.86742 -12.730386 0.16986139 1 1
2400 26.375504 -12.476682 1.907352 1 1
2500 26.581263 -12.530908 1.5507765 1 1
2600 27.67091 -12.922702 2.0391206 1 1
2700 27.158784 -13.306789 3.7355268 1 1
2800 25.635671 -13.502047 2.9431633 1 1
2900 24.648357 -12.388002 0.44910075 1 1
3000 22.988768 -10.685349 0.37214853 1 1
3100 21.788719 -10.171928 -0.95734833 1 1
3200 22.707514 -9.6682633 -0.32868418 1 1
3300 22.907772 -10.612766 -0.024319089 1 1
3400 24.276426 -10.802246 0.44731188 1 1
3500 25.086959 -10.797849 2.3218091 1 1
3600 26.064365 -12.589537 1.2460738 1 1
3700 24.656426 -11.956895 0.57862216 1 1
3800 22.316856 -11.174148 -0.7567936 1 1
3900 22.590299 -9.5928781 0.4127727 1 1
4000 22.353461 -9.5887736 -0.34247396 1 1
4100 24.103395 -9.76584 0.98989862 1 1
4200 23.92261 -10.566828 -0.71536268 1 1
4300 24.44409 -11.358378 0.37166197 1 1
4400 24.772419 -11.324888 0.26732853 1 1
4500 23.150748 -11.309892 -0.43134573 1 1
4600 24.008361 -10.212365 0.43277527 1 1
4700 25.107401 -9.5753673 0.020406689 1 1
4800 23.658604 -8.9131426 0.46554745 1 1
4900 22.530251 -9.023311 -0.014405315 1 1
5000 23.110692 -9.6567397 0.9033234 1 1
5100 23.760144 -9.7623416 0.32059726 1 1
5200 25.048012 -9.6748253 0.66411561 1 1
5300 24.09835 -9.7867216 0.61128267 1 1
5400 22.984982 -9.9464053 0.28096544 1 1
5500 22.502003 -9.9294451 -0.53666181 1 1
5600 23.712298 -10.054318 0.64334761 1 1
5700 23.350796 -10.217344 2.1979894 1 1
5800 25.246549 -12.458753 0.055553025 1 1
5900 24.422272 -10.641177 0.82506839 1 1
6000 22.478315 -10.629525 -0.774321 1 1
6100 22.970846 -10.218868 0.59819592 1 1
6200 24.500063 -10.355481 0.55427078 1 1
6300 22.358071 -9.9041539 0.89500518 1 1
6400 23.924951 -11.121442 0.045999129 1 1
6500 24.83773 -10.464191 2.0048038 1 1
6600 24.752158 -9.9939162 0.53794465 1 1
6700 23.073765 -9.3662561 0.38618685 1 1
6800 21.940219 -8.4948475 -0.25184019 1 1
6900 22.23783 -8.8668868 0.0072863367 1 1
7000 25.667836 -10.473211 0.59852886 1 1
7100 23.352123 -9.0862268 0.85289283 1 1
7200 24.072107 -9.4020576 0.090222808 1 1
7300 22.806746 -8.4687857 -0.46892989 1 1
7400 24.798425 -9.1144357 -0.38738146 1 1
7500 24.748499 -9.1560558 0.94929896 1 1
7600 25.364753 -10.176533 0.2649225 1 1
7700 25.137988 -9.6617897 1.3920543 1 1
7800 25.502583 -10.320832 0.64812816 1 1
7900 24.5208 -9.9466543 -0.084071026 1 1
8000 24.653522 -10.312942 0.32535023 1 1
8100 23.129565 -9.6250435 0.016356303 1 1
8200 23.82421 -9.7608023 0.11631418 1 1
8300 25.081262 -9.3510452 0.92337854 1 1
8400 24.328205 -9.2875396 0.28266968 1 1
8500 25.041711 -11.254976 -0.21368615 1 1
8600 24.111473 -9.0389585 1.2102938 1 1
8700 23.50066 -9.0926498 0.78819229 1 1
8800 23.840962 -9.3434474 0.091313007 1 1
8900 23.081841 -9.0635966 0.56672001 1 1
9000 24.712103 -9.3243213 0.60301629 1 1
9100 24.457422 -9.439298 -0.60457515 1 1
9200 25.070662 -9.1945782 1.2399235 1 1
9300 25.019869 -8.7910068 0.42340497 1 1
9400 24.23662 -9.3111098 -0.75379175 1 1
9500 24.836827 -8.7324281 0.81857501 1 1
9600 24.901993 -8.6624128 0.84890877 1 1
9700 24.936686 -8.9869503 1.9627894 1 1
9800 25.393368 -9.8538595 0.45344428 1 1
9900 25.942336 -9.7854728 0.68352091 1 1
10000 24.636319 -9.3369442 0.62793231 1 1
Loop time of 1.67474 on 1 procs for 10000 steps with 361 atoms
Performance: 2579511.004 tau/day, 5971.090 timesteps/s
99.8% CPU use with 1 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 0.47884 | 0.47884 | 0.47884 | 0.0 | 28.59
Bond | 0.24918 | 0.24918 | 0.24918 | 0.0 | 14.88
Neigh | 0.82974 | 0.82974 | 0.82974 | 0.0 | 49.54
Comm | 0.01265 | 0.01265 | 0.01265 | 0.0 | 0.76
Output | 0.00085878 | 0.00085878 | 0.00085878 | 0.0 | 0.05
Modify | 0.075636 | 0.075636 | 0.075636 | 0.0 | 4.52
Other | | 0.02783 | | | 1.66
Nlocal: 361 ave 361 max 361 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Nghost: 0 ave 0 max 0 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Neighs: 2421 ave 2421 max 2421 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Total # of neighbors = 2421
Ave neighs/atom = 6.70637
Ave special neighs/atom = 5.61773
Neighbor list builds = 4937
Dangerous builds = 5
Total wall time: 0:00:01

View File

@ -1,225 +0,0 @@
LAMMPS (15 Feb 2016)
# 2d circle of particles inside a box with LJ walls
variable b index 0
variable x index 50
variable y index 20
variable d index 20
variable v index 5
variable w index 2
units lj
dimension 2
atom_style bond
boundary f f p
lattice hex 0.85
Lattice spacing in x,y,z = 1.16553 2.01877 1.16553
region box block 0 $x 0 $y -0.5 0.5
region box block 0 50 0 $y -0.5 0.5
region box block 0 50 0 20 -0.5 0.5
create_box 1 box bond/types 1 extra/bond/per/atom 6
Created orthogonal box = (0 0 -0.582767) to (58.2767 40.3753 0.582767)
2 by 2 by 1 MPI processor grid
region circle sphere $(v_d/2+1) $(v_d/2/sqrt(3.0)+1) 0.0 $(v_d/2)
region circle sphere 11 $(v_d/2/sqrt(3.0)+1) 0.0 $(v_d/2)
region circle sphere 11 6.7735026918962581988 0.0 $(v_d/2)
region circle sphere 11 6.7735026918962581988 0.0 10
create_atoms 1 region circle
Created 361 atoms
mass 1 1.0
velocity all create 0.5 87287 loop geom
velocity all set $v $w 0 sum yes
velocity all set 5 $w 0 sum yes
velocity all set 5 2 0 sum yes
pair_style lj/cut 2.5
pair_coeff 1 1 10.0 1.0 2.5
bond_style harmonic
bond_coeff 1 10.0 1.2
# need to preserve 1-3, 1-4 pairwise interactions during hard collisions
special_bonds lj/coul 0 1 1
0 = max # of 1-2 neighbors
1 = max # of special neighbors
create_bonds all all 1 1.0 1.5
Neighbor list info ...
2 neighbor list requests
update every 1 steps, delay 10 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 2.8
ghost atom cutoff = 2.8
binsize = 1.4 -> bins = 42 29 1
Added 1014 bonds, new total = 1014
6 = max # of 1-2 neighbors
6 = max # of special neighbors
neighbor 0.3 bin
neigh_modify delay 0 every 1 check yes
fix 1 all nve
fix 2 all wall/lj93 xlo 0.0 1 1 2.5 xhi $x 1 1 2.5
fix 2 all wall/lj93 xlo 0.0 1 1 2.5 xhi 50 1 1 2.5
fix 3 all wall/lj93 ylo 0.0 1 1 2.5 yhi $y 1 1 2.5
fix 3 all wall/lj93 ylo 0.0 1 1 2.5 yhi 20 1 1 2.5
comm_style tiled
comm_modify cutoff 7.5
fix 10 all balance 50 0.9 rcb
#compute 1 all property/atom proc
#variable p atom (c_1%10)+1
#dump 2 all custom 50 tmp.dump id v_p x y z
#dump 3 all image 50 image.*.jpg v_p type bond atom 0.25 # adiam 1.0 view 0 0 zoom 1.8 subbox yes 0.02
#variable colors string # "red green blue yellow white # purple pink orange lime gray"
#dump_modify 3 pad 5 amap 0 10 sa 1 10 ${colors}
thermo_style custom step temp epair press f_10[3] f_10
thermo 100
run 10000
Neighbor list info ...
1 neighbor list requests
update every 1 steps, delay 0 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 2.8
ghost atom cutoff = 7.5
binsize = 1.4 -> bins = 42 29 1
Memory usage per processor = 4.49421 Mbytes
Step Temp E_pair Press 10[3] 10
0 25.701528 -2.2032569 3.1039469 3.2354571 1.0526316
100 27.623422 -6.228166 2.6542136 1.2631579 1.0083102
200 33.35302 -15.746749 3.2018248 1.2963989 1.0193906
300 39.17734 -24.1557 4.9116986 1.2963989 1.0193906
400 41.660701 -27.615203 8.6214679 1.3518006 1.0083102
500 37.154928 -24.096947 3.2656178 1.3296399 1.0193906
600 35.059889 -21.524279 2.372849 1.3296399 1.0083102
700 36.70516 -21.98396 3.2995108 1.3296399 1.0083102
800 39.53521 -25.672748 4.3257712 1.3961219 1.0083102
900 38.566797 -24.778382 4.1874914 1.3739612 1.0083102
1000 37.506157 -25.381025 5.6634589 1.4182825 1.0193906
1100 34.186888 -23.460558 5.2123037 1.2963989 1.0083102
1200 33.302788 -22.509552 4.9394032 1.1745152 1.0193906
1300 33.271956 -22.831342 4.5519649 1.1966759 1.0083102
1400 30.344677 -20.654604 4.1641375 1.0969529 1.0193906
1500 27.292624 -18.180523 1.0686706 1.1412742 1.0083102
1600 26.787948 -15.907011 1.7236133 1.1745152 1.0193906
1700 25.708419 -15.568774 0.73006531 1.1080332 1.0193906
1800 26.523196 -14.641077 0.78443231 1.1301939 1.0083102
1900 25.151151 -13.927975 1.1760729 1.1080332 1.0193906
2000 27.637036 -15.055467 1.5903524 1.1301939 1.0083102
2100 27.642772 -14.038356 2.4101976 1.2077562 1.0083102
2200 27.178261 -13.277262 1.9252291 1.1745152 1.0193906
2300 25.615526 -12.67851 0.88527229 1.1634349 1.0083102
2400 24.918218 -13.029669 0.95714212 1.1966759 1.0193906
2500 27.302154 -13.02629 1.3556788 1.1080332 1.0193906
2600 26.798157 -13.78042 2.703198 1.1855956 1.0083102
2700 27.24573 -16.504845 3.1771274 1.1523546 1.0193906
2800 24.592313 -14.795322 1.6473982 1.0969529 1.0193906
2900 22.803769 -13.043913 0.71978239 1.0969529 1.0083102
3000 21.388681 -13.323114 -1.3437735 1.0858726 1.0083102
3100 21.929044 -11.627262 -0.38509856 1.1191136 1.0083102
3200 22.350115 -10.438826 0.7833392 1.0526316 1.0083102
3300 22.619011 -9.9110914 1.4143766 1.1191136 1.0193906
3400 24.251234 -11.712256 1.4299187 1.0969529 1.0193906
3500 25.633796 -12.609976 1.4809529 1.0969529 1.0083102
3600 23.070279 -11.178798 0.35315388 1.1191136 1.0083102
3700 22.635771 -10.360523 0.060253018 1.1412742 1.0193906
3800 20.746426 -9.7066538 0.24549731 1.0526316 1.0083102
3900 22.467121 -10.469368 0.9854352 1.0969529 1.0193906
4000 22.658639 -10.781605 0.014232783 1.1191136 1.0083102
4100 22.839698 -10.528796 1.3995223 1.0526316 1.0083102
4200 23.52621 -12.150065 0.74863439 1.0747922 1.0193906
4300 24.401948 -11.703236 0.25019621 1.0637119 1.0193906
4400 22.769001 -11.763045 -0.033044917 1.1412742 1.0083102
4500 22.170178 -11.572473 -0.40444128 1.0526316 1.0083102
4600 22.409231 -10.761099 -0.012942618 1.0747922 1.0083102
4700 22.953641 -10.999181 0.17199357 1.0637119 1.0083102
4800 22.746977 -10.69943 -0.050664647 1.0526316 1.0083102
4900 23.784023 -10.353932 0.55400224 1.0747922 1.0304709
5000 23.250563 -11.567067 -0.23735032 1.0637119 1.0083102
5100 22.521138 -10.661998 0.50094359 1.0747922 1.0083102
5200 21.318659 -9.5996948 0.75683786 1.0637119 1.0193906
5300 21.603355 -10.042239 -0.2376815 1.0637119 1.0083102
5400 21.350407 -10.181041 -0.87085628 1.1745152 1.0193906
5500 22.430002 -10.535576 0.47962005 1.1191136 1.0193906
5600 22.459036 -11.914086 0.47719353 1.0858726 1.0193906
5700 23.348257 -12.888911 0.55511547 1.0858726 1.0193906
5800 23.357742 -12.328566 0.734193 1.0526316 1.0193906
5900 24.002277 -11.439187 0.23688862 1.0858726 1.0193906
6000 22.398563 -10.682615 0.28777592 1.0747922 1.0193906
6100 22.23883 -10.838986 -0.17956279 1.1080332 1.0083102
6200 21.930735 -11.182485 0.044031465 1.0526316 1.0193906
6300 22.658226 -11.142419 0.060550217 1.0526316 1.0193906
6400 22.375935 -11.1764 -0.027267206 1.0526316 1.0193906
6500 21.553541 -9.9609653 1.0562139 1.0858726 1.0193906
6600 23.339323 -10.988956 0.19462502 1.0526316 1.0083102
6700 22.506968 -11.276791 0.50225378 1.0969529 1.0083102
6800 22.991741 -10.292043 1.3278137 1.0858726 1.0193906
6900 22.716461 -10.540264 1.090723 1.0304709 1.0083102
7000 20.88433 -10.566053 -0.47976012 1.0969529 1.0193906
7100 22.034864 -10.27774 0.24169213 1.0193906 1.0083102
7200 23.107403 -10.304771 0.39888005 1.0969529 1.0304709
7300 22.734104 -9.8038963 1.1986757 1.0858726 1.0083102
7400 23.566402 -10.560548 1.0213434 1.1080332 1.0193906
7500 23.651346 -10.596902 1.290057 1.0969529 1.0083102
7600 23.181407 -10.247073 0.80701327 1.0526316 1.0083102
7700 23.778698 -10.659208 0.54327672 1.0304709 1.0193906
7800 22.655159 -10.183303 0.81382393 1.0747922 1.0193906
7900 22.897008 -10.849819 0.56424197 1.0415512 1.0083102
8000 23.698074 -10.398048 0.42170034 1.0747922 1.0083102
8100 22.726563 -9.8563277 0.30293638 1.0193906 1.0193906
8200 23.424699 -10.687885 0.54222367 1.0415512 1.0083102
8300 22.921826 -10.919492 0.55264172 1.0747922 1.0083102
8400 23.220159 -9.7725217 1.2872547 1.1080332 1.0083102
8500 23.606204 -9.7070499 1.0340181 1.0747922 1.0193906
8600 23.008166 -10.451507 -0.42524326 1.0747922 1.0083102
8700 22.4959 -10.278782 0.19535494 1.0858726 1.0083102
8800 25.153658 -10.757 1.5966743 1.0193906 1.0193906
8900 23.206798 -10.486994 1.2031737 1.0637119 1.0083102
9000 22.726684 -10.406196 0.10165144 1.0858726 1.0304709
9100 22.504045 -9.638919 -0.80560991 1.0747922 1.0083102
9200 21.431928 -9.073801 0.3773795 1.0415512 1.0193906
9300 23.596502 -11.045041 -0.3135787 1.0858726 1.0083102
9400 25.308669 -11.931174 1.3143518 1.0526316 1.0193906
9500 24.394499 -10.661499 0.82236963 1.0969529 1.0193906
9600 21.987451 -9.5632699 0.30728292 1.0858726 1.0193906
9700 22.150748 -9.5707928 -0.1239396 1.0526316 1.0193906
9800 23.347328 -9.7899306 0.29737715 1.0193906 1.0083102
9900 20.310207 -9.4839992 -1.2980277 1.0193906 1.0193906
10000 22.978427 -9.9593786 -0.45943368 1.0526316 1.0083102
Loop time of 0.815364 on 4 procs for 10000 steps with 361 atoms
Performance: 5298244.819 tau/day, 12264.456 timesteps/s
98.9% CPU use with 4 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 0.12547 | 0.13632 | 0.14796 | 2.6 | 16.72
Bond | 0.05547 | 0.06023 | 0.064582 | 1.7 | 7.39
Neigh | 0.28201 | 0.28972 | 0.298 | 1.1 | 35.53
Comm | 0.16858 | 0.19467 | 0.22096 | 4.3 | 23.88
Output | 0.0017931 | 0.0019639 | 0.0023253 | 0.5 | 0.24
Modify | 0.039718 | 0.040559 | 0.041364 | 0.4 | 4.97
Other | | 0.09189 | | | 11.27
Nlocal: 90.25 ave 91 max 90 min
Histogram: 3 0 0 0 0 0 0 0 0 1
Nghost: 195.25 ave 202 max 185 min
Histogram: 1 0 0 0 0 1 0 0 1 1
Neighs: 629.5 ave 731 max 543 min
Histogram: 1 1 0 0 0 0 1 0 0 1
Total # of neighbors = 2518
Ave neighs/atom = 6.97507
Ave special neighs/atom = 5.61773
Neighbor list builds = 4874
Dangerous builds = 0
Total wall time: 0:00:00

View File

@ -1,524 +0,0 @@
LAMMPS (15 Feb 2016)
# 2d circle of particles inside a box with LJ walls
variable b index 0
variable x index 50
variable y index 20
variable d index 20
# careful not to slam into wall too hard
variable v index 0.3
variable w index 0.08
units lj
dimension 2
atom_style bond
boundary f f p
lattice hex 0.85
Lattice spacing in x,y,z = 1.16553 2.01877 1.16553
region box block 0 $x 0 $y -0.5 0.5
region box block 0 50 0 $y -0.5 0.5
region box block 0 50 0 20 -0.5 0.5
create_box 1 box bond/types 1 extra/bond/per/atom 6
Created orthogonal box = (0 0 -0.582767) to (58.2767 40.3753 0.582767)
1 by 1 by 1 MPI processor grid
region circle sphere $(v_d/2+1) $(v_d/2/sqrt(3.0)+1) 0.0 $(v_d/2)
region circle sphere 11 $(v_d/2/sqrt(3.0)+1) 0.0 $(v_d/2)
region circle sphere 11 6.7735026918962581988 0.0 $(v_d/2)
region circle sphere 11 6.7735026918962581988 0.0 10
create_atoms 1 region circle
Created 361 atoms
mass 1 1.0
velocity all create 0.5 87287 loop geom
velocity all set $v $w 0 sum yes
velocity all set 0.3 $w 0 sum yes
velocity all set 0.3 0.08 0 sum yes
pair_style lj/cut 2.5
pair_coeff 1 1 10.0 1.0 2.5
bond_style harmonic
bond_coeff 1 10.0 1.2
create_bonds all all 1 1.0 1.5
Neighbor list info ...
2 neighbor list requests
update every 1 steps, delay 10 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 2.8
ghost atom cutoff = 2.8
binsize = 1.4 -> bins = 42 29 1
Added 1014 bonds, new total = 1014
6 = max # of 1-2 neighbors
30 = max # of 1-3 neighbors
180 = max # of 1-4 neighbors
36 = max # of special neighbors
neighbor 0.3 bin
neigh_modify delay 0 every 1 check yes
fix 1 all nve
fix 2 all wall/lj93 xlo 0.0 1 1 2.5 xhi $x 1 1 2.5
fix 2 all wall/lj93 xlo 0.0 1 1 2.5 xhi 50 1 1 2.5
fix 3 all wall/lj93 ylo 0.0 1 1 2.5 yhi $y 1 1 2.5
fix 3 all wall/lj93 ylo 0.0 1 1 2.5 yhi 20 1 1 2.5
comm_style tiled
fix 10 all balance 50 0.9 rcb
#compute 1 all property/atom proc
#variable p atom (c_1%10)+1
#dump 2 all custom 50 tmp.dump id v_p x y z
#dump 3 all image 200 image.*.jpg v_p type bond atom 0.25 # adiam 1.0 view 0 0 zoom 1.8 subbox yes 0.02
#variable colors string # "red green blue yellow white # purple pink orange lime gray"
#dump_modify 3 pad 5 amap 0 10 sa 1 10 ${colors}
thermo_style custom step temp epair press f_10[3] f_10
thermo 100
run 40000
Neighbor list info ...
1 neighbor list requests
update every 1 steps, delay 0 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 2.8
ghost atom cutoff = 2.8
binsize = 1.4 -> bins = 42 29 1
Memory usage per processor = 6.31529 Mbytes
Step Temp E_pair Press 10[3] 10
0 0.57437856 0 0.26099453 1 1
100 0.29756515 0 0.10149401 1 1
200 0.35394813 0 0.075159099 1 1
300 0.39245849 0 0.033002384 1 1
400 0.34078347 0 -0.020825841 1 1
500 0.35201095 0 -0.062637506 1 1
600 0.34014717 0 -0.11122965 1 1
700 0.3323524 0 -0.11598015 1 1
800 0.35116047 0 -0.096162395 1 1
900 0.35695352 0 -0.01385176 1 1
1000 0.36986539 0 0.056772858 1 1
1100 0.34584644 0 0.084941323 1 1
1200 0.31921435 0 0.10545078 1 1
1300 0.32952819 0 0.124902 1 1
1400 0.34497365 0 0.12662081 1 1
1500 0.33429243 0 0.096230972 1 1
1600 0.33765387 0 0.025800542 1 1
1700 0.35134464 0 -0.04422593 1 1
1800 0.35003859 0 -0.096745576 1 1
1900 0.33839618 0 -0.095465943 1 1
2000 0.33732078 0 -0.094652802 1 1
2100 0.34552238 0 -0.076729261 1 1
2200 0.34893142 0 -0.036853228 1 1
2300 0.35379341 0 0.021124847 1 1
2400 0.34829744 0 0.09230184 1 1
2500 0.33038141 0 0.1399855 1 1
2600 0.30983019 0 0.12754742 1 1
2700 0.32992561 0 0.10485138 1 1
2800 0.34604747 0 0.066174138 1 1
2900 0.3444791 0 0.036590652 1 1
3000 0.34721342 0 -0.023793368 1 1
3100 0.33404314 0 -0.08374223 1 1
3200 0.33019355 0 -0.12715599 1 1
3300 0.33515177 0 -0.12217394 1 1
3400 0.33628481 0 -0.070877624 1 1
3500 0.34257038 0 -0.021612062 1 1
3600 0.32838009 0 0.030131228 1 1
3700 0.34462142 0 0.074586378 1 1
3800 0.30891825 0 0.10605673 1 1
3900 0.33847951 0 0.13956139 1 1
4000 0.32952079 0 0.12688129 1 1
4100 0.32646772 0 0.081089042 1 1
4200 0.35399503 0 0.013422873 1 1
4300 0.33154914 0 -0.050919508 1 1
4400 0.34113556 0 -0.083171 1 1
4500 0.32651708 0 -0.1063133 1 1
4600 0.34359609 0 -0.1076395 1 1
4700 0.34973537 0 -0.088231606 1 1
4800 0.35198515 0 -0.020901044 1 1
4900 0.35187284 0 0.043645941 1 1
5000 0.34887336 0 0.095698609 1 1
5100 0.30308163 0 0.11649328 1 1
5200 0.32401285 0 0.12072411 1 1
5300 0.33025072 0 0.10933161 1 1
5400 0.33288012 0 0.078356448 1 1
5500 0.35142492 0 0.036958063 1 1
5600 0.35125368 0 -0.041371343 1 1
5700 0.34547744 0 -0.096450846 1 1
5800 0.30939887 0 -0.12356656 1 1
5900 0.32315628 0 -0.11338676 1 1
6000 0.34117485 0 -0.066198961 1 1
6100 0.35298043 0 -0.016172816 1 1
6200 0.35130653 0 0.027660468 1 1
6300 0.35398766 0 0.087221238 1 1
6400 0.30963379 0 0.11990957 1 1
6500 0.3174541 0 0.14103528 1 1
6600 0.31989791 0 0.11575506 1 1
6700 0.33811477 0 0.060747353 1 1
6800 0.3424043 0 0.010357152 1 1
6900 0.34804319 0 -0.042621786 1 1
7000 0.35357865 0 -0.067248959 1 1
7100 0.33556885 0 -0.10983726 1 1
7200 0.33531101 0 -0.112179 1 1
7300 0.35742607 0 -0.078405267 1 1
7400 0.34577559 0 -0.01985432 1 1
7500 0.3498641 0 0.052289439 1 1
7600 0.33773715 0 0.092939035 1 1
7700 0.33093497 0 0.11924405 1 1
7800 0.31435814 0 0.12701724 1 1
7900 0.33132217 0 0.10793075 1 1
8000 0.33451798 0 0.077993125 1 1
8100 0.35188371 0 0.019929977 1 1
8200 0.33645742 0 -0.039302079 1 1
8300 0.3415632 0 -0.098067982 1 1
8400 0.30619282 0 -0.12952879 1 1
8500 0.34446484 0 -0.098084709 1 1
8600 0.33761673 0 -0.07069818 1 1
8700 0.34495452 0 -0.022458056 1 1
8800 0.33502983 0 0.027742411 1 1
8900 0.35418591 0 0.092390134 1 1
9000 0.31648387 0 0.12467398 1 1
9100 0.33994825 0 0.14460327 1 1
9200 0.33822571 0 0.11273284 1 1
9300 0.33260773 0 0.060063671 1 1
9400 0.36140305 0 0.021427642 1 1
9500 0.34273562 0 -0.034064202 1 1
9600 0.33867054 0 -0.089076906 1 1
9700 0.32088235 0 -0.12027075 1 1
9800 0.3320823 0 -0.11602794 1 1
9900 0.33916442 0 -0.080281044 1 1
10000 0.34852268 0 -0.01000914 1 1
10100 0.32955942 0 0.04258493 1 1
10200 0.34487898 0 0.086971308 1 1
10300 0.32325593 0 0.11558149 1 1
10400 0.30927871 0 0.12239437 1 1
10500 0.33176799 0 0.12285937 1 1
10600 0.35120027 0 0.084897432 1 1
10700 0.33129697 0 0.0053089279 1 1
10800 0.36028769 0 -0.04280715 1 1
10900 0.35552287 0 -0.084955999 1 1
11000 0.3406024 0 -0.096554577 1 1
11100 0.33041202 0 -0.10703492 1 1
11200 0.32442686 0 -0.084328121 1 1
11300 0.35952468 0 -0.020191965 1 1
11400 0.34610624 0 0.03440148 1 1
11500 0.3415612 0 0.1041929 1 1
11600 0.34040042 0 0.13215705 1 1
11700 0.33555094 0 0.12738686 1 1
11800 0.3458647 0 0.10963398 1 1
11900 0.33836678 0 0.067253864 1 1
12000 0.34853314 0 0.03201448 1 1
12100 0.34600048 0 -0.034833402 1 1
12200 0.33145631 0 -0.09865675 1 1
12300 0.32848884 0 -0.1248489 1 1
12400 0.3321344 0 -0.11266575 1 1
12500 0.32622305 0 -0.061634993 1 1
12600 0.36213537 0 -0.0090593315 1 1
12700 0.34673866 0 0.036734645 1 1
12800 0.34606618 0 0.086267678 1 1
12900 0.34271431 0 0.12415522 1 1
13000 0.31993287 0 0.13879926 1 1
13100 0.3422918 0 0.11978905 1 1
13200 0.33055236 0 0.062620483 1 1
13300 0.34652207 0 0.0043833459 1 1
13400 0.33574661 0 -0.04691024 1 1
13500 0.33940837 0 -0.074241604 1 1
13600 0.32093414 0 -0.1078027 1 1
13700 0.34336597 0 -0.10544097 1 1
13800 0.35806461 0 -0.072531559 1 1
13900 0.35209713 0 -0.018851408 1 1
14000 0.35702629 0 0.061046366 1 1
14100 0.33234093 0 0.094086465 1 1
14200 0.3459466 0 0.12186656 1 1
14300 0.3327428 0 0.11396572 1 1
14400 0.32409443 0 0.10658903 1 1
14500 0.35022184 0 0.083558031 1 1
14600 0.34823843 0 0.024605569 1 1
14700 0.35298973 0 -0.040418888 1 1
14800 0.33679845 0 -0.10067728 1 1
14900 0.32790966 0 -0.10925568 1 1
15000 0.34208495 0 -0.09568004 1 1
15100 0.33647529 0 -0.055652929 1 1
15200 0.35328398 0 -0.020236536 1 1
15300 0.34252669 0 0.026434179 1 1
15400 0.34409435 0 0.094410599 1 1
15500 0.32288994 0 0.12034455 1 1
15600 0.32109689 0 0.13645185 1 1
15700 0.33681572 0 0.098607746 1 1
15800 0.33635195 0 0.05570715 1 1
15900 0.34289757 0 0.013849092 1 1
16000 0.34225547 0 -0.035597548 1 1
16100 0.33660991 0 -0.076931881 1 1
16200 0.32802152 0 -0.12765884 1 1
16300 0.3469374 0 -0.10785455 1 1
16400 0.34053641 0 -0.070259853 1 1
16500 0.34610591 0 -0.014315306 1 1
16600 0.35109001 0 0.041251169 1 1
16700 0.34336905 0 0.077996627 1 1
16800 0.33277414 0 0.11053634 1 1
16900 0.32183338 0 0.11680626 1 1
17000 0.34044352 0 0.10806555 1 1
17100 0.32967873 0 0.067759786 1 1
17200 0.36172278 0 -0.0048631904 1 1
17300 0.35619435 0 -0.04215545 1 1
17400 0.34540936 0 -0.093994174 1 1
17500 0.33193585 0 -0.098831315 1 1
17600 0.3544756 0 -0.085660403 1 1
17700 0.34505209 0 -0.069640515 1 1
17800 0.36291124 0 -0.0063088133 1 1
17900 0.34255705 0 0.046794555 1 1
18000 0.34163238 0 0.11767705 1 1
18100 0.3466445 0 0.1351712 1 1
18200 0.33037668 0 0.12703659 1 1
18300 0.33677404 0 0.10956306 1 1
18400 0.34978954 0 0.087193072 1 1
18500 0.33354363 0 0.051095814 1 1
18600 0.34651729 0 0.0056245561 1 1
18700 0.32622232 0 -0.047319269 1 1
18800 0.32978847 0 -0.054929416 1 1
18900 0.34192451 0 -0.037252471 1 1
19000 0.34061294 0 -0.001167235 1 1
19100 0.34194478 0 0.016945224 1 1
19200 0.33321765 0 0.050665354 1 1
19300 0.33197783 0 0.080470585 1 1
19400 0.33284715 0 0.12423599 1 1
19500 0.33867856 0 0.12689524 1 1
19600 0.36092786 0 0.11417704 1 1
19700 0.34270183 0 0.069038291 1 1
19800 0.34880695 0 0.042483681 1 1
19900 0.33903644 0 0.034788638 1 1
20000 0.32590125 0 0.011383785 1 1
20100 0.30358859 0 0.0030743554 1 1
20200 0.31830224 0 0.017637826 1 1
20300 0.34195438 0 0.072811099 1 1
20400 0.31249563 0 0.10063541 1 1
20500 0.31544938 0 0.1405794 1 1
20600 0.30071644 0 0.12763486 1 1
20700 0.2890265 0 0.1136651 1 1
20800 0.28962296 0 0.094481978 1 1
20900 0.29447212 0 0.0967165 1 1
21000 0.31159961 0 0.067307231 1 1
21100 0.30490648 0 0.017689358 1 1
21200 0.30687262 0 -0.016055512 1 1
21300 0.30083286 0 -0.0014988997 1 1
21400 0.32070426 0 0.015960302 1 1
21500 0.31439311 0 0.038170385 1 1
21600 0.32617832 0 0.043263788 1 1
21700 0.35151793 0 0.066302727 1 1
21800 0.35912885 0 0.070099103 1 1
21900 0.32451958 0 0.068935768 1 1
22000 0.35219298 0 0.067161227 1 1
22100 0.34857705 0 0.032731746 1 1
22200 0.34750227 0 0.0056917695 1 1
22300 0.34766017 0 -0.0027090483 1 1
22400 0.33426062 0 -0.023196063 1 1
22500 0.34174625 0 -0.025019717 1 1
22600 0.3356145 0 -0.029707418 1 1
22700 0.3362653 0 -0.035815733 1 1
22800 0.33973405 0 -0.0024705835 1 1
22900 0.33813085 0 0.0077527467 1 1
23000 0.33339981 0 0.028340744 1 1
23100 0.34079832 0 0.018521302 1 1
23200 0.33074548 0 0.032378405 1 1
23300 0.32965664 0 0.035989589 1 1
23400 0.30927749 0 0.024581106 1 1
23500 0.32890632 0 0.01092479 1 1
23600 0.34137438 0 0.0094839745 1 1
23700 0.34512638 0 -0.012392771 1 1
23800 0.31781354 0 -0.012908449 1 1
23900 0.32405513 0 -0.015018071 1 1
24000 0.33549728 0 -0.012812915 1 1
24100 0.31368736 0 -0.020818372 1 1
24200 0.33533836 0 0.0056121057 1 1
24300 0.32530627 0 0.018183931 1 1
24400 0.31930662 0 0.027446878 1 1
24500 0.33540302 0 0.040307455 1 1
24600 0.34020431 0 0.027403921 1 1
24700 0.3291814 0 0.01204865 1 1
24800 0.31552604 0 0.019654111 1 1
24900 0.34727253 0 0.01670543 1 1
25000 0.35120105 0 0.0038617562 1 1
25100 0.32706871 0 -0.021196623 1 1
25200 0.32915282 0 -0.017146508 1 1
25300 0.32577518 0 -0.01312495 1 1
25400 0.33286855 0 0.0014726193 1 1
25500 0.33002601 0 0.0080974022 1 1
25600 0.34127655 0 0.014296091 1 1
25700 0.34048065 0 0.022513032 1 1
25800 0.33029079 0 0.038733531 1 1
25900 0.33031324 0 0.026156982 1 1
26000 0.32967371 0 0.028727383 1 1
26100 0.33775718 0 0.015607478 1 1
26200 0.35097144 0 0.012291703 1 1
26300 0.34303792 0 0.00094823191 1 1
26400 0.33632665 0 -0.0026904889 1 1
26500 0.33580127 0 -0.0074168555 1 1
26600 0.33063188 0 -0.020378601 1 1
26700 0.33581846 0 -0.00084397268 1 1
26800 0.32998532 0 0.015932208 1 1
26900 0.33825444 0 0.010428603 1 1
27000 0.32081518 0 0.019818223 1 1
27100 0.31448098 0 0.020093416 1 1
27200 0.32643684 0 0.021934917 1 1
27300 0.33289466 0 0.023713072 1 1
27400 0.32310744 0 0.024110945 1 1
27500 0.33115619 0 0.0025776713 1 1
27600 0.33295887 0 -0.010710764 1 1
27700 0.32968876 0 -0.0064595905 1 1
27800 0.34064581 0 -0.0086519116 1 1
27900 0.33559187 0 -0.0055753593 1 1
28000 0.32300727 0 -0.0004153384 1 1
28100 0.32147461 0 -0.0058543412 1 1
28200 0.35532383 0 0.013646951 1 1
28300 0.31507942 0 0.026532255 1 1
28400 0.32711006 0 0.033214981 1 1
28500 0.34472462 0 0.028050837 1 1
28600 0.33708059 0 0.019115676 1 1
28700 0.34478087 0 0.023743689 1 1
28800 0.34546686 0 0.0081772997 1 1
28900 0.34004886 0 0.017771865 1 1
29000 0.33604232 0 -0.010505671 1 1
29100 0.33541374 0 -0.016273261 1 1
29200 0.34347489 0 -0.010002306 1 1
29300 0.34083904 0 0.0089701784 1 1
29400 0.34846892 0 0.020765104 1 1
29500 0.3416255 0 0.022650856 1 1
29600 0.33725496 0 0.020693083 1 1
29700 0.34480638 0 0.024317128 1 1
29800 0.31459471 0 0.023097895 1 1
29900 0.33014448 0 0.03114046 1 1
30000 0.33741498 0 0.015624314 1 1
30100 0.32598657 0 -0.0018860541 1 1
30200 0.34855815 0 0.0017983372 1 1
30300 0.33375921 0 0.0010991235 1 1
30400 0.35008944 0 -0.0027316177 1 1
30500 0.33279729 0 -0.0035788551 1 1
30600 0.33868746 0 -0.0016249482 1 1
30700 0.33597034 0 -0.0014524001 1 1
30800 0.3227257 0 0.016353457 1 1
30900 0.32676516 0 0.027396654 1 1
31000 0.34083982 0 0.031606413 1 1
31100 0.32165238 0 0.013583368 1 1
31200 0.3428492 0 0.020486611 1 1
31300 0.32372541 0 0.01215566 1 1
31400 0.32734692 0 0.016229397 1 1
31500 0.33089262 0 0.0060426618 1 1
31600 0.34273493 0 -0.013456537 1 1
31700 0.32723905 0 -0.019243766 1 1
31800 0.33636488 0 0.0027814902 1 1
31900 0.32834805 0 0.00706877 1 1
32000 0.33995148 0 0.0018383309 1 1
32100 0.33412282 0 0.0076455933 1 1
32200 0.34334884 0 0.023586129 1 1
32300 0.32778925 0 0.020564321 1 1
32400 0.33163443 0 0.038878463 1 1
32500 0.32290345 0 0.022247461 1 1
32600 0.34113954 0 0.010966365 1 1
32700 0.33390633 0 0.0037777555 1 1
32800 0.34385341 0 0.010556575 1 1
32900 0.32137047 0 0.00022027143 1 1
33000 0.32079172 0 -0.017261272 1 1
33100 0.33570882 0 -0.0051942206 1 1
33200 0.34320894 0 -0.011515281 1 1
33300 0.32794746 0 -0.0018153673 1 1
33400 0.33060982 0 0.027118146 1 1
33500 0.33641809 0 0.02143035 1 1
33600 0.33643061 0 0.020833068 1 1
33700 0.3485949 0 0.030918751 1 1
33800 0.3283985 0 0.01947613 1 1
33900 0.31959761 0 0.021128147 1 1
34000 0.33897984 0 0.015270986 1 1
34100 0.32392267 0 0.0020130852 1 1
34200 0.33084514 0 -0.024316708 1 1
34300 0.3342259 0 -0.0059047764 1 1
34400 0.33385098 0 0.0063818721 1 1
34500 0.33255603 0 -0.01023837 1 1
34600 0.34766173 0 0.0056703013 1 1
34700 0.339822 0 0.0061648559 1 1
34800 0.33902329 0 0.030037037 1 1
34900 0.3216153 0 0.027996689 1 1
35000 0.32701056 0 0.024778517 1 1
35100 0.3124942 0 0.011316548 1 1
35200 0.34486416 0 0.011670127 1 1
35300 0.33275353 0 0.020491246 1 1
35400 0.33618763 0 0.014678874 1 1
35500 0.32352282 0 -0.018568683 1 1
35600 0.32617903 0 -0.012796912 1 1
35700 0.32378048 0 -0.021318585 1 1
35800 0.3371086 0 -0.0023678632 1 1
35900 0.33818476 0 0.011197742 1 1
36000 0.35142144 0 0.022520935 1 1
36100 0.35147297 0 0.020277852 1 1
36200 0.33489465 0 0.014564878 1 1
36300 0.33841515 0 0.036439962 1 1
36400 0.32301096 0 0.019966746 1 1
36500 0.35612028 0 0.036509556 1 1
36600 0.33841597 0 -0.0042180605 1 1
36700 0.34477654 0 -0.0052770853 1 1
36800 0.33804317 0 -0.013751733 1 1
36900 0.35003816 0 -0.0021184393 1 1
37000 0.32965041 0 -0.020900951 1 1
37100 0.34653095 0 -0.013667977 1 1
37200 0.35019871 0 -0.0071740923 1 1
37300 0.34859745 0 0.02006041 1 1
37400 0.35739859 0 0.020892822 1 1
37500 0.34128859 0 0.041072111 1 1
37600 0.33781905 0 0.023376738 1 1
37700 0.32961874 0 0.030953741 1 1
37800 0.343987 0 0.029579795 1 1
37900 0.33610448 0 0.036836828 1 1
38000 0.32757228 0 0.020902031 1 1
38100 0.32735808 0 0.019544751 1 1
38200 0.35646953 0 0.044607528 1 1
38300 0.32509773 0 0.03610738 1 1
38400 0.32111741 0 0.034474043 1 1
38500 0.30590608 0 0.053461212 1 1
38600 0.32322402 0 0.053453832 1 1
38700 0.33843057 0 0.076264534 1 1
38800 0.31350741 0 0.064733869 1 1
38900 0.31943061 0 0.067836769 1 1
39000 0.33775583 0 0.0788316 1 1
39100 0.34256036 0 0.075874935 1 1
39200 0.33128527 0 0.071610976 1 1
39300 0.34519653 0 0.046257301 1 1
39400 0.34351844 0 0.052422917 1 1
39500 0.35716037 0 0.048916058 1 1
39600 0.34000737 0 0.016149089 1 1
39700 0.34587892 0 0.021619621 1 1
39800 0.34878036 0 0.0092881327 1 1
39900 0.35225411 0 -0.011341599 1 1
40000 0.36309266 0 0.0050869295 1 1
Loop time of 1.94553 on 1 procs for 40000 steps with 361 atoms
Performance: 8881898.790 tau/day, 20559.951 timesteps/s
100.0% CPU use with 1 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 0.068658 | 0.068658 | 0.068658 | 0.0 | 3.53
Bond | 0.9979 | 0.9979 | 0.9979 | 0.0 | 51.29
Neigh | 0.50428 | 0.50428 | 0.50428 | 0.0 | 25.92
Comm | 0.015341 | 0.015341 | 0.015341 | 0.0 | 0.79
Output | 0.0029466 | 0.0029466 | 0.0029466 | 0.0 | 0.15
Modify | 0.28324 | 0.28324 | 0.28324 | 0.0 | 14.56
Other | | 0.07317 | | | 3.76
Nlocal: 361 ave 361 max 361 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Nghost: 0 ave 0 max 0 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Neighs: 0 ave 0 max 0 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Total # of neighbors = 0
Ave neighs/atom = 0
Ave special neighs/atom = 31.0249
Neighbor list builds = 3079
Dangerous builds = 0
Total wall time: 0:00:01

View File

@ -1,202 +0,0 @@
LAMMPS (15 Feb 2016)
# 2d circle of particles inside a box with LJ walls
variable b index 0
variable x index 50
variable y index 20
variable d index 20
variable v index 5
variable w index 2
units lj
dimension 2
atom_style atomic
boundary f f p
lattice hex 0.85
Lattice spacing in x,y,z = 1.16553 2.01877 1.16553
region box block 0 $x 0 $y -0.5 0.5
region box block 0 50 0 $y -0.5 0.5
region box block 0 50 0 20 -0.5 0.5
create_box 1 box
Created orthogonal box = (0 0 -0.582767) to (58.2767 40.3753 0.582767)
1 by 1 by 1 MPI processor grid
region circle sphere $(v_d/2+1) $(v_d/2/sqrt(3.0)+1) 0.0 $(v_d/2)
region circle sphere 11 $(v_d/2/sqrt(3.0)+1) 0.0 $(v_d/2)
region circle sphere 11 6.7735026918962581988 0.0 $(v_d/2)
region circle sphere 11 6.7735026918962581988 0.0 10
create_atoms 1 region circle
Created 361 atoms
mass 1 1.0
velocity all create 0.5 87287 loop geom
velocity all set $v $w 0 sum yes
velocity all set 5 $w 0 sum yes
velocity all set 5 2 0 sum yes
pair_style lj/cut 2.5
pair_coeff 1 1 10.0 1.0 2.5
neighbor 0.3 bin
neigh_modify delay 0 every 1 check yes
fix 1 all nve
fix 2 all wall/lj93 xlo 0.0 1 1 2.5 xhi $x 1 1 2.5
fix 2 all wall/lj93 xlo 0.0 1 1 2.5 xhi 50 1 1 2.5
fix 3 all wall/lj93 ylo 0.0 1 1 2.5 yhi $y 1 1 2.5
fix 3 all wall/lj93 ylo 0.0 1 1 2.5 yhi 20 1 1 2.5
comm_style tiled
fix 10 all balance 50 0.9 rcb
#compute 1 all property/atom proc
#variable p atom c_1%10
#dump 2 all custom 50 tmp.dump id v_p x y z
#dump 3 all image 50 image.*.jpg v_p type # adiam 1.0 view 0 0 zoom 1.8 subbox yes 0.02
#variable colors string # "red green blue yellow white # purple pink orange lime gray"
#dump_modify 3 pad 5 amap 0 10 sa 1 10 ${colors}
thermo_style custom step temp epair press f_10[3] f_10
thermo 100
run 10000
Neighbor list info ...
1 neighbor list requests
update every 1 steps, delay 0 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 2.8
ghost atom cutoff = 2.8
binsize = 1.4 -> bins = 42 29 1
Memory usage per processor = 2.47688 Mbytes
Step Temp E_pair Press 10[3] 10
0 25.701528 -29.143179 -1.2407285 1 1
100 26.269576 -29.713313 7.9052334 1 1
200 26.368336 -29.809962 1.6412462 1 1
300 26.479082 -29.920083 2.3678653 1 1
400 26.522239 -29.965537 6.6787858 1 1
500 25.725591 -29.168034 0.67065285 1 1
600 26.247693 -29.692706 7.9887712 1 1
700 26.237368 -29.676926 1.5987214 1 1
800 25.889643 -29.431589 4.6160859 1 1
900 23.635295 -27.372963 9.029962 1 1
1000 22.571904 -25.87422 1.8936085 1 1
1100 17.493795 -21.447274 9.502619 1 1
1200 17.214459 -20.726964 6.3578933 1 1
1300 16.424366 -19.75746 3.9025348 1 1
1400 15.09282 -18.172384 1.7966088 1 1
1500 13.669129 -16.736191 1.3320876 1 1
1600 13.518191 -16.481254 2.2474968 1 1
1700 13.840191 -16.808798 1.848689 1 1
1800 12.705797 -15.654395 2.6658475 1 1
1900 12.560112 -15.376796 1.6651246 1 1
2000 12.11219 -14.943991 1.2347207 1 1
2100 11.681161 -14.453803 1.1856253 1 1
2200 11.380134 -14.15437 1.0983288 1 1
2300 11.404137 -14.206989 1.0886428 1 1
2400 11.267361 -14.00915 1.1353313 1 1
2500 11.086288 -13.866685 1.5189761 1 1
2600 11.241757 -14.031809 1.6088858 1 1
2700 10.741715 -13.522752 1.2648051 1 1
2800 10.594219 -13.461001 1.2068865 1 1
2900 10.497917 -13.243311 0.90549881 1 1
3000 9.8887944 -12.633322 1.2014467 1 1
3100 10.046064 -12.757462 0.72911664 1 1
3200 9.8202521 -12.544235 0.85793687 1 1
3300 9.9932983 -12.729524 1.3692879 1 1
3400 9.4389164 -12.132571 0.83559817 1 1
3500 9.4456791 -12.154808 1.2415677 1 1
3600 9.4291752 -12.13391 1.1892815 1 1
3700 9.2656145 -11.994284 0.93597208 1 1
3800 9.6833674 -12.407022 1.4696321 1 1
3900 9.2075262 -11.996657 1.0201833 1 1
4000 8.704708 -11.395839 1.5366945 1 1
4100 8.496226 -11.160512 0.98385093 1 1
4200 8.5566638 -11.241219 0.84428298 1 1
4300 8.3079987 -10.963542 0.96552044 1 1
4400 8.0878014 -10.695296 0.9598929 1 1
4500 7.8974753 -10.510996 0.67253552 1 1
4600 7.9008492 -10.511956 0.80200878 1 1
4700 7.8469401 -10.46341 0.91408186 1 1
4800 7.8237062 -10.478701 0.80709563 1 1
4900 7.9248576 -10.569715 0.93955604 1 1
5000 7.8285795 -10.450559 0.72760696 1 1
5100 7.8176003 -10.433727 1.0046395 1 1
5200 7.930586 -10.543139 1.1883254 1 1
5300 7.4014327 -10.200353 1.2717149 1 1
5400 7.3398704 -9.9377313 0.8277383 1 1
5500 7.9323894 -10.544566 0.58409181 1 1
5600 7.8256391 -10.452111 0.8371735 1 1
5700 7.5744223 -10.225985 0.56633204 1 1
5800 7.5149231 -10.128901 0.8877957 1 1
5900 7.2696456 -9.868796 1.0183026 1 1
6000 8.172964 -10.8046 0.82048799 1 1
6100 7.569911 -10.224271 0.85335085 1 1
6200 7.5498129 -10.158173 0.69550695 1 1
6300 7.0906227 -9.664124 0.38267058 1 1
6400 6.9720876 -9.556043 0.74772365 1 1
6500 7.2708269 -9.8393843 0.87493485 1 1
6600 7.0968522 -9.7557969 0.66499003 1 1
6700 7.1122649 -9.7305659 1.3152794 1 1
6800 6.9990684 -9.5808587 0.25569509 1 1
6900 7.2436468 -9.8205382 0.94441711 1 1
7000 7.0592104 -9.6306985 0.62683684 1 1
7100 6.7457928 -9.3199995 0.92851433 1 1
7200 7.0005278 -9.645515 0.79975493 1 1
7300 7.0106928 -9.5922649 0.78131757 1 1
7400 6.9425198 -9.5718261 0.3016744 1 1
7500 7.4193009 -9.9953487 0.55537513 1 1
7600 7.1870399 -9.7798145 0.94155142 1 1
7700 6.8261504 -9.3693292 0.78601298 1 1
7800 6.8794916 -9.4362689 0.9335562 1 1
7900 7.0068635 -9.5490666 0.53210657 1 1
8000 6.641609 -9.181226 0.80726821 1 1
8100 6.9290677 -9.4788963 1.1195905 1 1
8200 6.6497084 -9.197688 0.45616164 1 1
8300 6.6000864 -9.207368 0.46307403 1 1
8400 6.7434835 -9.3226196 0.78570419 1 1
8500 7.0766248 -9.5981608 0.48778261 1 1
8600 6.8206587 -9.3646115 0.76420951 1 1
8700 7.2009315 -9.7629817 0.69026433 1 1
8800 7.0581986 -9.636327 0.54467209 1 1
8900 7.2337543 -9.8210795 0.61604427 1 1
9000 6.7053026 -9.2552306 0.24196123 1 1
9100 6.7919694 -9.3561383 0.34320213 1 1
9200 6.8518231 -9.4142511 0.73735875 1 1
9300 6.5891178 -9.1414615 0.45262773 1 1
9400 6.4724853 -9.0217877 0.54837629 1 1
9500 6.3569528 -8.9201793 0.19617724 1 1
9600 6.3765498 -8.947548 0.85408461 1 1
9700 6.5652079 -9.1101844 0.74478711 1 1
9800 6.5099709 -9.0677449 0.69826809 1 1
9900 6.1773299 -8.7085595 0.69981004 1 1
10000 6.3999463 -8.9423632 0.42668066 1 1
Loop time of 0.675636 on 1 procs for 10000 steps with 361 atoms
Performance: 6393974.952 tau/day, 14800.868 timesteps/s
99.7% CPU use with 1 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 0.29845 | 0.29845 | 0.29845 | 0.0 | 44.17
Neigh | 0.26869 | 0.26869 | 0.26869 | 0.0 | 39.77
Comm | 0.006007 | 0.006007 | 0.006007 | 0.0 | 0.89
Output | 0.00076938 | 0.00076938 | 0.00076938 | 0.0 | 0.11
Modify | 0.077204 | 0.077204 | 0.077204 | 0.0 | 11.43
Other | | 0.02452 | | | 3.63
Nlocal: 361 ave 361 max 361 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Nghost: 0 ave 0 max 0 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Neighs: 1191 ave 1191 max 1191 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Total # of neighbors = 1191
Ave neighs/atom = 3.29917
Neighbor list builds = 3609
Dangerous builds = 0
Total wall time: 0:00:00

View File

@ -1,202 +0,0 @@
LAMMPS (15 Feb 2016)
# 2d circle of particles inside a box with LJ walls
variable b index 0
variable x index 50
variable y index 20
variable d index 20
variable v index 5
variable w index 2
units lj
dimension 2
atom_style atomic
boundary f f p
lattice hex 0.85
Lattice spacing in x,y,z = 1.16553 2.01877 1.16553
region box block 0 $x 0 $y -0.5 0.5
region box block 0 50 0 $y -0.5 0.5
region box block 0 50 0 20 -0.5 0.5
create_box 1 box
Created orthogonal box = (0 0 -0.582767) to (58.2767 40.3753 0.582767)
2 by 2 by 1 MPI processor grid
region circle sphere $(v_d/2+1) $(v_d/2/sqrt(3.0)+1) 0.0 $(v_d/2)
region circle sphere 11 $(v_d/2/sqrt(3.0)+1) 0.0 $(v_d/2)
region circle sphere 11 6.7735026918962581988 0.0 $(v_d/2)
region circle sphere 11 6.7735026918962581988 0.0 10
create_atoms 1 region circle
Created 361 atoms
mass 1 1.0
velocity all create 0.5 87287 loop geom
velocity all set $v $w 0 sum yes
velocity all set 5 $w 0 sum yes
velocity all set 5 2 0 sum yes
pair_style lj/cut 2.5
pair_coeff 1 1 10.0 1.0 2.5
neighbor 0.3 bin
neigh_modify delay 0 every 1 check yes
fix 1 all nve
fix 2 all wall/lj93 xlo 0.0 1 1 2.5 xhi $x 1 1 2.5
fix 2 all wall/lj93 xlo 0.0 1 1 2.5 xhi 50 1 1 2.5
fix 3 all wall/lj93 ylo 0.0 1 1 2.5 yhi $y 1 1 2.5
fix 3 all wall/lj93 ylo 0.0 1 1 2.5 yhi 20 1 1 2.5
comm_style tiled
fix 10 all balance 50 0.9 rcb
#compute 1 all property/atom proc
#variable p atom c_1%10
#dump 2 all custom 50 tmp.dump id v_p x y z
#dump 3 all image 50 image.*.jpg v_p type # adiam 1.0 view 0 0 zoom 1.8 subbox yes 0.02
#variable colors string # "red green blue yellow white # purple pink orange lime gray"
#dump_modify 3 pad 5 amap 0 10 sa 1 10 ${colors}
thermo_style custom step temp epair press f_10[3] f_10
thermo 100
run 10000
Neighbor list info ...
1 neighbor list requests
update every 1 steps, delay 0 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 2.8
ghost atom cutoff = 2.8
binsize = 1.4 -> bins = 42 29 1
Memory usage per processor = 2.48839 Mbytes
Step Temp E_pair Press 10[3] 10
0 25.701528 -29.143179 -1.2407285 3.2354571 1.0526316
100 26.269576 -29.713313 7.9052334 1.2742382 1.0304709
200 26.368336 -29.809962 1.6412462 1.2520776 1.0083102
300 26.479082 -29.920083 2.3678653 1.2299169 1.0193906
400 26.522239 -29.965537 6.6787858 1.1855956 1.0083102
500 25.725591 -29.168034 0.67065285 1.2520776 1.0083102
600 26.247693 -29.692706 7.9887712 1.3074792 1.0083102
700 26.237368 -29.676926 1.5987214 1.2409972 1.0083102
800 25.889643 -29.431589 4.6160859 1.2631579 1.0083102
900 23.635295 -27.372963 9.029962 1.1634349 1.0083102
1000 22.571904 -25.87422 1.8936085 1.1301939 1.0193906
1100 17.493795 -21.447274 9.502619 1.0858726 1.0193906
1200 17.214459 -20.726965 6.3578917 1.0304709 1.0193906
1300 16.424154 -19.757386 3.9027133 1.1191136 1.0083102
1400 15.04233 -18.126227 1.7539398 1.0858726 1.0193906
1500 13.749022 -16.839766 1.4654778 1.0747922 1.0083102
1600 13.888812 -16.855703 1.8972035 1.0858726 1.0304709
1700 13.647879 -16.652436 1.5110481 1.0526316 1.0304709
1800 12.61308 -15.580445 2.1861667 1.0083102 1.0083102
1900 12.700272 -15.594505 1.6395684 1.0304709 1.0083102
2000 12.204319 -15.16754 1.6302417 1.1080332 1.0083102
2100 11.921129 -14.774621 1.4311256 1.0858726 1.0083102
2200 11.959274 -14.797326 1.4920985 1.0415512 1.0083102
2300 11.633606 -14.455284 1.4447243 1.1412742 1.0193906
2400 12.180014 -14.719121 1.4582702 1.0304709 1.0083102
2500 11.779995 -14.293633 1.2961686 1.0304709 1.0083102
2600 11.86013 -14.272853 1.1970414 1.0415512 1.0193906
2700 11.360658 -13.772549 1.192957 1.0526316 1.0083102
2800 11.045632 -13.438591 1.2007074 1.0083102 1.0193906
2900 10.689472 -13.127138 0.94544611 1.0193906 1.0193906
3000 10.445298 -12.809325 1.3035047 1.0304709 1.0193906
3100 10.22325 -12.599858 1.7838342 1.0304709 1.0083102
3200 10.226845 -12.602391 0.91456469 1.0304709 1.0193906
3300 9.8906692 -12.204654 1.4538962 1.0415512 1.0193906
3400 9.0246858 -11.627057 1.1929498 1.0304709 1.0193906
3500 9.4549317 -11.747347 0.92966653 1.0193906 1.0193906
3600 9.2467281 -11.534358 0.94959796 1.0415512 1.0083102
3700 9.1099307 -11.381318 1.2963887 1.0193906 1.0083102
3800 9.2236074 -11.483205 1.3510186 1.1080332 1.0193906
3900 8.6105519 -10.877844 1.3591509 1.0304709 1.0083102
4000 8.588698 -10.846126 0.76473884 1.0415512 1.0083102
4100 8.5960453 -10.831229 0.93758423 1.0747922 1.0193906
4200 8.1049344 -10.436054 0.74947412 1.0526316 1.0083102
4300 8.2606129 -10.471049 0.64465155 1.0193906 1.0193906
4400 8.0777962 -10.288476 1.1145052 1.0193906 1.0083102
4500 7.9202904 -10.10427 0.49016698 1.0304709 1.0083102
4600 8.2366755 -10.434942 0.65930769 1.0193906 1.0083102
4700 7.9313531 -10.13685 1.097861 1.0304709 1.0083102
4800 7.8637296 -10.085957 0.56015483 1.0304709 1.0193906
4900 7.3410322 -9.5357686 0.89340163 1.0304709 1.0193906
5000 7.6647481 -9.8529515 0.8283225 1.0193906 1.0193906
5100 7.4114006 -9.5917802 0.64812231 1.0083102 1.0193906
5200 7.6261959 -9.8178843 0.90517452 1.0193906 1.0083102
5300 7.6501619 -9.8428477 1.028077 1.0304709 1.0083102
5400 7.4694373 -9.6434672 0.38259983 1.0193906 1.0083102
5500 7.3111918 -9.4803007 0.47921149 1.0193906 1.0193906
5600 7.2132446 -9.3694039 0.71282856 1.0193906 1.0083102
5700 6.8349744 -9.0018958 0.85688618 1.0193906 1.0083102
5800 7.1978042 -9.3667457 0.61717818 1.0304709 1.0193906
5900 7.1441033 -9.3263118 0.32840394 1.0193906 1.0083102
6000 7.0943691 -9.2621241 1.3099316 1.0083102 1.0083102
6100 6.9547586 -9.1026607 0.44492974 1.0193906 1.0083102
6200 7.0932682 -9.2934579 0.93444691 1.0415512 1.0083102
6300 7.0536275 -9.2562193 0.57578551 1.0193906 1.0193906
6400 6.8839921 -9.0513091 0.65690774 1.0193906 1.0083102
6500 6.7618431 -8.9037814 0.6011838 1.0304709 1.0193906
6600 6.6600729 -8.7979286 0.73495903 1.0193906 1.0193906
6700 6.6544136 -8.8089155 0.41206297 1.0304709 1.0193906
6800 6.7935502 -8.9405122 1.022055 1.0193906 1.0083102
6900 6.6603594 -8.8085894 0.4271189 1.0526316 1.0193906
7000 6.4894888 -8.6794785 0.64389173 1.0526316 1.0193906
7100 6.6252776 -8.776746 1.3915989 1.0193906 1.0193906
7200 6.6680717 -8.8468379 0.60275261 1.0193906 1.0193906
7300 6.697874 -8.8458161 0.50887488 1.0637119 1.0083102
7400 6.2112277 -8.340139 0.45211042 1.0415512 1.0193906
7500 6.4923853 -8.6255862 0.79982162 1.0083102 1.0193906
7600 6.2922271 -8.4027197 0.33603817 1.0304709 1.0083102
7700 6.5744688 -8.7079756 0.51620003 1.0415512 1.0083102
7800 6.6730316 -8.8278613 1.2334484 1.0304709 1.0083102
7900 6.3831791 -8.4878853 0.49555781 1.0415512 1.0193906
8000 6.690559 -8.7918607 0.88102021 1.0415512 1.0083102
8100 6.5390375 -8.6612074 0.45605815 1.0304709 1.0193906
8200 6.6957638 -8.8406262 0.45001955 1.0193906 1.0083102
8300 6.8684401 -9.0293678 0.64215355 1.0083102 1.0083102
8400 6.4416293 -8.5841829 0.53513285 1.0193906 1.0193906
8500 6.6854101 -8.8269391 0.81750487 1.0637119 1.0083102
8600 6.588469 -8.7315753 0.33201251 1.0083102 1.0083102
8700 6.2974312 -8.4104697 0.57054382 1.0083102 1.0083102
8800 6.4691853 -8.5985479 0.95554418 1.0415512 1.0083102
8900 6.7437807 -8.8949865 0.69067866 1.0415512 1.0083102
9000 6.5681473 -8.6984555 0.88464065 1.0193906 1.0083102
9100 6.6158471 -8.7398687 0.72347757 1.0193906 1.0083102
9200 6.4521137 -8.6048511 0.75093363 1.0193906 1.0193906
9300 6.4179685 -8.5582051 1.0072192 1.0083102 1.0083102
9400 6.580258 -8.7234535 0.56842466 1.0193906 1.0193906
9500 6.4125418 -8.56348 0.36394135 1.0304709 1.0193906
9600 6.6723409 -8.8402798 0.56711277 1.0304709 1.0193906
9700 6.4522736 -8.594767 0.43495668 1.0193906 1.0083102
9800 6.2127437 -8.3329761 0.68977311 1.0304709 1.0193906
9900 6.4360513 -8.5839262 1.1702062 1.0304709 1.0193906
10000 6.3393653 -8.4396274 0.46277884 1.0304709 1.0193906
Loop time of 0.389322 on 4 procs for 10000 steps with 361 atoms
Performance: 11096205.412 tau/day, 25685.661 timesteps/s
98.7% CPU use with 4 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 0.061902 | 0.074659 | 0.098288 | 5.1 | 19.18
Neigh | 0.061993 | 0.067136 | 0.078793 | 2.6 | 17.24
Comm | 0.10335 | 0.13334 | 0.15511 | 5.6 | 34.25
Output | 0.0017662 | 0.0020409 | 0.0027893 | 1.0 | 0.52
Modify | 0.037374 | 0.038055 | 0.038669 | 0.2 | 9.77
Other | | 0.07409 | | | 19.03
Nlocal: 90.25 ave 92 max 88 min
Histogram: 1 0 0 0 0 1 0 1 0 1
Nghost: 36 ave 38 max 34 min
Histogram: 1 0 0 0 0 2 0 0 0 1
Neighs: 276.75 ave 448 max 153 min
Histogram: 2 0 0 0 0 0 1 0 0 1
Total # of neighbors = 1107
Ave neighs/atom = 3.06648
Neighbor list builds = 3472
Dangerous builds = 0
Total wall time: 0:00:00

View File

@ -0,0 +1,225 @@
LAMMPS (26 Sep 2016)
# 2d circle of particles inside a box with LJ walls
variable b index 0
variable x index 50
variable y index 20
variable d index 20
variable v index 5
variable w index 2
units lj
dimension 2
atom_style bond
boundary f f p
lattice hex 0.85
Lattice spacing in x,y,z = 1.16553 2.01877 1.16553
region box block 0 $x 0 $y -0.5 0.5
region box block 0 50 0 $y -0.5 0.5
region box block 0 50 0 20 -0.5 0.5
create_box 1 box bond/types 1 extra/bond/per/atom 6
Created orthogonal box = (0 0 -0.582767) to (58.2767 40.3753 0.582767)
2 by 2 by 1 MPI processor grid
region circle sphere $(v_d/2+1) $(v_d/2/sqrt(3.0)+1) 0.0 $(v_d/2)
region circle sphere 11 $(v_d/2/sqrt(3.0)+1) 0.0 $(v_d/2)
region circle sphere 11 6.7735026918962581988 0.0 $(v_d/2)
region circle sphere 11 6.7735026918962581988 0.0 10
create_atoms 1 region circle
Created 361 atoms
mass 1 1.0
velocity all create 0.5 87287 loop geom
velocity all set $v $w 0 sum yes
velocity all set 5 $w 0 sum yes
velocity all set 5 2 0 sum yes
pair_style lj/cut 2.5
pair_coeff 1 1 10.0 1.0 2.5
bond_style harmonic
bond_coeff 1 10.0 1.2
# need to preserve 1-3, 1-4 pairwise interactions during hard collisions
special_bonds lj/coul 0 1 1
0 = max # of 1-2 neighbors
1 = max # of special neighbors
create_bonds all all 1 1.0 1.5
Neighbor list info ...
2 neighbor list requests
update every 1 steps, delay 10 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 2.8
ghost atom cutoff = 2.8
binsize = 1.4 -> bins = 42 29 1
Added 1014 bonds, new total = 1014
6 = max # of 1-2 neighbors
6 = max # of special neighbors
neighbor 0.3 bin
neigh_modify delay 0 every 1 check yes
fix 1 all nve
fix 2 all wall/lj93 xlo 0.0 1 1 2.5 xhi $x 1 1 2.5
fix 2 all wall/lj93 xlo 0.0 1 1 2.5 xhi 50 1 1 2.5
fix 3 all wall/lj93 ylo 0.0 1 1 2.5 yhi $y 1 1 2.5
fix 3 all wall/lj93 ylo 0.0 1 1 2.5 yhi 20 1 1 2.5
comm_style tiled
comm_modify cutoff 7.5
fix 10 all balance 50 0.9 rcb
#compute 1 all property/atom proc
#variable p atom (c_1%10)+1
#dump 2 all custom 50 tmp.dump id v_p x y z
#dump 3 all image 50 image.*.jpg v_p type bond atom 0.25 # adiam 1.0 view 0 0 zoom 1.8 subbox yes 0.02
#variable colors string # "red green blue yellow white # purple pink orange lime gray"
#dump_modify 3 pad 5 amap 0 10 sa 1 10 ${colors}
thermo_style custom step temp epair press f_10[3] f_10
thermo 100
run 10000
Neighbor list info ...
1 neighbor list requests
update every 1 steps, delay 0 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 2.8
ghost atom cutoff = 7.5
binsize = 1.4 -> bins = 42 29 1
Memory usage per processor = 4.49421 Mbytes
Step Temp E_pair Press f_10[3] f_10
0 25.701528 -2.2032569 3.1039469 3.2354571 1.0526316
100 27.623422 -6.228166 2.6542136 1.2631579 1.0083102
200 33.35302 -15.746749 3.2018248 1.2963989 1.0193906
300 39.17734 -24.1557 4.9116986 1.2963989 1.0193906
400 41.660701 -27.615203 8.6214679 1.3518006 1.0083102
500 37.154928 -24.096947 3.2656178 1.3296399 1.0193906
600 35.059889 -21.524278 2.3728491 1.3296399 1.0083102
700 36.70511 -21.983922 3.299538 1.3296399 1.0083102
800 39.54394 -25.667546 4.3058382 1.3961219 1.0083102
900 37.868974 -24.379807 5.3176538 1.3518006 1.0083102
1000 36.721328 -23.341363 5.8700266 1.3407202 1.0083102
1100 35.646239 -23.3255 3.3762843 1.1855956 1.0083102
1200 31.452912 -20.792985 5.4901357 1.1966759 1.0083102
1300 32.276549 -21.245929 6.4153084 1.2077562 1.0193906
1400 29.452751 -20.724401 2.174752 1.1855956 1.0083102
1500 28.014757 -18.893532 1.7482766 1.1634349 1.0083102
1600 26.222645 -16.78953 0.93944237 1.1966759 1.0304709
1700 25.711888 -15.792639 0.20021405 1.0969529 1.0083102
1800 24.412639 -13.217606 0.7091708 1.1966759 1.0083102
1900 25.644324 -13.020594 1.3661224 1.1412742 1.0083102
2000 24.556667 -13.580087 0.80121134 1.0637119 1.0083102
2100 25.23657 -13.560862 1.2349706 1.1191136 1.0193906
2200 26.456985 -13.804729 1.27046 1.1412742 1.0193906
2300 26.416685 -13.212452 1.4096744 1.1412742 1.0083102
2400 25.472914 -12.472527 1.5408641 1.1412742 1.0083102
2500 25.216305 -12.597474 0.84328282 1.1412742 1.0083102
2600 24.107024 -12.455199 1.5587978 1.2409972 1.0193906
2700 26.840175 -15.533209 1.2944973 1.1745152 1.0083102
2800 26.149759 -14.83948 4.0371126 1.0747922 1.0083102
2900 24.651151 -14.934342 2.7634302 1.0747922 1.0193906
3000 21.873123 -13.366381 -0.18605935 1.1301939 1.0083102
3100 19.974658 -10.620844 -0.16366371 1.0637119 1.0193906
3200 20.926558 -10.336663 -0.73116364 1.1080332 1.0083102
3300 20.473772 -10.588752 -0.66017168 1.0858726 1.0304709
3400 22.476649 -11.87982 1.0141731 1.0747922 1.0083102
3500 24.02361 -12.532787 1.4116935 1.1191136 1.0083102
3600 22.922792 -12.328391 -0.27783338 1.0969529 1.0083102
3700 21.772971 -10.716922 0.95739835 1.1523546 1.0083102
3800 21.597174 -10.839031 0.67958603 1.1191136 1.0193906
3900 21.883448 -11.258422 -0.40592732 1.0637119 1.0193906
4000 22.815486 -10.891868 1.6123322 1.1301939 1.0193906
4100 23.276599 -11.400134 0.65653972 1.0415512 1.0193906
4200 22.543441 -11.530245 0.074132899 1.1523546 1.0193906
4300 22.863379 -10.809451 0.27552824 1.1412742 1.0193906
4400 22.475073 -11.125735 1.7708547 1.1191136 1.0193906
4500 23.500125 -11.680919 0.91347563 1.0858726 1.0083102
4600 21.1812 -11.767353 0.095659263 1.1191136 1.0193906
4700 22.950759 -12.108158 0.083009642 1.1966759 1.0083102
4800 22.12306 -11.455893 0.47932308 1.1080332 1.0083102
4900 23.297573 -11.823246 0.93733479 1.0969529 1.0083102
5000 22.98743 -12.014836 0.36186604 1.1080332 1.0083102
5100 23.081456 -11.54226 0.73473004 1.0747922 1.0193906
5200 20.980311 -11.493036 -0.71555187 1.0637119 1.0193906
5300 21.468406 -11.18497 0.54579843 1.0304709 1.0193906
5400 22.75839 -10.856825 0.94407228 1.1191136 1.0083102
5500 22.705652 -12.112469 0.4753399 1.1412742 1.0083102
5600 22.391177 -12.530712 1.0180383 1.1412742 1.0083102
5700 21.832834 -11.368512 0.88281166 1.0415512 1.0083102
5800 22.850002 -11.948876 -0.46874747 1.0747922 1.0083102
5900 21.135991 -12.358431 -0.48932559 1.0526316 1.0193906
6000 22.071115 -11.433484 0.49653696 1.0747922 1.0304709
6100 21.91427 -11.458553 -0.030708226 1.0637119 1.0193906
6200 24.173206 -13.110269 -0.13661363 1.1412742 1.0083102
6300 22.204413 -11.373556 1.6254012 1.0747922 1.0304709
6400 23.259022 -11.634614 1.4472592 1.1412742 1.0193906
6500 22.185287 -11.606998 0.66488201 1.0415512 1.0083102
6600 21.329653 -10.989853 0.31700842 1.1301939 1.0083102
6700 21.903749 -10.335477 1.3749575 1.0637119 1.0083102
6800 21.188714 -10.545014 1.3448408 1.0415512 1.0083102
6900 22.683005 -11.254371 0.5048545 1.1523546 1.0193906
7000 21.224439 -9.7325551 0.71666112 1.0637119 1.0083102
7100 21.712624 -10.594397 0.3657261 1.0858726 1.0193906
7200 22.115857 -10.479237 0.95528164 1.0969529 1.0193906
7300 22.075732 -11.255 -0.35340754 1.0526316 1.0193906
7400 21.659767 -10.238454 -0.063639729 1.1523546 1.0083102
7500 21.966354 -10.654264 0.36298903 1.0747922 1.0083102
7600 21.541195 -11.151416 0.96453416 1.1080332 1.0193906
7700 23.517228 -12.266781 0.49603585 1.1523546 1.0193906
7800 21.665911 -11.832323 0.47104209 1.1080332 1.0083102
7900 23.469372 -12.358423 -0.757413 1.0747922 1.0193906
8000 21.699467 -11.462824 -0.73009236 1.0415512 1.0083102
8100 21.583783 -10.21474 0.98837038 1.0969529 1.0193906
8200 21.804998 -10.916922 -0.53268178 1.0858726 1.0083102
8300 21.291145 -10.875356 0.81277146 1.0858726 1.0193906
8400 21.939964 -10.726547 0.95830844 1.0415512 1.0193906
8500 23.600157 -11.041255 -0.14583876 1.0747922 1.0083102
8600 22.37787 -10.946852 1.0360646 1.0415512 1.0083102
8700 23.591205 -11.524803 1.1877377 1.0526316 1.0304709
8800 22.567007 -11.4629 0.4360461 1.0526316 1.0083102
8900 22.11289 -11.772849 -0.019132631 1.0304709 1.0193906
9000 22.814946 -11.705633 0.59029789 1.0747922 1.0083102
9100 22.58487 -11.431283 0.9884223 1.1634349 1.0083102
9200 23.283939 -11.825534 0.68358625 1.0637119 1.0083102
9300 23.292444 -11.365494 0.78631005 1.0526316 1.0083102
9400 21.748634 -10.16176 0.59185916 1.0969529 1.0083102
9500 21.644797 -10.00944 1.1450108 1.0637119 1.0304709
9600 23.01957 -10.683211 1.5735291 1.0637119 1.0193906
9700 21.207989 -10.344668 0.34401867 1.0969529 1.0083102
9800 22.035363 -10.849581 -0.14118639 1.0304709 1.0083102
9900 21.839653 -10.008407 0.96570633 1.0526316 1.0193906
10000 22.845561 -10.238723 0.74236932 1.0858726 1.0083102
Loop time of 0.812716 on 4 procs for 10000 steps with 361 atoms
Performance: 5315508.362 tau/day, 12304.418 timesteps/s
98.9% CPU use with 4 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 0.12434 | 0.13482 | 0.14506 | 2.5 | 16.59
Bond | 0.053339 | 0.058165 | 0.062916 | 1.9 | 7.16
Neigh | 0.28554 | 0.29233 | 0.29933 | 0.9 | 35.97
Comm | 0.16602 | 0.19226 | 0.21833 | 4.3 | 23.66
Output | 0.0017536 | 0.0019155 | 0.0022504 | 0.4 | 0.24
Modify | 0.040126 | 0.040341 | 0.04054 | 0.1 | 4.96
Other | | 0.09288 | | | 11.43
Nlocal: 90.25 ave 91 max 90 min
Histogram: 3 0 0 0 0 0 0 0 0 1
Nghost: 198.25 ave 206 max 191 min
Histogram: 1 1 0 0 0 0 0 0 1 1
Neighs: 667.75 ave 751 max 627 min
Histogram: 2 0 1 0 0 0 0 0 0 1
Total # of neighbors = 2671
Ave neighs/atom = 7.39889
Ave special neighs/atom = 5.61773
Neighbor list builds = 4832
Dangerous builds = 0
Total wall time: 0:00:00

View File

@ -1,4 +1,4 @@
LAMMPS (15 Feb 2016)
LAMMPS (26 Sep 2016)
# 2d circle of particles inside a box with LJ walls
variable b index 0
@ -91,7 +91,7 @@ Neighbor list info ...
ghost atom cutoff = 2.8
binsize = 1.4 -> bins = 42 29 1
Memory usage per processor = 6.41878 Mbytes
Step Temp E_pair Press 10[3] 10
Step Temp E_pair Press f_10[3] f_10
0 0.57437856 0 0.26099453 3.2354571 1.0526316
100 0.29756515 0 0.10149401 1.0193906 1.0083102
200 0.35394813 0 0.075159099 1.0304709 1.0083102
@ -108,9 +108,9 @@ Step Temp E_pair Press 10[3] 10
1300 0.32952819 0 0.124902 1.0083102 1.0083102
1400 0.34497365 0 0.12662081 1.0193906 1.0083102
1500 0.33429243 0 0.096230972 1.0526316 1.0193906
1600 0.33765387 0 0.025800542 1.0304709 1.0083102
1700 0.35134464 0 -0.04422593 1.0415512 1.0193906
1800 0.35003859 0 -0.096745576 1.0304709 1.0193906
1600 0.33765387 0 0.025800542 1.0304709 1.0193906
1700 0.35134464 0 -0.04422593 1.0415512 1.0083102
1800 0.35003859 0 -0.096745576 1.0304709 1.0083102
1900 0.33839618 0 -0.095465943 1.0193906 1.0083102
2000 0.33732078 0 -0.094652802 1.0083102 1.0083102
2100 0.34552238 0 -0.076729261 1.0304709 1.0083102
@ -179,7 +179,7 @@ Step Temp E_pair Press 10[3] 10
8400 0.30619282 0 -0.12952879 1.0193906 1.0193906
8500 0.34446484 0 -0.098084709 1.0083102 1.0083102
8600 0.33761673 0 -0.07069818 1.0193906 1.0083102
8700 0.34495452 0 -0.022458056 1.0193906 1.0083102
8700 0.34495452 0 -0.022458056 1.0193906 1.0193906
8800 0.33502983 0 0.027742411 1.0304709 1.0083102
8900 0.35418591 0 0.092390134 1.0083102 1.0193906
9000 0.31648387 0 0.12467398 1.0193906 1.0083102
@ -192,12 +192,12 @@ Step Temp E_pair Press 10[3] 10
9700 0.32088235 0 -0.12027075 1.0193906 1.0083102
9800 0.3320823 0 -0.11602794 1.0415512 1.0083102
9900 0.33916442 0 -0.080281044 1.0083102 1.0083102
10000 0.34852268 0 -0.01000914 1.0193906 1.0193906
10000 0.34852268 0 -0.01000914 1.0193906 1.0083102
10100 0.32955942 0 0.04258493 1.0083102 1.0083102
10200 0.34487898 0 0.086971308 1.0304709 1.0193906
10200 0.34487898 0 0.086971308 1.0304709 1.0083102
10300 0.32325593 0 0.11558149 1.0304709 1.0193906
10400 0.30927871 0 0.12239437 1.0083102 1.0083102
10500 0.33176799 0 0.12285937 1.0193906 1.0193906
10500 0.33176799 0 0.12285937 1.0193906 1.0083102
10600 0.35120027 0 0.084897432 1.0083102 1.0083102
10700 0.33129697 0 0.0053089279 1.0193906 1.0193906
10800 0.36028769 0 -0.04280715 1.0193906 1.0083102
@ -214,7 +214,7 @@ Step Temp E_pair Press 10[3] 10
11900 0.33836678 0 0.067253864 1.0193906 1.0193906
12000 0.34853314 0 0.03201448 1.0193906 1.0083102
12100 0.34600048 0 -0.034833402 1.0304709 1.0083102
12200 0.33145631 0 -0.09865675 1.0193906 1.0193906
12200 0.33145631 0 -0.09865675 1.0193906 1.0083102
12300 0.32848884 0 -0.1248489 1.0193906 1.0193906
12400 0.3321344 0 -0.11266575 1.0083102 1.0083102
12500 0.32622305 0 -0.061634993 1.0304709 1.0083102
@ -225,11 +225,11 @@ Step Temp E_pair Press 10[3] 10
13000 0.31993287 0 0.13879926 1.0193906 1.0193906
13100 0.3422918 0 0.11978905 1.0083102 1.0083102
13200 0.33055236 0 0.062620483 1.0193906 1.0083102
13300 0.34652207 0 0.0043833459 1.0304709 1.0193906
13300 0.34652207 0 0.0043833459 1.0304709 1.0083102
13400 0.33574661 0 -0.04691024 1.0304709 1.0083102
13500 0.33940837 0 -0.074241604 1.0304709 1.0083102
13600 0.32093414 0 -0.1078027 1.0193906 1.0083102
13700 0.34336597 0 -0.10544097 1.0193906 1.0083102
13600 0.32093414 0 -0.1078027 1.0193906 1.0193906
13700 0.34336597 0 -0.10544097 1.0193906 1.0193906
13800 0.35806461 0 -0.072531559 1.0193906 1.0083102
13900 0.35209713 0 -0.018851408 1.0083102 1.0083102
14000 0.35702629 0 0.061046366 1.0083102 1.0083102
@ -243,13 +243,13 @@ Step Temp E_pair Press 10[3] 10
14800 0.33679845 0 -0.10067728 1.0193906 1.0193906
14900 0.32790966 0 -0.10925568 1.0193906 1.0083102
15000 0.34208495 0 -0.09568004 1.0193906 1.0083102
15100 0.33647529 0 -0.055652929 1.0083102 1.0193906
15100 0.33647529 0 -0.055652929 1.0083102 1.0083102
15200 0.35328398 0 -0.020236536 1.0193906 1.0193906
15300 0.34252669 0 0.026434179 1.0083102 1.0193906
15400 0.34409435 0 0.094410599 1.0304709 1.0083102
15500 0.32288994 0 0.12034455 1.0415512 1.0193906
15600 0.32109689 0 0.13645185 1.0193906 1.0193906
15700 0.33681572 0 0.098607746 1.0415512 1.0083102
15600 0.32109689 0 0.13645185 1.0193906 1.0083102
15700 0.33681572 0 0.098607746 1.0415512 1.0193906
15800 0.33635195 0 0.05570715 1.0193906 1.0193906
15900 0.34289757 0 0.013849092 1.0304709 1.0083102
16000 0.34225547 0 -0.035597548 1.0304709 1.0083102
@ -261,7 +261,7 @@ Step Temp E_pair Press 10[3] 10
16600 0.35109001 0 0.041251169 1.0304709 1.0083102
16700 0.34336905 0 0.077996627 1.0193906 1.0083102
16800 0.33277414 0 0.11053634 1.0083102 1.0083102
16900 0.32183338 0 0.11680626 1.0193906 1.0083102
16900 0.32183338 0 0.11680626 1.0193906 1.0193906
17000 0.34044352 0 0.10806555 1.0193906 1.0083102
17100 0.32967873 0 0.067759786 1.0304709 1.0193906
17200 0.36172278 0 -0.0048631904 1.0304709 1.0083102
@ -293,17 +293,17 @@ Step Temp E_pair Press 10[3] 10
19800 0.34880695 0 0.042483681 1.0193906 1.0083102
19900 0.33903644 0 0.034788638 1.0083102 1.0193906
20000 0.32590125 0 0.011383785 1.0193906 1.0083102
20100 0.30358859 0 0.0030743554 1.0526316 1.0083102
20100 0.30358859 0 0.0030743554 1.0526316 1.0193906
20200 0.31830224 0 0.017637826 1.0193906 1.0193906
20300 0.34195438 0 0.072811099 1.0304709 1.0193906
20400 0.31249563 0 0.10063541 1.0415512 1.0083102
20500 0.31544938 0 0.1405794 1.0083102 1.0083102
20600 0.30071644 0 0.12763486 1.0193906 1.0193906
20700 0.2890265 0 0.1136651 1.0083102 1.0083102
20700 0.2890265 0 0.1136651 1.0083102 1.0193906
20800 0.28962296 0 0.094481978 1.0193906 1.0083102
20900 0.29447212 0 0.0967165 1.0193906 1.0193906
21000 0.31159961 0 0.067307231 1.0083102 1.0193906
21100 0.30490648 0 0.017689358 1.0083102 1.0304709
21000 0.31159961 0 0.067307231 1.0083102 1.0083102
21100 0.30490648 0 0.017689358 1.0083102 1.0193906
21200 0.30687262 0 -0.016055512 1.0193906 1.0193906
21300 0.30083286 0 -0.0014988997 1.0193906 1.0083102
21400 0.32070426 0 0.015960302 1.0083102 1.0083102
@ -314,7 +314,7 @@ Step Temp E_pair Press 10[3] 10
21900 0.32451958 0 0.068935768 1.0304709 1.0193906
22000 0.35219298 0 0.067161227 1.0193906 1.0193906
22100 0.34857705 0 0.032731746 1.0193906 1.0083102
22200 0.34750227 0 0.0056917695 1.0193906 1.0083102
22200 0.34750227 0 0.0056917695 1.0193906 1.0193906
22300 0.34766017 0 -0.0027090483 1.0193906 1.0083102
22400 0.33426062 0 -0.023196063 1.0304709 1.0193906
22500 0.34174625 0 -0.025019717 1.0083102 1.0083102
@ -328,11 +328,11 @@ Step Temp E_pair Press 10[3] 10
23300 0.32965664 0 0.035989589 1.0193906 1.0083102
23400 0.30927749 0 0.024581106 1.0193906 1.0083102
23500 0.32890632 0 0.01092479 1.0304709 1.0193906
23600 0.34137438 0 0.0094839745 1.0193906 1.0083102
23600 0.34137438 0 0.0094839745 1.0193906 1.0193906
23700 0.34512638 0 -0.012392771 1.0304709 1.0193906
23800 0.31781354 0 -0.012908449 1.0193906 1.0193906
23900 0.32405513 0 -0.015018071 1.0415512 1.0193906
24000 0.33549728 0 -0.012812915 1.0193906 1.0083102
23900 0.32405513 0 -0.015018071 1.0415512 1.0083102
24000 0.33549728 0 -0.012812915 1.0193906 1.0193906
24100 0.31368736 0 -0.020818372 1.0304709 1.0193906
24200 0.33533836 0 0.0056121057 1.0083102 1.0193906
24300 0.32530627 0 0.018183931 1.0415512 1.0083102
@ -352,12 +352,12 @@ Step Temp E_pair Press 10[3] 10
25700 0.34048065 0 0.022513032 1.0193906 1.0193906
25800 0.33029079 0 0.038733531 1.0193906 1.0083102
25900 0.33031324 0 0.026156982 1.0304709 1.0193906
26000 0.32967371 0 0.028727383 1.0083102 1.0083102
26000 0.32967371 0 0.028727383 1.0083102 1.0193906
26100 0.33775718 0 0.015607478 1.0083102 1.0193906
26200 0.35097144 0 0.012291703 1.0083102 1.0083102
26300 0.34303792 0 0.00094823191 1.0083102 1.0193906
26400 0.33632665 0 -0.0026904889 1.0193906 1.0193906
26500 0.33580127 0 -0.0074168555 1.0193906 1.0193906
26500 0.33580127 0 -0.0074168555 1.0193906 1.0083102
26600 0.33063188 0 -0.020378601 1.0083102 1.0193906
26700 0.33581846 0 -0.00084397268 1.0083102 1.0193906
26800 0.32998532 0 0.015932208 1.0304709 1.0193906
@ -375,12 +375,12 @@ Step Temp E_pair Press 10[3] 10
28000 0.32300727 0 -0.0004153384 1.0304709 1.0083102
28100 0.32147461 0 -0.0058543412 1.0083102 1.0083102
28200 0.35532383 0 0.013646951 1.0304709 1.0083102
28300 0.31507942 0 0.026532255 1.0415512 1.0193906
28300 0.31507942 0 0.026532255 1.0415512 1.0083102
28400 0.32711006 0 0.033214981 1.0193906 1.0083102
28500 0.34472462 0 0.028050837 1.0304709 1.0193906
28600 0.33708059 0 0.019115676 1.0083102 1.0083102
28700 0.34478087 0 0.023743689 1.0304709 1.0083102
28800 0.34546686 0 0.0081772997 1.0304709 1.0193906
28700 0.34478087 0 0.023743689 1.0304709 1.0193906
28800 0.34546686 0 0.0081772997 1.0304709 1.0083102
28900 0.34004886 0 0.017771865 1.0415512 1.0193906
29000 0.33604232 0 -0.010505671 1.0304709 1.0193906
29100 0.33541374 0 -0.016273261 1.0083102 1.0083102
@ -411,14 +411,14 @@ Step Temp E_pair Press 10[3] 10
31600 0.34273493 0 -0.013456537 1.0083102 1.0083102
31700 0.32723905 0 -0.019243766 1.0193906 1.0083102
31800 0.33636488 0 0.0027814902 1.0083102 1.0083102
31900 0.32834805 0 0.00706877 1.0083102 1.0083102
31900 0.32834805 0 0.00706877 1.0083102 1.0193906
32000 0.33995148 0 0.0018383309 1.0193906 1.0193906
32100 0.33412282 0 0.0076455933 1.0083102 1.0083102
32200 0.34334884 0 0.023586129 1.0083102 1.0083102
32300 0.32778925 0 0.020564321 1.0193906 1.0083102
32400 0.33163443 0 0.038878463 1.0193906 1.0083102
32500 0.32290345 0 0.022247461 1.0193906 1.0193906
32600 0.34113954 0 0.010966365 1.0304709 1.0083102
32600 0.34113954 0 0.010966365 1.0304709 1.0193906
32700 0.33390633 0 0.0037777555 1.0193906 1.0083102
32800 0.34385341 0 0.010556575 1.0193906 1.0193906
32900 0.32137047 0 0.00022027143 1.0526316 1.0193906
@ -443,15 +443,15 @@ Step Temp E_pair Press 10[3] 10
34800 0.33902329 0 0.030037037 1.0415512 1.0193906
34900 0.3216153 0 0.027996689 1.0304709 1.0083102
35000 0.32701056 0 0.024778517 1.0193906 1.0193906
35100 0.3124942 0 0.011316548 1.0193906 1.0304709
35100 0.3124942 0 0.011316548 1.0193906 1.0193906
35200 0.34486416 0 0.011670127 1.0193906 1.0193906
35300 0.33275353 0 0.020491246 1.0193906 1.0193906
35400 0.33618763 0 0.014678874 1.0083102 1.0083102
35400 0.33618763 0 0.014678874 1.0083102 1.0193906
35500 0.32352282 0 -0.018568683 1.0193906 1.0193906
35600 0.32617903 0 -0.012796912 1.0193906 1.0193906
35700 0.32378048 0 -0.021318585 1.0193906 1.0083102
35800 0.3371086 0 -0.0023678632 1.0193906 1.0193906
35900 0.33818476 0 0.011197742 1.0193906 1.0193906
35900 0.33818476 0 0.011197742 1.0193906 1.0083102
36000 0.35142144 0 0.022520935 1.0083102 1.0193906
36100 0.35147297 0 0.020277852 1.0193906 1.0083102
36200 0.33489465 0 0.014564878 1.0415512 1.0083102
@ -464,10 +464,10 @@ Step Temp E_pair Press 10[3] 10
36900 0.35003816 0 -0.0021184393 1.0083102 1.0193906
37000 0.32965041 0 -0.020900951 1.0193906 1.0083102
37100 0.34653095 0 -0.013667977 1.0193906 1.0083102
37200 0.35019871 0 -0.0071740923 1.0083102 1.0304709
37200 0.35019871 0 -0.0071740923 1.0083102 1.0193906
37300 0.34859745 0 0.02006041 1.0304709 1.0083102
37400 0.35739859 0 0.020892822 1.0193906 1.0083102
37500 0.34128859 0 0.041072111 1.0193906 1.0193906
37500 0.34128859 0 0.041072111 1.0193906 1.0083102
37600 0.33781905 0 0.023376738 1.0193906 1.0083102
37700 0.32961874 0 0.030953741 1.0193906 1.0083102
37800 0.343987 0 0.029579795 1.0083102 1.0083102
@ -481,7 +481,7 @@ Step Temp E_pair Press 10[3] 10
38600 0.32322402 0 0.053453832 1.0193906 1.0304709
38700 0.33843057 0 0.076264534 1.0083102 1.0193906
38800 0.31350741 0 0.064733869 1.0415512 1.0083102
38900 0.31943061 0 0.067836769 1.0304709 1.0193906
38900 0.31943061 0 0.067836769 1.0304709 1.0083102
39000 0.33775583 0 0.0788316 1.0193906 1.0193906
39100 0.34256036 0 0.075874935 1.0083102 1.0193906
39200 0.33128527 0 0.071610976 1.0193906 1.0083102
@ -491,23 +491,23 @@ Step Temp E_pair Press 10[3] 10
39600 0.34000737 0 0.016149089 1.0304709 1.0083102
39700 0.34587892 0 0.021619621 1.0526316 1.0083102
39800 0.34878036 0 0.0092881327 1.0083102 1.0193906
39900 0.35225411 0 -0.011341599 1.0083102 1.0083102
39900 0.35225411 0 -0.011341599 1.0083102 1.0193906
40000 0.36309266 0 0.0050869295 1.0304709 1.0083102
Loop time of 1.06031 on 4 procs for 40000 steps with 361 atoms
Loop time of 1.07961 on 4 procs for 40000 steps with 361 atoms
Performance: 16297104.069 tau/day, 37724.778 timesteps/s
99.2% CPU use with 4 MPI tasks x no OpenMP threads
Performance: 16005824.195 tau/day, 37050.519 timesteps/s
99.1% CPU use with 4 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 0.019866 | 0.021036 | 0.024189 | 1.3 | 1.98
Bond | 0.21436 | 0.24183 | 0.27259 | 5.1 | 22.81
Neigh | 0.16022 | 0.16068 | 0.16101 | 0.1 | 15.15
Comm | 0.2742 | 0.31331 | 0.3498 | 5.6 | 29.55
Output | 0.0070348 | 0.0075188 | 0.0087383 | 0.8 | 0.71
Modify | 0.14238 | 0.14861 | 0.15484 | 1.3 | 14.02
Other | | 0.1673 | | | 15.78
Pair | 0.019289 | 0.021061 | 0.024797 | 1.5 | 1.95
Bond | 0.21005 | 0.23732 | 0.26838 | 5.0 | 21.98
Neigh | 0.15978 | 0.16143 | 0.16328 | 0.4 | 14.95
Comm | 0.2817 | 0.32626 | 0.36457 | 5.8 | 30.22
Output | 0.0069985 | 0.0075181 | 0.0087821 | 0.8 | 0.70
Modify | 0.1463 | 0.15235 | 0.16128 | 1.5 | 14.11
Other | | 0.1737 | | | 16.09
Nlocal: 90.25 ave 91 max 89 min
Histogram: 1 0 0 0 0 1 0 0 0 2

View File

@ -0,0 +1,221 @@
LAMMPS (26 Sep 2016)
# 3d Lennard-Jones melt
units lj
atom_style atomic
processors * 1 1
lattice fcc 0.8442
Lattice spacing in x,y,z = 1.6796 1.6796 1.6796
region box block 0 10 0 10 0 10
create_box 3 box
Created orthogonal box = (0 0 0) to (16.796 16.796 16.796)
4 by 1 by 1 MPI processor grid
create_atoms 1 box
Created 4000 atoms
mass * 1.0
region long block 3 6 0 10 0 10
set region long type 2
1400 settings made for type
velocity all create 1.0 87287
pair_style lj/cut 2.5
pair_coeff * * 1.0 1.0 2.5
pair_coeff * 2 1.0 1.0 5.0
neighbor 0.3 bin
neigh_modify every 2 delay 4 check yes
fix p all property/atom d_WEIGHT
compute p all property/atom d_WEIGHT
fix 0 all balance 50 1.0 shift x 10 1.0 weight time 1.0 weight store WEIGHT
variable maximb equal f_0[1]
variable iter equal f_0[2]
variable prev equal f_0[3]
variable final equal f_0
#fix 3 all print 50 "${iter} ${prev} ${final} ${maximb}"
fix 1 all nve
#dump id all atom 50 dump.melt
#dump id all custom 50 dump.lammpstrj id type x y z c_p
#dump 2 all image 25 image.*.jpg type type # axes yes 0.8 0.02 view 60 -30
#dump_modify 2 pad 3
#dump 3 all movie 25 movie.mpg type type # axes yes 0.8 0.02 view 60 -30
#dump_modify 3 pad 3
thermo 50
run 500
Neighbor list info ...
1 neighbor list requests
update every 2 steps, delay 4 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 5.3
ghost atom cutoff = 5.3
binsize = 2.65 -> bins = 7 7 7
Memory usage per processor = 3.0442 Mbytes
Step Temp E_pair E_mol TotEng Press Volume
0 1 -6.9453205 0 -5.4456955 -5.6812358 4738.2137
50 0.48653399 -6.1788509 0 -5.4492324 -1.6017778 4738.2137
100 0.53411175 -6.249885 0 -5.4489177 -1.9317606 4738.2137
150 0.53646658 -6.2527206 0 -5.4482219 -1.9689568 4738.2137
200 0.54551611 -6.2656326 0 -5.4475631 -2.0042104 4738.2137
250 0.54677719 -6.2671162 0 -5.4471555 -2.0015995 4738.2137
300 0.5477618 -6.2678071 0 -5.4463698 -1.997842 4738.2137
350 0.55600296 -6.2801497 0 -5.4463538 -2.0394056 4738.2137
400 0.53241503 -6.2453665 0 -5.4469436 -1.878594 4738.2137
450 0.5439158 -6.2623 0 -5.4466302 -1.9744161 4738.2137
500 0.55526241 -6.2793396 0 -5.4466542 -2.0595015 4738.2137
Loop time of 2.31899 on 4 procs for 500 steps with 4000 atoms
Performance: 93143.824 tau/day, 215.611 timesteps/s
99.4% CPU use with 4 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 1.1238 | 1.43 | 1.6724 | 19.4 | 61.66
Neigh | 0.26414 | 0.3845 | 0.55604 | 20.2 | 16.58
Comm | 0.36444 | 0.48475 | 0.61759 | 15.3 | 20.90
Output | 0.00027871 | 0.00032145 | 0.00035334 | 0.2 | 0.01
Modify | 0.0064867 | 0.0086303 | 0.011487 | 2.3 | 0.37
Other | | 0.01078 | | | 0.46
Nlocal: 1000 ave 1565 max 584 min
Histogram: 2 0 0 0 0 0 1 0 0 1
Nghost: 8752 ave 9835 max 8078 min
Histogram: 2 0 0 0 0 1 0 0 0 1
Neighs: 149308 ave 161748 max 133300 min
Histogram: 1 0 0 1 0 0 0 0 1 1
Total # of neighbors = 597231
Ave neighs/atom = 149.308
Neighbor list builds = 50
Dangerous builds = 0
run 500
Memory usage per processor = 3.06519 Mbytes
Step Temp E_pair E_mol TotEng Press Volume
500 0.55526241 -6.2793396 0 -5.4466542 -2.0595015 4738.2137
550 0.53879347 -6.2554274 0 -5.4474393 -1.9756834 4738.2137
600 0.54275982 -6.2616799 0 -5.4477437 -1.9939993 4738.2137
650 0.54526651 -6.265098 0 -5.4474027 -2.0303672 4738.2137
700 0.54369381 -6.263201 0 -5.4478642 -1.9921967 4738.2137
750 0.54452777 -6.2640839 0 -5.4474964 -1.9658675 4738.2137
800 0.55061744 -6.2725556 0 -5.4468359 -2.0100922 4738.2137
850 0.55371614 -6.2763992 0 -5.4460326 -2.0065329 4738.2137
900 0.54756622 -6.2668303 0 -5.4456863 -1.9796122 4738.2137
950 0.54791593 -6.2673161 0 -5.4456477 -1.9598278 4738.2137
1000 0.54173198 -6.2586101 0 -5.4462153 -1.9007466 4738.2137
Loop time of 2.32391 on 4 procs for 500 steps with 4000 atoms
Performance: 92946.753 tau/day, 215.155 timesteps/s
99.4% CPU use with 4 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 1.1054 | 1.4081 | 1.6402 | 19.8 | 60.59
Neigh | 0.28061 | 0.4047 | 0.57291 | 19.7 | 17.41
Comm | 0.38485 | 0.4918 | 0.62503 | 15.5 | 21.16
Output | 0.00028014 | 0.00031483 | 0.00032997 | 0.1 | 0.01
Modify | 0.0064781 | 0.0084658 | 0.011106 | 2.2 | 0.36
Other | | 0.01051 | | | 0.45
Nlocal: 1000 ave 1560 max 593 min
Histogram: 2 0 0 0 0 0 1 0 0 1
Nghost: 8716.25 ave 9788 max 8009 min
Histogram: 2 0 0 0 0 1 0 0 0 1
Neighs: 150170 ave 164293 max 129469 min
Histogram: 1 0 0 0 1 0 0 0 0 2
Total # of neighbors = 600678
Ave neighs/atom = 150.169
Neighbor list builds = 53
Dangerous builds = 0
fix 0 all balance 50 1.0 shift x 5 1.0 weight neigh 0.5 weight time 0.66 weight store WEIGHT
run 500
Memory usage per processor = 3.06519 Mbytes
Step Temp E_pair E_mol TotEng Press Volume
1000 0.54173198 -6.2586101 0 -5.4462153 -1.9007466 4738.2137
1050 0.54629742 -6.2657526 0 -5.4465113 -1.945821 4738.2137
1100 0.55427881 -6.2781733 0 -5.446963 -2.0021027 4738.2137
1150 0.54730654 -6.267257 0 -5.4465025 -1.9420678 4738.2137
1200 0.5388281 -6.2547963 0 -5.4467562 -1.890178 4738.2137
1250 0.54848768 -6.2694237 0 -5.4468979 -1.9636797 4738.2137
1300 0.54134321 -6.2590728 0 -5.447261 -1.9170271 4738.2137
1350 0.53564389 -6.2501521 0 -5.4468871 -1.8642306 4738.2137
1400 0.53726924 -6.2518379 0 -5.4461355 -1.8544028 4738.2137
1450 0.54525935 -6.2632653 0 -5.4455808 -1.9072158 4738.2137
1500 0.54223346 -6.2591057 0 -5.4459588 -1.8866985 4738.2137
Loop time of 2.13659 on 4 procs for 500 steps with 4000 atoms
Performance: 101095.806 tau/day, 234.018 timesteps/s
99.6% CPU use with 4 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 1.3372 | 1.3773 | 1.4155 | 2.5 | 64.46
Neigh | 0.22376 | 0.37791 | 0.57496 | 25.4 | 17.69
Comm | 0.20357 | 0.36123 | 0.52777 | 25.5 | 16.91
Output | 0.00029254 | 0.00034094 | 0.00039411 | 0.2 | 0.02
Modify | 0.0056622 | 0.0082379 | 0.01147 | 2.9 | 0.39
Other | | 0.01156 | | | 0.54
Nlocal: 1000 ave 1629 max 525 min
Histogram: 2 0 0 0 0 0 0 1 0 1
Nghost: 8647.25 ave 9725 max 7935 min
Histogram: 2 0 0 0 0 1 0 0 0 1
Neighs: 150494 ave 161009 max 143434 min
Histogram: 1 1 0 0 1 0 0 0 0 1
Total # of neighbors = 601974
Ave neighs/atom = 150.494
Neighbor list builds = 51
Dangerous builds = 0
run 500
Memory usage per processor = 3.06519 Mbytes
Step Temp E_pair E_mol TotEng Press Volume
1500 0.54223346 -6.2591057 0 -5.4459588 -1.8866985 4738.2137
1550 0.55327017 -6.2750125 0 -5.4453148 -1.9506584 4738.2137
1600 0.54419003 -6.2612622 0 -5.4451812 -1.8559437 4738.2137
1650 0.54710034 -6.2661978 0 -5.4457525 -1.8882831 4738.2137
1700 0.53665689 -6.2504958 0 -5.4457117 -1.8068004 4738.2137
1750 0.54864706 -6.2681124 0 -5.4453476 -1.8662646 4738.2137
1800 0.54476202 -6.2615083 0 -5.4445696 -1.8352824 4738.2137
1850 0.54142953 -6.2555505 0 -5.4436093 -1.8005654 4738.2137
1900 0.53992431 -6.254135 0 -5.444451 -1.7768688 4738.2137
1950 0.54665954 -6.2640971 0 -5.4443128 -1.7947032 4738.2137
2000 0.54557798 -6.2625416 0 -5.4443793 -1.8072514 4738.2137
Loop time of 2.17499 on 4 procs for 500 steps with 4000 atoms
Performance: 99310.978 tau/day, 229.887 timesteps/s
99.6% CPU use with 4 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 1.3333 | 1.3705 | 1.397 | 2.0 | 63.01
Neigh | 0.24071 | 0.41014 | 0.62928 | 26.6 | 18.86
Comm | 0.19069 | 0.37486 | 0.53972 | 26.6 | 17.23
Output | 0.00031614 | 0.00035483 | 0.00040388 | 0.2 | 0.02
Modify | 0.0057304 | 0.0083074 | 0.01159 | 2.8 | 0.38
Other | | 0.01083 | | | 0.50
Nlocal: 1000 ave 1628 max 523 min
Histogram: 2 0 0 0 0 0 0 1 0 1
Nghost: 8641.5 ave 9769 max 7941 min
Histogram: 2 0 0 0 1 0 0 0 0 1
Neighs: 151654 ave 163181 max 145045 min
Histogram: 2 0 0 0 1 0 0 0 0 1
Total # of neighbors = 606616
Ave neighs/atom = 151.654
Neighbor list builds = 56
Dangerous builds = 0
Total wall time: 0:00:09

View File

@ -0,0 +1,188 @@
LAMMPS (26 Sep 2016)
# 3d Lennard-Jones melt
units lj
atom_style atomic
processors * 1 1
variable factor index 1.0
lattice fcc 0.8442
Lattice spacing in x,y,z = 1.6796 1.6796 1.6796
region box block 0 10 0 10 0 10
create_box 3 box
Created orthogonal box = (0 0 0) to (16.796 16.796 16.796)
4 by 1 by 1 MPI processor grid
create_atoms 1 box
Created 4000 atoms
mass * 1.0
region long block 3 6 0 10 0 10
set region long type 2
1400 settings made for type
velocity all create 1.0 87287
pair_style lj/cut 2.5
pair_coeff * * 1.0 1.0 2.5
pair_coeff * 2 1.0 1.0 5.0
neighbor 0.3 bin
neigh_modify every 2 delay 4 check yes
group fast type 1
2600 atoms in group fast
group slow type 2
1400 atoms in group slow
balance 1.0 shift x 5 1.1 weight time 1.0 # out unweighted.txt
Neighbor list info ...
1 neighbor list requests
update every 2 steps, delay 4 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 5.3
ghost atom cutoff = 5.3
binsize = 2.65 -> bins = 7 7 7
rebalancing time: 0.000447989 seconds
iteration count = 2
time weight factor: 1
initial/final max load/proc = 1200 1200
initial/final imbalance factor = 1.2 1.2
x cuts: 0 0.25 0.5 0.6875 1
y cuts: 0 1
z cuts: 0 1
fix 1 all nve
#dump id all atom 50 dump.melt
#dump 2 all image 25 image.*.jpg type type # axes yes 0.8 0.02 view 60 -30
#dump_modify 2 pad 3
#dump 3 all movie 25 movie.mpg type type # axes yes 0.8 0.02 view 60 -30
#dump_modify 3 pad 3
thermo 50
run 250
Memory usage per processor = 2.77892 Mbytes
Step Temp E_pair E_mol TotEng Press
0 1 -6.9453205 0 -5.4456955 -5.6812358
50 0.48653399 -6.1788509 0 -5.4492324 -1.6017778
100 0.53411175 -6.249885 0 -5.4489177 -1.9317606
150 0.53646658 -6.2527206 0 -5.4482219 -1.9689568
200 0.54551611 -6.2656326 0 -5.4475631 -2.0042104
250 0.54677719 -6.2671162 0 -5.4471555 -2.0015995
Loop time of 1.42972 on 4 procs for 250 steps with 4000 atoms
Performance: 75539.346 tau/day, 174.860 timesteps/s
98.9% CPU use with 4 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 0.34009 | 0.65732 | 1.1925 | 42.3 | 45.98
Neigh | 0.1324 | 0.17067 | 0.19962 | 6.6 | 11.94
Comm | 0.03502 | 0.5933 | 0.88766 | 45.1 | 41.50
Output | 0.0001173 | 0.00012749 | 0.00013947 | 0.1 | 0.01
Modify | 0.0024164 | 0.0032778 | 0.0040991 | 1.0 | 0.23
Other | | 0.00502 | | | 0.35
Nlocal: 1000 ave 1263 max 712 min
Histogram: 1 0 0 0 1 0 1 0 0 1
Nghost: 8711.5 ave 9045 max 8325 min
Histogram: 1 0 0 0 0 1 1 0 0 1
Neighs: 149325 ave 275165 max 77227 min
Histogram: 2 0 0 0 1 0 0 0 0 1
Total # of neighbors = 597299
Ave neighs/atom = 149.325
Neighbor list builds = 23
Dangerous builds = 0
balance 1.0 shift x 5 1.1 weight time 1.0 # out unweighted.txt
rebalancing time: 0.000354052 seconds
iteration count = 4
time weight factor: 1
initial/final max load/proc = 1673.83 1097.18
initial/final imbalance factor = 1.67383 1.09718
x cuts: 0 0.296875 0.453125 0.605469 1
y cuts: 0 1
z cuts: 0 1
run 250
Memory usage per processor = 2.7999 Mbytes
Step Temp E_pair E_mol TotEng Press
250 0.54677719 -6.2671162 0 -5.4471555 -2.0015995
300 0.5477618 -6.2678071 0 -5.4463698 -1.997842
350 0.55600296 -6.2801497 0 -5.4463538 -2.0394056
400 0.53241503 -6.2453665 0 -5.4469436 -1.878594
450 0.5439158 -6.2623 0 -5.4466302 -1.9744161
500 0.55526241 -6.2793396 0 -5.4466542 -2.0595015
Loop time of 1.10579 on 4 procs for 250 steps with 4000 atoms
Performance: 97667.971 tau/day, 226.083 timesteps/s
99.2% CPU use with 4 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 0.47383 | 0.65917 | 0.86391 | 21.2 | 59.61
Neigh | 0.12071 | 0.17144 | 0.23972 | 11.6 | 15.50
Comm | 0.10061 | 0.26652 | 0.39924 | 24.8 | 24.10
Output | 0.00012779 | 0.00014991 | 0.00018096 | 0.2 | 0.01
Modify | 0.0021801 | 0.0032307 | 0.0047314 | 1.8 | 0.29
Other | | 0.005272 | | | 0.48
Nlocal: 1000 ave 1479 max 635 min
Histogram: 1 1 0 0 0 0 1 0 0 1
Nghost: 8759.5 ave 9918 max 7969 min
Histogram: 2 0 0 0 0 1 0 0 0 1
Neighs: 149356 ave 195930 max 110209 min
Histogram: 2 0 0 0 0 0 0 1 0 1
Total # of neighbors = 597424
Ave neighs/atom = 149.356
Neighbor list builds = 24
Dangerous builds = 0
balance 1.0 shift x 5 1.1 weight time 1.0 # out unweighted.txt
rebalancing time: 0.000221968 seconds
iteration count = 4
time weight factor: 1
initial/final max load/proc = 1200.06 1176.79
initial/final imbalance factor = 1.20006 1.17679
x cuts: 0 0.306641 0.443359 0.595947 1
y cuts: 0 1
z cuts: 0 1
run 250
Memory usage per processor = 2.7999 Mbytes
Step Temp E_pair E_mol TotEng Press
500 0.55526241 -6.2793396 0 -5.4466542 -2.0595015
550 0.53879347 -6.2554274 0 -5.4474393 -1.9756834
600 0.54275982 -6.2616799 0 -5.4477437 -1.9939993
650 0.54526651 -6.265098 0 -5.4474027 -2.0303672
700 0.54369381 -6.263201 0 -5.4478642 -1.9921967
750 0.54452777 -6.2640839 0 -5.4474964 -1.9658675
Loop time of 1.10659 on 4 procs for 250 steps with 4000 atoms
Performance: 97597.325 tau/day, 225.920 timesteps/s
99.5% CPU use with 4 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 0.59596 | 0.67205 | 0.81576 | 10.9 | 60.73
Neigh | 0.098 | 0.18193 | 0.2707 | 16.7 | 16.44
Comm | 0.15524 | 0.24375 | 0.40352 | 19.4 | 22.03
Output | 0.00013709 | 0.00017041 | 0.00020695 | 0.2 | 0.02
Modify | 0.0016487 | 0.0032793 | 0.0050011 | 2.4 | 0.30
Other | | 0.005414 | | | 0.49
Nlocal: 1000 ave 1580 max 493 min
Histogram: 1 1 0 0 0 0 0 1 0 1
Nghost: 8736.5 ave 9808 max 8009 min
Histogram: 2 0 0 0 0 1 0 0 0 1
Neighs: 149124 ave 178715 max 132100 min
Histogram: 2 0 0 1 0 0 0 0 0 1
Total # of neighbors = 596497
Ave neighs/atom = 149.124
Neighbor list builds = 25
Dangerous builds = 0
Total wall time: 0:00:03

View File

@ -0,0 +1,202 @@
LAMMPS (26 Sep 2016)
# 2d circle of particles inside a box with LJ walls
variable b index 0
variable x index 50
variable y index 20
variable d index 20
variable v index 5
variable w index 2
units lj
dimension 2
atom_style atomic
boundary f f p
lattice hex 0.85
Lattice spacing in x,y,z = 1.16553 2.01877 1.16553
region box block 0 $x 0 $y -0.5 0.5
region box block 0 50 0 $y -0.5 0.5
region box block 0 50 0 20 -0.5 0.5
create_box 1 box
Created orthogonal box = (0 0 -0.582767) to (58.2767 40.3753 0.582767)
2 by 2 by 1 MPI processor grid
region circle sphere $(v_d/2+1) $(v_d/2/sqrt(3.0)+1) 0.0 $(v_d/2)
region circle sphere 11 $(v_d/2/sqrt(3.0)+1) 0.0 $(v_d/2)
region circle sphere 11 6.7735026918962581988 0.0 $(v_d/2)
region circle sphere 11 6.7735026918962581988 0.0 10
create_atoms 1 region circle
Created 361 atoms
mass 1 1.0
velocity all create 0.5 87287 loop geom
velocity all set $v $w 0 sum yes
velocity all set 5 $w 0 sum yes
velocity all set 5 2 0 sum yes
pair_style lj/cut 2.5
pair_coeff 1 1 10.0 1.0 2.5
neighbor 0.3 bin
neigh_modify delay 0 every 1 check yes
fix 1 all nve
fix 2 all wall/lj93 xlo 0.0 1 1 2.5 xhi $x 1 1 2.5
fix 2 all wall/lj93 xlo 0.0 1 1 2.5 xhi 50 1 1 2.5
fix 3 all wall/lj93 ylo 0.0 1 1 2.5 yhi $y 1 1 2.5
fix 3 all wall/lj93 ylo 0.0 1 1 2.5 yhi 20 1 1 2.5
comm_style tiled
fix 10 all balance 50 0.9 rcb
#compute 1 all property/atom proc
#variable p atom c_1%10
#dump 2 all custom 50 tmp.dump id v_p x y z
#dump 3 all image 50 image.*.jpg v_p type # adiam 1.0 view 0 0 zoom 1.8 subbox yes 0.02
#variable colors string # "red green blue yellow white # purple pink orange lime gray"
#dump_modify 3 pad 5 amap 0 10 sa 1 10 ${colors}
thermo_style custom step temp epair press f_10[3] f_10
thermo 100
run 10000
Neighbor list info ...
1 neighbor list requests
update every 1 steps, delay 0 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 2.8
ghost atom cutoff = 2.8
binsize = 1.4 -> bins = 42 29 1
Memory usage per processor = 2.48839 Mbytes
Step Temp E_pair Press f_10[3] f_10
0 25.701528 -29.143179 -1.2407285 3.2354571 1.0526316
100 26.269576 -29.713313 7.9052334 1.2742382 1.0304709
200 26.368336 -29.809962 1.6412462 1.2520776 1.0083102
300 26.479082 -29.920083 2.3678653 1.2299169 1.0193906
400 26.522239 -29.965537 6.6787858 1.1855956 1.0193906
500 25.725591 -29.168034 0.67065285 1.2520776 1.0083102
600 26.247693 -29.692706 7.9887712 1.3074792 1.0083102
700 26.237368 -29.676926 1.5987214 1.2409972 1.0083102
800 25.889643 -29.431589 4.6160859 1.2631579 1.0083102
900 23.635295 -27.372963 9.029962 1.1634349 1.0083102
1000 22.571904 -25.87422 1.8936085 1.1301939 1.0193906
1100 17.493795 -21.447274 9.502619 1.0858726 1.0193906
1200 17.214459 -20.726965 6.3578917 1.0304709 1.0193906
1300 16.424084 -19.757322 3.9028131 1.1191136 1.0083102
1400 15.026954 -18.109911 1.7623684 1.0858726 1.0193906
1500 13.640678 -16.740794 1.5347425 1.0858726 1.0193906
1600 13.618211 -16.610276 1.9480883 1.0747922 1.0083102
1700 13.266465 -16.300632 1.6890777 1.0637119 1.0193906
1800 12.178444 -15.175544 2.1018989 1.0304709 1.0083102
1900 12.131633 -15.075269 2.0174899 1.0526316 1.0193906
2000 12.290785 -15.185923 1.8747772 1.0415512 1.0193906
2100 12.02255 -14.947108 1.086185 1.0747922 1.0083102
2200 11.733238 -14.620414 0.93934447 1.0526316 1.0193906
2300 12.180779 -15.092283 1.1969416 1.0526316 1.0083102
2400 11.721247 -14.503377 1.3759878 1.1080332 1.0083102
2500 11.609116 -14.371603 2.0315139 1.0747922 1.0083102
2600 11.712503 -14.494711 1.7236598 1.0415512 1.0193906
2700 10.932816 -13.665751 1.2772732 1.0415512 1.0083102
2800 10.418752 -13.183889 1.2940564 1.0415512 1.0193906
2900 10.668297 -13.404525 0.90378659 1.0304709 1.0083102
3000 10.562215 -13.581566 1.0507999 1.0083102 1.0193906
3100 10.283188 -13.016565 1.0685664 1.0526316 1.0193906
3200 10.424678 -13.136756 1.4038511 1.0193906 1.0083102
3300 10.207304 -12.901323 1.3077174 1.0415512 1.0193906
3400 10.143301 -12.802915 1.2776266 1.0415512 1.0193906
3500 9.8449452 -12.507639 1.5455496 1.0637119 1.0083102
3600 9.5629038 -12.204164 0.84971204 1.0304709 1.0083102
3700 9.1851938 -11.809431 1.0102805 1.0304709 1.0193906
3800 9.3305969 -11.989086 0.69923461 1.0193906 1.0083102
3900 9.2415243 -11.880498 1.2471235 1.0637119 1.0193906
4000 8.8240051 -11.417696 0.60781901 1.0304709 1.0083102
4100 8.9126422 -11.503716 0.96900558 1.0083102 1.0083102
4200 8.3738185 -10.93925 0.84927158 1.0193906 1.0083102
4300 8.2401487 -10.90291 0.97775564 1.0083102 1.0083102
4400 8.061288 -10.722169 1.4106859 1.0193906 1.0193906
4500 7.8900038 -10.422818 0.67651486 1.0193906 1.0193906
4600 7.8306694 -10.363812 0.83437455 1.0193906 1.0193906
4700 8.1116499 -10.712008 0.58885383 1.0304709 1.0193906
4800 8.0508103 -10.576232 0.52562827 1.0193906 1.0083102
4900 7.8161815 -10.368333 0.89724847 1.0415512 1.0083102
5000 7.4940002 -9.9763835 1.215446 1.0304709 1.0083102
5100 7.9981403 -10.510786 1.0948502 1.0304709 1.0193906
5200 7.7674668 -10.259031 0.81850586 1.0304709 1.0193906
5300 7.9627913 -10.465018 0.75004253 1.0304709 1.0083102
5400 7.8093696 -10.371624 0.75451812 1.0193906 1.0083102
5500 8.1189569 -10.623288 0.91908416 1.0304709 1.0083102
5600 7.5970957 -10.070305 0.84265844 1.0415512 1.0083102
5700 7.4322203 -9.9176252 0.32608772 1.0304709 1.0083102
5800 7.8210607 -10.311444 0.95696619 1.0304709 1.0083102
5900 7.6181913 -10.111225 1.1341946 1.0193906 1.0083102
6000 7.2217555 -9.7122281 0.75858423 1.0637119 1.0083102
6100 7.3643302 -9.851242 0.5240439 1.0193906 1.0193906
6200 7.0281589 -9.4834454 0.59523945 1.0526316 1.0193906
6300 7.1383115 -9.6099868 0.87558078 1.0193906 1.0193906
6400 7.2136999 -9.6965877 0.88426542 1.0304709 1.0083102
6500 7.1710521 -9.7082917 1.2055959 1.0415512 1.0193906
6600 7.4150515 -9.9376614 0.48201097 1.0304709 1.0083102
6700 6.8701427 -9.3844769 0.72785561 1.0526316 1.0193906
6800 6.8486978 -9.3256413 0.93231327 1.0193906 1.0083102
6900 6.583533 -9.0068813 0.51281911 1.0193906 1.0193906
7000 6.7199396 -9.1773668 0.12636874 1.0193906 1.0083102
7100 6.5193695 -8.9553058 1.0423295 1.0083102 1.0193906
7200 6.4868896 -8.9090695 0.49867926 1.0083102 1.0193906
7300 6.2975635 -8.7775483 0.49072731 1.0415512 1.0083102
7400 6.4966155 -8.9410837 0.52952897 1.0193906 1.0083102
7500 6.7100139 -9.166691 0.82930078 1.0193906 1.0083102
7600 6.3569418 -8.7843554 0.93473251 1.0193906 1.0083102
7700 6.122789 -8.5434369 0.33725874 1.0526316 1.0083102
7800 6.0249595 -8.4453069 0.52784464 1.0193906 1.0083102
7900 6.6673238 -9.1166487 0.93753595 1.0193906 1.0083102
8000 6.4177253 -8.8896071 0.57421674 1.0193906 1.0193906
8100 5.965959 -8.3655023 0.42043964 1.0304709 1.0193906
8200 6.3325216 -8.758339 0.76723151 1.0193906 1.0193906
8300 6.4992751 -8.943922 0.86331769 1.0526316 1.0193906
8400 6.1834495 -8.6059885 0.43133079 1.0415512 1.0193906
8500 6.2567239 -8.6758815 0.8551113 1.0083102 1.0193906
8600 6.1232623 -8.5905174 0.6014726 1.0304709 1.0083102
8700 6.6650376 -9.0949995 0.46866086 1.0637119 1.0193906
8800 6.6103957 -9.0116868 0.84371859 1.0083102 1.0193906
8900 5.8867946 -8.3162884 0.64216189 1.0415512 1.0193906
9000 5.685369 -8.0652138 0.32067903 1.0304709 1.0083102
9100 6.2783881 -8.6826466 0.36419567 1.0415512 1.0304709
9200 6.0162211 -8.4584809 0.58707128 1.0083102 1.0083102
9300 5.9900511 -8.3949266 0.62037401 1.0304709 1.0193906
9400 6.2686573 -8.6713334 0.81204427 1.0415512 1.0083102
9500 6.0317917 -8.4325112 0.63221293 1.0304709 1.0193906
9600 5.8217003 -8.256407 0.816143 1.0304709 1.0083102
9700 5.6011023 -7.9966077 0.4114902 1.0304709 1.0193906
9800 5.6339982 -8.0317639 0.32315576 1.0083102 1.0083102
9900 5.8044743 -8.1942271 0.62892477 1.0193906 1.0083102
10000 6.1722678 -8.5642925 0.80423557 1.0304709 1.0083102
Loop time of 0.39332 on 4 procs for 10000 steps with 361 atoms
Performance: 10983420.832 tau/day, 25424.585 timesteps/s
98.9% CPU use with 4 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 0.067888 | 0.075593 | 0.091022 | 3.3 | 19.22
Neigh | 0.071147 | 0.075568 | 0.085203 | 2.1 | 19.21
Comm | 0.10841 | 0.12918 | 0.14463 | 4.0 | 32.84
Output | 0.0017445 | 0.001877 | 0.0022032 | 0.4 | 0.48
Modify | 0.038837 | 0.039568 | 0.040469 | 0.3 | 10.06
Other | | 0.07153 | | | 18.19
Nlocal: 90.25 ave 91 max 90 min
Histogram: 3 0 0 0 0 0 0 0 0 1
Nghost: 22.25 ave 27 max 16 min
Histogram: 1 0 0 0 0 0 2 0 0 1
Neighs: 268.25 ave 400 max 133 min
Histogram: 1 0 1 0 0 0 0 1 0 1
Total # of neighbors = 1073
Ave neighs/atom = 2.9723
Neighbor list builds = 3611
Dangerous builds = 0
Total wall time: 0:00:00

View File

@ -0,0 +1,103 @@
LAMMPS (26 Sep 2016)
# 3d Lennard-Jones melt
units lj
atom_style atomic
processors * 1 1
variable factor index 1.0
lattice fcc 0.8442
Lattice spacing in x,y,z = 1.6796 1.6796 1.6796
region box block 0 10 0 10 0 10
create_box 3 box
Created orthogonal box = (0 0 0) to (16.796 16.796 16.796)
4 by 1 by 1 MPI processor grid
create_atoms 1 box
Created 4000 atoms
mass * 1.0
region long block 3 6 0 10 0 10
set region long type 2
1400 settings made for type
velocity all create 1.0 87287
pair_style lj/cut 2.5
pair_coeff * * 1.0 1.0 2.5
pair_coeff * 2 1.0 1.0 5.0
neighbor 0.3 bin
neigh_modify every 2 delay 4 check yes
group fast type 1
2600 atoms in group fast
group slow type 2
1400 atoms in group slow
balance 1.0 shift x 5 1.1 weight group 2 fast 1.0 slow ${factor} # out weighted.txt
balance 1.0 shift x 5 1.1 weight group 2 fast 1.0 slow 1.0
Neighbor list info ...
1 neighbor list requests
update every 2 steps, delay 4 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 5.3
ghost atom cutoff = 5.3
binsize = 2.65 -> bins = 7 7 7
rebalancing time: 0.000452042 seconds
iteration count = 2
group weights: fast=1 slow=1
initial/final max load/proc = 1200 1200
initial/final imbalance factor = 1.2 1.2
x cuts: 0 0.25 0.5 0.6875 1
y cuts: 0 1
z cuts: 0 1
fix 0 all balance 10 1.0 shift x 5 1.1 weight group 2 fast 1.0 slow ${factor}
fix 0 all balance 10 1.0 shift x 5 1.1 weight group 2 fast 1.0 slow 1.0
fix 1 all nve
#dump id all atom 50 dump.melt
#dump 2 all image 25 image.*.jpg type type # axes yes 0.8 0.02 view 60 -30
#dump_modify 2 pad 3
#dump 3 all movie 25 movie.mpg type type # axes yes 0.8 0.02 view 60 -30
#dump_modify 3 pad 3
thermo 50
run 250
Memory usage per processor = 2.9192 Mbytes
Step Temp E_pair E_mol TotEng Press Volume
0 1 -6.9453205 0 -5.4456955 -5.6812358 4738.2137
50 0.48653399 -6.1788509 0 -5.4492324 -1.6017778 4738.2137
100 0.53411175 -6.249885 0 -5.4489177 -1.9317606 4738.2137
150 0.53646658 -6.2527206 0 -5.4482219 -1.9689568 4738.2137
200 0.54551611 -6.2656326 0 -5.4475631 -2.0042104 4738.2137
250 0.54677719 -6.2671162 0 -5.4471555 -2.0015995 4738.2137
Loop time of 1.48606 on 4 procs for 250 steps with 4000 atoms
Performance: 72675.623 tau/day, 168.231 timesteps/s
99.0% CPU use with 4 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 0.23243 | 0.67 | 1.2235 | 47.4 | 45.09
Neigh | 0.17043 | 0.18781 | 0.21572 | 4.1 | 12.64
Comm | 0.036635 | 0.61802 | 1.0727 | 51.6 | 41.59
Output | 0.00011992 | 0.00013161 | 0.00015426 | 0.1 | 0.01
Modify | 0.005506 | 0.0055596 | 0.0056329 | 0.1 | 0.37
Other | | 0.004531 | | | 0.30
Nlocal: 1000 ave 1001 max 999 min
Histogram: 1 0 0 0 0 2 0 0 0 1
Nghost: 8727 ave 8761 max 8674 min
Histogram: 1 0 0 0 0 0 1 1 0 1
Neighs: 149349 ave 260848 max 51191 min
Histogram: 1 1 0 0 0 0 1 0 0 1
Total # of neighbors = 597396
Ave neighs/atom = 149.349
Neighbor list builds = 25
Dangerous builds = 0
Total wall time: 0:00:01

View File

@ -0,0 +1,139 @@
LAMMPS (26 Sep 2016)
# 3d Lennard-Jones melt
units lj
atom_style atomic
processors * 1 1
variable factor index 1.0
lattice fcc 0.8442
Lattice spacing in x,y,z = 1.6796 1.6796 1.6796
region box block 0 10 0 10 0 10
create_box 3 box
Created orthogonal box = (0 0 0) to (16.796 16.796 16.796)
4 by 1 by 1 MPI processor grid
create_atoms 1 box
Created 4000 atoms
mass * 1.0
region long block 3 6 0 10 0 10
set region long type 2
1400 settings made for type
velocity all create 1.0 87287
pair_style lj/cut 2.5
pair_coeff * * 1.0 1.0 2.5
pair_coeff * 2 1.0 1.0 5.0
neighbor 0.3 bin
neigh_modify every 2 delay 4 check yes
balance 1.0 shift x 5 1.1 # out unweighted.txt
Neighbor list info ...
1 neighbor list requests
update every 2 steps, delay 4 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 5.3
ghost atom cutoff = 5.3
binsize = 2.65 -> bins = 7 7 7
rebalancing time: 0.000433922 seconds
iteration count = 2
initial/final max load/proc = 1200 1200
initial/final imbalance factor = 1.2 1.2
x cuts: 0 0.25 0.5 0.6875 1
y cuts: 0 1
z cuts: 0 1
balance 1.0 x uniform
rebalancing time: 0.000152826 seconds
iteration count = 0
initial/final max load/proc = 1200 1200
initial/final imbalance factor = 1.2 1.2
x cuts: 0 0.25 0.5 0.75 1
y cuts: 0 1
z cuts: 0 1
variable weight atom (type==1)*1.0+(type==2)*v_factor
balance 1.0 shift x 5 1.1 weight var weight # out weighted_var.txt
rebalancing time: 0.000287056 seconds
iteration count = 2
weight variable: weight
initial/final max load/proc = 1200 1200
initial/final imbalance factor = 1.2 1.2
x cuts: 0 0.25 0.5 0.6875 1
y cuts: 0 1
z cuts: 0 1
balance 1.0 x uniform
rebalancing time: 0.00011611 seconds
iteration count = 0
initial/final max load/proc = 1200 1200
initial/final imbalance factor = 1.2 1.2
x cuts: 0 0.25 0.5 0.75 1
y cuts: 0 1
z cuts: 0 1
group fast type 1
2600 atoms in group fast
group slow type 2
1400 atoms in group slow
balance 1.0 shift x 5 1.1 weight group 2 fast 1.0 slow ${factor} # out weighted_group.txt
balance 1.0 shift x 5 1.1 weight group 2 fast 1.0 slow 1.0
rebalancing time: 0.000248909 seconds
iteration count = 2
group weights: fast=1 slow=1
initial/final max load/proc = 1200 1200
initial/final imbalance factor = 1.2 1.2
x cuts: 0 0.25 0.5 0.6875 1
y cuts: 0 1
z cuts: 0 1
fix 1 all nve
#dump id all atom 50 dump.melt
#dump 2 all image 25 image.*.jpg type type # axes yes 0.8 0.02 view 60 -30
#dump_modify 2 pad 3
#dump 3 all movie 25 movie.mpg type type # axes yes 0.8 0.02 view 60 -30
#dump_modify 3 pad 3
thermo 50
run 250
Memory usage per processor = 2.77892 Mbytes
Step Temp E_pair E_mol TotEng Press
0 1 -6.9453205 0 -5.4456955 -5.6812358
50 0.48653399 -6.1788509 0 -5.4492324 -1.6017778
100 0.53411175 -6.249885 0 -5.4489177 -1.9317606
150 0.53646658 -6.2527206 0 -5.4482219 -1.9689568
200 0.54551611 -6.2656326 0 -5.4475631 -2.0042104
250 0.54677719 -6.2671162 0 -5.4471555 -2.0015995
Loop time of 1.41033 on 4 procs for 250 steps with 4000 atoms
Performance: 76577.913 tau/day, 177.264 timesteps/s
98.7% CPU use with 4 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 0.33785 | 0.6592 | 1.1713 | 41.7 | 46.74
Neigh | 0.14133 | 0.17129 | 0.19681 | 5.6 | 12.15
Comm | 0.039078 | 0.57085 | 0.87566 | 45.3 | 40.48
Output | 0.00022721 | 0.00024492 | 0.00026417 | 0.1 | 0.02
Modify | 0.0025113 | 0.0033261 | 0.0040808 | 1.0 | 0.24
Other | | 0.005427 | | | 0.38
Nlocal: 1000 ave 1263 max 712 min
Histogram: 1 0 0 0 1 0 1 0 0 1
Nghost: 8711.5 ave 9045 max 8325 min
Histogram: 1 0 0 0 0 1 1 0 0 1
Neighs: 149325 ave 275165 max 77227 min
Histogram: 2 0 0 0 1 0 0 0 0 1
Total # of neighbors = 597299
Ave neighs/atom = 149.325
Neighbor list builds = 23
Dangerous builds = 0
Total wall time: 0:00:01

View File

@ -0,0 +1,110 @@
LAMMPS (26 Sep 2016)
# 3d Lennard-Jones melt
units lj
#atom_style charge
processors * 1 1
lattice fcc 0.8442
Lattice spacing in x,y,z = 1.6796 1.6796 1.6796
region box block 0 10 0 10 0 10
create_box 3 box
Created orthogonal box = (0 0 0) to (16.796 16.796 16.796)
4 by 1 by 1 MPI processor grid
create_atoms 1 box
Created 4000 atoms
mass * 1.0
region long block 3 6 0 10 0 10
set region long type 2
1400 settings made for type
#set type 1:2 charge 0.0
velocity all create 1.0 87287
pair_style lj/long/coul/long long off 2.5
pair_coeff * * 1.0 1.0 2.5
pair_coeff * 2 1.0 1.0 5.0
kspace_style pppm/disp 1.0e-4
kspace_modify gewald/disp 0.1
neighbor 0.3 bin
neigh_modify every 2 delay 4 check yes
group fast type 1
2600 atoms in group fast
group slow type 2
1400 atoms in group slow
fix 0 all balance 20 1.0 shift x 5 1.0 weight group 2 fast 1.0 slow 2.0 weight time 0.66
fix 1 all nve
#dump id all atom 50 dump.melt
#dump 2 all image 25 image.*.jpg type type # axes yes 0.8 0.02 view 60 -30
#dump_modify 2 pad 3
#dump 3 all movie 25 movie.mpg type type # axes yes 0.8 0.02 view 60 -30
#dump_modify 3 pad 3
thermo 50
run 500
PPPMDisp initialization ...
Dispersion G vector (1/distance) = 0.1
Dispersion grid = 2 2 2
Dispersion stencil order = 5
Dispersion estimated absolute RMS force accuracy = 1.01251
Dispersion estimated absolute real space RMS force accuracy = 1.01251
Dispersion estimated absolute kspace RMS force accuracy = 7.29446e-07
Disperion estimated relative force accuracy = 1.01251
using double precision FFTs
3d grid and FFT values/proc dispersion = 294 4
Neighbor list info ...
1 neighbor list requests
update every 2 steps, delay 4 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 5.3
ghost atom cutoff = 5.3
binsize = 2.65 -> bins = 7 7 7
Memory usage per processor = 3.32692 Mbytes
Step Temp E_pair E_mol TotEng Press Volume
0 1 52.148338 0 53.647963 94.09503 4738.2137
50 17.850656 42.620113 0 69.389403 142.80556 4738.2137
100 9.4607189 49.700118 0 63.887649 117.51739 4738.2137
150 13.992056 47.731988 0 68.714825 140.56926 4738.2137
200 11.617635 52.509395 0 69.931491 142.6933 4738.2137
250 13.536262 48.330072 0 68.629389 133.91619 4738.2137
300 12.619724 50.326376 0 69.25123 132.46494 4738.2137
350 14.513005 50.110693 0 71.874758 143.39284 4738.2137
400 12.429702 49.690909 0 68.3308 130.0808 4738.2137
450 13.928225 50.969523 0 71.856637 144.44675 4738.2137
500 13.286368 50.355522 0 70.280091 137.2389 4738.2137
Loop time of 4.79482 on 4 procs for 500 steps with 4000 atoms
Performance: 45048.596 tau/day, 104.279 timesteps/s
99.1% CPU use with 4 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 0.85927 | 1.571 | 2.2092 | 51.0 | 32.76
Kspace | 0.61247 | 1.982 | 3.2697 | 85.3 | 41.34
Neigh | 0.2976 | 0.98099 | 1.8525 | 68.1 | 20.46
Comm | 0.090759 | 0.23335 | 0.34356 | 22.4 | 4.87
Output | 0.00027442 | 0.00034857 | 0.0004065 | 0.3 | 0.01
Modify | 0.013081 | 0.016089 | 0.0201 | 2.3 | 0.34
Other | | 0.01104 | | | 0.23
Nlocal: 1000 ave 1853 max 359 min
Histogram: 2 0 0 0 0 0 0 1 0 1
Nghost: 7773.5 ave 9196 max 6355 min
Histogram: 2 0 0 0 0 0 0 0 0 2
Neighs: 127368 ave 180948 max 71698 min
Histogram: 2 0 0 0 0 0 0 0 0 2
Total # of neighbors = 509471
Ave neighs/atom = 127.368
Neighbor list builds = 124
Dangerous builds = 97
Total wall time: 0:00:04

View File

@ -0,0 +1,221 @@
LAMMPS (26 Sep 2016)
# 3d Lennard-Jones melt
units lj
atom_style atomic
processors * 1 1
lattice fcc 0.8442
Lattice spacing in x,y,z = 1.6796 1.6796 1.6796
region box block 0 10 0 10 0 10
create_box 3 box
Created orthogonal box = (0 0 0) to (16.796 16.796 16.796)
4 by 1 by 1 MPI processor grid
create_atoms 1 box
Created 4000 atoms
mass * 1.0
region long block 3 6 0 10 0 10
set region long type 2
1400 settings made for type
velocity all create 1.0 87287
pair_style lj/cut 2.5
pair_coeff * * 1.0 1.0 2.5
pair_coeff * 2 1.0 1.0 5.0
neighbor 0.3 bin
neigh_modify every 2 delay 4 check yes
fix p all property/atom d_WEIGHT
fix 0 all balance 50 1.0 shift x 5 1.0 weight neigh 0.8 weight store WEIGHT
compute p all property/atom d_WEIGHT
variable maximb equal f_0[1]
variable iter equal f_0[2]
variable prev equal f_0[3]
variable final equal f_0
#fix 3 all print 50 "${iter} ${prev} ${final} ${maximb}"
fix 1 all nve
#dump id all atom 50 dump.melt
#dump id all custom 50 dump.lammpstrj id type x y z c_p
#dump 2 all image 25 image.*.jpg type type # axes yes 0.8 0.02 view 60 -30
#dump_modify 2 pad 3
#dump 3 all movie 25 movie.mp4 c_p type # axes yes 0.8 0.02 view 60 -30
#dump_modify 3 pad 3 amap 0.0 2.0 cf 0.1 3 min blue 0.5 green max red
thermo 50
run 500
Neighbor list info ...
1 neighbor list requests
update every 2 steps, delay 4 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 5.3
ghost atom cutoff = 5.3
binsize = 2.65 -> bins = 7 7 7
WARNING: No suitable neighbor list found. Neighbor weighted balancing skipped (../imbalance_neigh.cpp:65)
Memory usage per processor = 3.0442 Mbytes
Step Temp E_pair E_mol TotEng Press Volume
0 1 -6.9453205 0 -5.4456955 -5.6812358 4738.2137
50 0.48653399 -6.1788509 0 -5.4492324 -1.6017778 4738.2137
100 0.53411175 -6.249885 0 -5.4489177 -1.9317606 4738.2137
150 0.53646658 -6.2527206 0 -5.4482219 -1.9689568 4738.2137
200 0.54551611 -6.2656326 0 -5.4475631 -2.0042104 4738.2137
250 0.54677719 -6.2671162 0 -5.4471555 -2.0015995 4738.2137
300 0.5477618 -6.2678071 0 -5.4463698 -1.997842 4738.2137
350 0.55600296 -6.2801497 0 -5.4463538 -2.0394056 4738.2137
400 0.53241503 -6.2453665 0 -5.4469436 -1.878594 4738.2137
450 0.5439158 -6.2623 0 -5.4466302 -1.9744161 4738.2137
500 0.55526241 -6.2793396 0 -5.4466542 -2.0595015 4738.2137
Loop time of 2.27598 on 4 procs for 500 steps with 4000 atoms
Performance: 94904.173 tau/day, 219.686 timesteps/s
99.4% CPU use with 4 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 1.1158 | 1.4132 | 1.6545 | 19.0 | 62.09
Neigh | 0.25541 | 0.38197 | 0.55281 | 20.3 | 16.78
Comm | 0.33626 | 0.46086 | 0.58471 | 14.7 | 20.25
Output | 0.00030327 | 0.00033396 | 0.0003922 | 0.2 | 0.01
Modify | 0.0061643 | 0.0082641 | 0.011169 | 2.4 | 0.36
Other | | 0.01137 | | | 0.50
Nlocal: 1000 ave 1551 max 604 min
Histogram: 2 0 0 0 0 0 1 0 0 1
Nghost: 8754.75 ave 9849 max 8074 min
Histogram: 2 0 0 0 0 1 0 0 0 1
Neighs: 149308 ave 163995 max 129030 min
Histogram: 1 0 0 1 0 0 0 0 0 2
Total # of neighbors = 597231
Ave neighs/atom = 149.308
Neighbor list builds = 50
Dangerous builds = 0
run 500
Memory usage per processor = 3.06519 Mbytes
Step Temp E_pair E_mol TotEng Press Volume
500 0.55526241 -6.2793396 0 -5.4466542 -2.0595015 4738.2137
550 0.53879347 -6.2554274 0 -5.4474393 -1.9756834 4738.2137
600 0.54275982 -6.2616799 0 -5.4477437 -1.9939993 4738.2137
650 0.54526651 -6.265098 0 -5.4474027 -2.0303672 4738.2137
700 0.54369381 -6.263201 0 -5.4478642 -1.9921967 4738.2137
750 0.54452777 -6.2640839 0 -5.4474964 -1.9658675 4738.2137
800 0.55061744 -6.2725556 0 -5.4468359 -2.0100922 4738.2137
850 0.55371614 -6.2763992 0 -5.4460326 -2.0065329 4738.2137
900 0.54756622 -6.2668303 0 -5.4456863 -1.9796122 4738.2137
950 0.54791593 -6.2673161 0 -5.4456477 -1.9598278 4738.2137
1000 0.54173198 -6.2586101 0 -5.4462153 -1.9007466 4738.2137
Loop time of 2.14853 on 4 procs for 500 steps with 4000 atoms
Performance: 100533.652 tau/day, 232.717 timesteps/s
99.5% CPU use with 4 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 1.1688 | 1.3591 | 1.5126 | 13.1 | 63.26
Neigh | 0.24981 | 0.38774 | 0.57835 | 22.5 | 18.05
Comm | 0.36101 | 0.38157 | 0.41179 | 3.0 | 17.76
Output | 0.00031686 | 0.00034499 | 0.00040627 | 0.2 | 0.02
Modify | 0.0059092 | 0.0082516 | 0.011432 | 2.6 | 0.38
Other | | 0.01149 | | | 0.53
Nlocal: 1000 ave 1559 max 601 min
Histogram: 2 0 0 0 0 0 1 0 0 1
Nghost: 8717.25 ave 9789 max 8011 min
Histogram: 2 0 0 0 0 1 0 0 0 1
Neighs: 150170 ave 165071 max 129263 min
Histogram: 1 0 0 1 0 0 0 0 0 2
Total # of neighbors = 600678
Ave neighs/atom = 150.169
Neighbor list builds = 53
Dangerous builds = 0
run 500
Memory usage per processor = 3.06519 Mbytes
Step Temp E_pair E_mol TotEng Press Volume
1000 0.54173198 -6.2586101 0 -5.4462153 -1.9007466 4738.2137
1050 0.54629742 -6.2657526 0 -5.4465113 -1.945821 4738.2137
1100 0.55427881 -6.2781733 0 -5.446963 -2.0021027 4738.2137
1150 0.54730654 -6.267257 0 -5.4465025 -1.9420678 4738.2137
1200 0.5388281 -6.2547963 0 -5.4467562 -1.890178 4738.2137
1250 0.54848768 -6.2694237 0 -5.4468979 -1.9636797 4738.2137
1300 0.54134321 -6.2590728 0 -5.447261 -1.9170271 4738.2137
1350 0.53564389 -6.2501521 0 -5.4468871 -1.8642306 4738.2137
1400 0.53726925 -6.2518379 0 -5.4461355 -1.8544028 4738.2137
1450 0.54525935 -6.2632653 0 -5.4455808 -1.9072158 4738.2137
1500 0.54223342 -6.2591056 0 -5.4459588 -1.886698 4738.2137
Loop time of 2.13806 on 4 procs for 500 steps with 4000 atoms
Performance: 101026.160 tau/day, 233.857 timesteps/s
99.5% CPU use with 4 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 1.1911 | 1.3674 | 1.5133 | 12.4 | 63.95
Neigh | 0.2394 | 0.37334 | 0.55622 | 22.2 | 17.46
Comm | 0.36084 | 0.37761 | 0.409 | 3.0 | 17.66
Output | 0.00030899 | 0.00033534 | 0.00039768 | 0.2 | 0.02
Modify | 0.0060141 | 0.0083458 | 0.011389 | 2.6 | 0.39
Other | | 0.01105 | | | 0.52
Nlocal: 1000 ave 1545 max 604 min
Histogram: 2 0 0 0 0 0 1 0 0 1
Nghost: 8704 ave 9801 max 7983 min
Histogram: 2 0 0 0 0 1 0 0 0 1
Neighs: 150494 ave 165851 max 129789 min
Histogram: 1 0 0 1 0 0 0 0 0 2
Total # of neighbors = 601974
Ave neighs/atom = 150.494
Neighbor list builds = 51
Dangerous builds = 0
run 500
Memory usage per processor = 3.06519 Mbytes
Step Temp E_pair E_mol TotEng Press Volume
1500 0.54223342 -6.2591056 0 -5.4459588 -1.886698 4738.2137
1550 0.55327017 -6.2750125 0 -5.4453147 -1.9506581 4738.2137
1600 0.54419032 -6.2612626 0 -5.4451812 -1.8559458 4738.2137
1650 0.54710059 -6.2661984 0 -5.4457527 -1.8882842 4738.2137
1700 0.53665689 -6.2504959 0 -5.4457118 -1.8067985 4738.2137
1750 0.54864916 -6.2681196 0 -5.4453516 -1.8662894 4738.2137
1800 0.54476391 -6.2615108 0 -5.4445692 -1.8352746 4738.2137
1850 0.54142945 -6.2555553 0 -5.4436142 -1.8005732 4738.2137
1900 0.53992253 -6.2541407 0 -5.4444594 -1.7768992 4738.2137
1950 0.54663678 -6.2640967 0 -5.4443465 -1.7945736 4738.2137
2000 0.54563235 -6.2626431 0 -5.4443992 -1.807693 4738.2137
Loop time of 2.18212 on 4 procs for 500 steps with 4000 atoms
Performance: 98986.300 tau/day, 229.135 timesteps/s
99.7% CPU use with 4 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 1.1776 | 1.3712 | 1.5256 | 13.4 | 62.84
Neigh | 0.26314 | 0.4065 | 0.59956 | 22.6 | 18.63
Comm | 0.36859 | 0.3845 | 0.41286 | 2.7 | 17.62
Output | 0.00031281 | 0.00033575 | 0.00039792 | 0.2 | 0.02
Modify | 0.0058827 | 0.0082896 | 0.011639 | 2.7 | 0.38
Other | | 0.01133 | | | 0.52
Nlocal: 1000 ave 1544 max 605 min
Histogram: 2 0 0 0 0 0 1 0 0 1
Nghost: 8676.25 ave 9831 max 7985 min
Histogram: 2 0 0 0 1 0 0 0 0 1
Neighs: 151653 ave 166956 max 130753 min
Histogram: 1 0 0 1 0 0 0 0 0 2
Total # of neighbors = 606611
Ave neighs/atom = 151.653
Neighbor list builds = 56
Dangerous builds = 0
Total wall time: 0:00:08

View File

@ -0,0 +1,134 @@
LAMMPS (26 Sep 2016)
# 3d Lennard-Jones melt
units lj
atom_style atomic
processors * 1 1
lattice fcc 0.8442
Lattice spacing in x,y,z = 1.6796 1.6796 1.6796
region box block 0 10 0 10 0 10
create_box 3 box
Created orthogonal box = (0 0 0) to (16.796 16.796 16.796)
4 by 1 by 1 MPI processor grid
create_atoms 1 box
Created 4000 atoms
mass * 1.0
region long block 3 6 0 10 0 10
set region long type 2
1400 settings made for type
velocity all create 1.0 87287
pair_style lj/cut 2.5
pair_coeff * * 1.0 1.0 2.5
pair_coeff * 2 1.0 1.0 5.0
comm_style tiled
neighbor 0.3 bin
neigh_modify every 2 delay 4 check yes
fix p all property/atom d_WEIGHT
fix 0 all balance 50 1.0 rcb weight neigh 0.8 weight store WEIGHT
compute p all property/atom d_WEIGHT
variable maximb equal f_0[1]
variable iter equal f_0[2]
variable prev equal f_0[3]
variable final equal f_0
#fix 3 all print 50 "${iter} ${prev} ${final} ${maximb}"
fix 1 all nve
#dump id all atom 50 dump.melt
#dump id all custom 50 dump.lammpstrj id type x y z c_p
#dump 2 all image 25 image.*.jpg type type # axes yes 0.8 0.02 view 60 -30
#dump_modify 2 pad 3
#dump 3 all movie 25 movie.mpg type type # axes yes 0.8 0.02 view 60 -30
#dump_modify 3 pad 3
thermo 50
run 250
Neighbor list info ...
1 neighbor list requests
update every 2 steps, delay 4 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 5.3
ghost atom cutoff = 5.3
binsize = 2.65 -> bins = 7 7 7
WARNING: No suitable neighbor list found. Neighbor weighted balancing skipped (../imbalance_neigh.cpp:65)
Memory usage per processor = 2.90262 Mbytes
Step Temp E_pair E_mol TotEng Press Volume
0 1 -6.9453205 0 -5.4456955 -5.6812358 4738.2137
50 0.48653399 -6.1788509 0 -5.4492324 -1.6017778 4738.2137
100 0.53411175 -6.249885 0 -5.4489177 -1.9317606 4738.2137
150 0.53646658 -6.2527206 0 -5.4482219 -1.9689568 4738.2137
200 0.54551611 -6.2656326 0 -5.4475631 -2.0042104 4738.2137
250 0.54677719 -6.2671162 0 -5.4471555 -2.0015995 4738.2137
Loop time of 0.943947 on 4 procs for 250 steps with 4000 atoms
Performance: 114413.252 tau/day, 264.845 timesteps/s
99.4% CPU use with 4 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 0.64601 | 0.66027 | 0.67403 | 1.2 | 69.95
Neigh | 0.18111 | 0.18828 | 0.1953 | 1.2 | 19.95
Comm | 0.072217 | 0.084395 | 0.096822 | 3.4 | 8.94
Output | 0.00016904 | 0.00018668 | 0.00020409 | 0.1 | 0.02
Modify | 0.005301 | 0.0055165 | 0.0056343 | 0.2 | 0.58
Other | | 0.005294 | | | 0.56
Nlocal: 1000 ave 1004 max 996 min
Histogram: 1 0 0 1 0 0 1 0 0 1
Nghost: 7674 ave 7678 max 7668 min
Histogram: 1 0 0 0 0 0 1 0 1 1
Neighs: 149349 ave 150214 max 148735 min
Histogram: 1 0 1 0 1 0 0 0 0 1
Total # of neighbors = 597396
Ave neighs/atom = 149.349
Neighbor list builds = 25
Dangerous builds = 0
run 250
Memory usage per processor = 2.9031 Mbytes
Step Temp E_pair E_mol TotEng Press Volume
250 0.54677719 -6.2671162 0 -5.4471555 -2.0015995 4738.2137
300 0.5477618 -6.2678071 0 -5.4463698 -1.997842 4738.2137
350 0.55600296 -6.2801497 0 -5.4463538 -2.0394056 4738.2137
400 0.53241503 -6.2453665 0 -5.4469436 -1.878594 4738.2137
450 0.5439158 -6.2623 0 -5.4466302 -1.9744161 4738.2137
500 0.55526241 -6.2793396 0 -5.4466542 -2.0595015 4738.2137
Loop time of 0.886707 on 4 procs for 250 steps with 4000 atoms
Performance: 121798.994 tau/day, 281.942 timesteps/s
99.7% CPU use with 4 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 0.6277 | 0.63292 | 0.64433 | 0.8 | 71.38
Neigh | 0.1778 | 0.17937 | 0.18309 | 0.5 | 20.23
Comm | 0.05461 | 0.06445 | 0.070518 | 2.3 | 7.27
Output | 0.00015926 | 0.00017142 | 0.00018311 | 0.1 | 0.02
Modify | 0.0050013 | 0.0050754 | 0.0051844 | 0.1 | 0.57
Other | | 0.004719 | | | 0.53
Nlocal: 1000 ave 1008 max 990 min
Histogram: 1 0 0 1 0 0 0 0 1 1
Nghost: 7665.5 ave 7675 max 7650 min
Histogram: 1 0 0 0 0 1 0 0 0 2
Neighs: 149308 ave 149883 max 148467 min
Histogram: 1 0 0 0 1 0 0 0 1 1
Total # of neighbors = 597231
Ave neighs/atom = 149.308
Neighbor list builds = 25
Dangerous builds = 0
Total wall time: 0:00:01

View File

@ -0,0 +1,207 @@
LAMMPS (26 Sep 2016)
# 3d Lennard-Jones melt
units lj
atom_style atomic
processors * 1 1
variable factor index 1.0
lattice fcc 0.8442
Lattice spacing in x,y,z = 1.6796 1.6796 1.6796
region box block 0 10 0 10 0 10
create_box 3 box
Created orthogonal box = (0 0 0) to (16.796 16.796 16.796)
4 by 1 by 1 MPI processor grid
create_atoms 1 box
Created 4000 atoms
mass * 1.0
region long block 3 6 0 10 0 10
set region long type 2
1400 settings made for type
velocity all create 1.0 87287
pair_style lj/cut 2.5
pair_coeff * * 1.0 1.0 2.5
pair_coeff * 2 1.0 1.0 5.0
neighbor 0.3 bin
neigh_modify every 2 delay 4 check yes
balance 1.0 shift x 10 1.0 weight neigh 0.8 # out weighted_var.txt
Neighbor list info ...
1 neighbor list requests
update every 2 steps, delay 4 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 5.3
ghost atom cutoff = 5.3
binsize = 2.65 -> bins = 7 7 7
WARNING: No suitable neighbor list found. Neighbor weighted balancing skipped (../imbalance_neigh.cpp:65)
rebalancing time: 0.00040102 seconds
iteration count = 3
neigh weight factor: 0.8
initial/final max load/proc = 1200 1000
initial/final imbalance factor = 1.2 1
x cuts: 0 0.25 0.5 0.71875 1
y cuts: 0 1
z cuts: 0 1
fix 1 all nve
#dump id all atom 50 dump.melt
#dump 2 all image 25 image.*.jpg type type # axes yes 0.8 0.02 view 60 -30
#dump_modify 2 pad 3
#dump 3 all movie 25 movie.mpg type type # axes yes 0.8 0.02 view 60 -30
#dump_modify 3 pad 3
thermo 50
run 250 post no
Memory usage per processor = 2.77892 Mbytes
Step Temp E_pair E_mol TotEng Press
0 1 -6.9453205 0 -5.4456955 -5.6812358
50 0.48653399 -6.1788509 0 -5.4492324 -1.6017778
100 0.53411175 -6.249885 0 -5.4489177 -1.9317606
150 0.53646658 -6.2527206 0 -5.4482219 -1.9689568
200 0.54551611 -6.2656326 0 -5.4475631 -2.0042104
250 0.54677719 -6.2671162 0 -5.4471555 -2.0015995
Loop time of 1.42566 on 4 procs for 250 steps with 4000 atoms
99.0% CPU use with 4 MPI tasks x no OpenMP threads
balance 1.0 shift x 10 1.0 weight neigh 0.8
rebalancing time: 0.000426054 seconds
iteration count = 10
neigh weight factor: 0.8
initial/final max load/proc = 1687.06 1002.87
initial/final imbalance factor = 1.68662 1.0026
x cuts: 0 0.306885 0.452881 0.599335 1
y cuts: 0 1
z cuts: 0 1
run 250 post no
Memory usage per processor = 2.7999 Mbytes
Step Temp E_pair E_mol TotEng Press
250 0.54677719 -6.2671162 0 -5.4471555 -2.0015995
300 0.5477618 -6.2678071 0 -5.4463698 -1.997842
350 0.55600296 -6.2801497 0 -5.4463538 -2.0394056
400 0.53241503 -6.2453665 0 -5.4469436 -1.878594
450 0.5439158 -6.2623 0 -5.4466302 -1.9744161
500 0.55526241 -6.2793396 0 -5.4466542 -2.0595015
Loop time of 1.02512 on 4 procs for 250 steps with 4000 atoms
99.4% CPU use with 4 MPI tasks x no OpenMP threads
balance 1.0 shift x 10 1.0 weight neigh 0.8
rebalancing time: 0.000252008 seconds
iteration count = 10
neigh weight factor: 0.8
initial/final max load/proc = 1054.41 1008.56
initial/final imbalance factor = 1.05567 1.00976
x cuts: 0 0.303588 0.449887 0.597189 1
y cuts: 0 1
z cuts: 0 1
run 250 post no
Memory usage per processor = 2.7999 Mbytes
Step Temp E_pair E_mol TotEng Press
500 0.55526241 -6.2793396 0 -5.4466542 -2.0595015
550 0.53879347 -6.2554274 0 -5.4474393 -1.9756834
600 0.54275982 -6.2616799 0 -5.4477437 -1.9939993
650 0.54526651 -6.265098 0 -5.4474027 -2.0303672
700 0.54369381 -6.263201 0 -5.4478642 -1.9921967
750 0.54452777 -6.2640839 0 -5.4474964 -1.9658675
Loop time of 1.03672 on 4 procs for 250 steps with 4000 atoms
99.5% CPU use with 4 MPI tasks x no OpenMP threads
balance 1.0 shift x 10 1.0 weight neigh 0.8 weight time 0.6
rebalancing time: 0.000267982 seconds
iteration count = 10
neigh weight factor: 0.8
time weight factor: 0.6
initial/final max load/proc = 1393.27 1116.61
initial/final imbalance factor = 1.25201 1.0034
x cuts: 0 0.337163 0.448601 0.555904 1
y cuts: 0 1
z cuts: 0 1
run 250
Memory usage per processor = 2.7999 Mbytes
Step Temp E_pair E_mol TotEng Press
750 0.54452777 -6.2640839 0 -5.4474964 -1.9658675
800 0.55061744 -6.2725556 0 -5.4468359 -2.0100922
850 0.55371614 -6.2763992 0 -5.4460326 -2.0065329
900 0.54756622 -6.2668303 0 -5.4456863 -1.9796122
950 0.54791593 -6.2673161 0 -5.4456477 -1.9598278
1000 0.54173198 -6.2586101 0 -5.4462153 -1.9007466
Loop time of 1.07042 on 4 procs for 250 steps with 4000 atoms
Performance: 100895.237 tau/day, 233.554 timesteps/s
99.3% CPU use with 4 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 0.56894 | 0.64706 | 0.72522 | 8.1 | 60.45
Neigh | 0.091286 | 0.17756 | 0.29256 | 20.9 | 16.59
Comm | 0.042178 | 0.23721 | 0.40194 | 31.6 | 22.16
Output | 0.00012493 | 0.0001505 | 0.00017571 | 0.1 | 0.01
Modify | 0.0016253 | 0.0032219 | 0.0054028 | 2.9 | 0.30
Other | | 0.005214 | | | 0.49
Nlocal: 1000 ave 1695 max 489 min
Histogram: 2 0 0 0 0 0 1 0 0 1
Nghost: 8733.5 ave 10199 max 7650 min
Histogram: 2 0 0 0 0 0 1 0 0 1
Neighs: 150170 ave 166473 max 132232 min
Histogram: 1 1 0 0 0 0 0 0 0 2
Total # of neighbors = 600681
Ave neighs/atom = 150.17
Neighbor list builds = 25
Dangerous builds = 0
balance 1.0 shift x 10 1.0 weight neigh 0.8 weight time 0.6
rebalancing time: 0.000238895 seconds
iteration count = 10
neigh weight factor: 0.8
time weight factor: 0.6
initial/final max load/proc = 1167.62 1095.43
initial/final imbalance factor = 1.07395 1.00755
x cuts: 0 0.345978 0.449963 0.551398 1
y cuts: 0 1
z cuts: 0 1
run 250
Memory usage per processor = 2.7999 Mbytes
Step Temp E_pair E_mol TotEng Press
1000 0.54173198 -6.2586101 0 -5.4462153 -1.9007466
1050 0.54629742 -6.2657526 0 -5.4465113 -1.945821
1100 0.55427881 -6.2781733 0 -5.446963 -2.0021027
1150 0.54730654 -6.267257 0 -5.4465025 -1.9420678
1200 0.5388281 -6.2547963 0 -5.4467562 -1.890178
1250 0.54848768 -6.2694237 0 -5.4468979 -1.9636797
Loop time of 1.11596 on 4 procs for 250 steps with 4000 atoms
Performance: 96777.859 tau/day, 224.023 timesteps/s
99.4% CPU use with 4 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 0.56315 | 0.66085 | 0.76319 | 10.9 | 59.22
Neigh | 0.085606 | 0.18033 | 0.29805 | 21.9 | 16.16
Comm | 0.044225 | 0.2661 | 0.4596 | 35.4 | 23.84
Output | 0.00015068 | 0.0001756 | 0.00020194 | 0.1 | 0.02
Modify | 0.0015557 | 0.0032289 | 0.0054245 | 3.0 | 0.29
Other | | 0.005279 | | | 0.47
Nlocal: 1000 ave 1694 max 462 min
Histogram: 2 0 0 0 0 0 0 1 0 1
Nghost: 8755.25 ave 10227 max 7675 min
Histogram: 2 0 0 0 0 0 1 0 0 1
Neighs: 149995 ave 173733 max 125545 min
Histogram: 2 0 0 0 0 0 0 0 0 2
Total # of neighbors = 599979
Ave neighs/atom = 149.995
Neighbor list builds = 25
Dangerous builds = 0
Total wall time: 0:00:05

View File

@ -0,0 +1,250 @@
LAMMPS (26 Sep 2016)
# 3d Lennard-Jones melt
units lj
atom_style atomic
processors * 1 1
lattice fcc 0.8442
Lattice spacing in x,y,z = 1.6796 1.6796 1.6796
region box block 0 10 0 10 0 10
create_box 3 box
Created orthogonal box = (0 0 0) to (16.796 16.796 16.796)
2 by 1 by 1 MPI processor grid
create_atoms 1 box
Created 4000 atoms
mass * 1.0
region long block 3 6 0 10 0 10
set region long type 2
1400 settings made for type
velocity all create 1.0 87287
pair_style lj/cut 2.5
pair_coeff * * 1.0 1.0 2.5
pair_coeff * 2 1.0 1.0 5.0
neighbor 0.3 bin
neigh_modify every 2 delay 4 check yes
fix p all property/atom d_WEIGHT
compute p all property/atom d_WEIGHT
group fast type 1
2600 atoms in group fast
group slow type 2
1400 atoms in group slow
balance 1.0 shift x 10 1.0 weight group 2 fast 0.8 slow 2.5 weight store WEIGHT
Neighbor list info ...
1 neighbor list requests
update every 2 steps, delay 4 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 5.3
ghost atom cutoff = 5.3
binsize = 2.65 -> bins = 7 7 7
rebalancing time: 0.000465155 seconds
iteration count = 10
group weights: fast=0.8 slow=2.5
storing weight in atom property d_WEIGHT
initial/final max load/proc = 2960 3120
initial/final imbalance factor = 1.06093 1.11828
x cuts: 0 0.449707 1
y cuts: 0 1
z cuts: 0 1
variable lastweight atom c_p
fix 0 all balance 50 1.0 shift x 10 1.0 weight var lastweight weight time 0.5 weight store WEIGHT
variable maximb equal f_0[1]
variable iter equal f_0[2]
variable prev equal f_0[3]
variable final equal f_0
#fix 3 all print 50 "${iter} ${prev} ${final} ${maximb}"
fix 1 all nve
#dump id all atom 50 dump.melt
#dump id all custom 50 dump.lammpstrj id type x y z c_p
#dump 2 all image 25 image.*.jpg type type # axes yes 0.8 0.02 view 60 -30
#dump_modify 2 pad 3
#dump 3 all movie 25 movie.mpg type type # axes yes 0.8 0.02 view 60 -30
#dump_modify 3 pad 3
thermo 50
run 500
Memory usage per processor = 3.23652 Mbytes
Step Temp E_pair E_mol TotEng Press Volume
0 1 -6.9453205 0 -5.4456955 -5.6812358 4738.2137
50 0.49578514 -6.1929216 0 -5.4494298 -1.6668039 4738.2137
100 0.53275389 -6.2475932 0 -5.4486622 -1.9063885 4738.2137
150 0.53316457 -6.2483202 0 -5.4487733 -1.9476162 4738.2137
200 0.536665 -6.2530113 0 -5.448215 -1.933468 4738.2137
250 0.55006273 -6.27163 0 -5.4467422 -2.0438847 4738.2137
300 0.55111476 -6.2727642 0 -5.4462987 -2.0384873 4738.2137
350 0.55211503 -6.274054 0 -5.4460885 -2.0116976 4738.2137
400 0.54638463 -6.2661715 0 -5.4467995 -1.992248 4738.2137
450 0.55885307 -6.2852263 0 -5.4471563 -2.0669747 4738.2137
500 0.54587069 -6.2662849 0 -5.4476836 -2.0078802 4738.2137
Loop time of 3.69088 on 2 procs for 500 steps with 4000 atoms
Performance: 58522.605 tau/day, 135.469 timesteps/s
99.7% CPU use with 2 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 2.3504 | 2.5517 | 2.7529 | 12.6 | 69.13
Neigh | 0.64397 | 0.73493 | 0.82589 | 10.6 | 19.91
Comm | 0.084433 | 0.37799 | 0.67156 | 47.7 | 10.24
Output | 0.00024199 | 0.00026727 | 0.00029254 | 0.2 | 0.01
Modify | 0.013371 | 0.014984 | 0.016598 | 1.3 | 0.41
Other | | 0.01102 | | | 0.30
Nlocal: 2000 ave 2358 max 1642 min
Histogram: 1 0 0 0 0 0 0 0 0 1
Nghost: 10463 ave 11178 max 9748 min
Histogram: 1 0 0 0 0 0 0 0 0 1
Neighs: 298070 ave 345748 max 250391 min
Histogram: 1 0 0 0 0 0 0 0 0 1
Total # of neighbors = 596139
Ave neighs/atom = 149.035
Neighbor list builds = 51
Dangerous builds = 0
run 500
Memory usage per processor = 3.24081 Mbytes
Step Temp E_pair E_mol TotEng Press Volume
500 0.54587069 -6.2662849 0 -5.4476836 -2.0078802 4738.2137
550 0.54137926 -6.2592773 0 -5.4474115 -1.9770236 4738.2137
600 0.54022886 -6.2573307 0 -5.44719 -1.9619637 4738.2137
650 0.54709009 -6.2678862 0 -5.4474562 -1.9958342 4738.2137
700 0.54590044 -6.2656903 0 -5.4470444 -1.9957108 4738.2137
750 0.55098488 -6.2724831 0 -5.4462124 -2.0287523 4738.2137
800 0.5520987 -6.2739184 0 -5.4459774 -2.0084991 4738.2137
850 0.54963958 -6.2702473 0 -5.445994 -1.9740031 4738.2137
900 0.54390586 -6.2615476 0 -5.4458927 -1.9400871 4738.2137
950 0.54741732 -6.2665755 0 -5.4456548 -1.9466417 4738.2137
1000 0.54200867 -6.2591246 0 -5.4463148 -1.8881624 4738.2137
Loop time of 4.04546 on 2 procs for 500 steps with 4000 atoms
Performance: 53393.133 tau/day, 123.595 timesteps/s
99.4% CPU use with 2 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 2.0718 | 2.5709 | 3.0701 | 31.1 | 63.55
Neigh | 0.58891 | 0.73311 | 0.87732 | 16.8 | 18.12
Comm | 0.068946 | 0.71436 | 1.3598 | 76.4 | 17.66
Output | 0.00024986 | 0.00027978 | 0.00030971 | 0.2 | 0.01
Modify | 0.012742 | 0.015146 | 0.01755 | 2.0 | 0.37
Other | | 0.01163 | | | 0.29
Nlocal: 2000 ave 2384 max 1616 min
Histogram: 1 0 0 0 0 0 0 0 0 1
Nghost: 10412.5 ave 11172 max 9653 min
Histogram: 1 0 0 0 0 0 0 0 0 1
Neighs: 300836 ave 358757 max 242914 min
Histogram: 1 0 0 0 0 0 0 0 0 1
Total # of neighbors = 601671
Ave neighs/atom = 150.418
Neighbor list builds = 51
Dangerous builds = 0
balance 1.0 shift x 10 1.0 weight group 2 fast 0.8 slow 2.5 weight store WEIGHT
rebalancing time: 0.000392914 seconds
iteration count = 10
group weights: fast=0.8 slow=2.5
storing weight in atom property d_WEIGHT
initial/final max load/proc = 3464.4 2800.6
initial/final imbalance factor = 1.24172 1.0038
x cuts: 0 0.454927 1
y cuts: 0 1
z cuts: 0 1
fix 0 all balance 50 1.0 shift x 5 1.0 weight var lastweight weight neigh 0.5 weight store WEIGHT
run 500
Memory usage per processor = 3.24081 Mbytes
Step Temp E_pair E_mol TotEng Press Volume
1000 0.54200867 -6.2591246 0 -5.4463148 -1.8881624 4738.2137
1050 0.54633412 -6.2656384 0 -5.4463421 -1.9012895 4738.2137
1100 0.54325667 -6.2612166 0 -5.4465353 -1.8870463 4738.2137
1150 0.55057583 -6.2719187 0 -5.4462614 -1.9575881 4738.2137
1200 0.53728175 -6.251744 0 -5.4460228 -1.8124097 4738.2137
1250 0.54077561 -6.2567544 0 -5.4457938 -1.8418134 4738.2137
1300 0.54430333 -6.260995 0 -5.4447442 -1.856351 4738.2137
1350 0.55097839 -6.2715909 0 -5.4453299 -1.9014337 4738.2137
1400 0.53858139 -6.2526781 0 -5.445008 -1.7965773 4738.2137
1450 0.54218439 -6.2574683 0 -5.444395 -1.7901189 4738.2137
1500 0.54200616 -6.2571433 0 -5.4443373 -1.8000345 4738.2137
Loop time of 3.50707 on 2 procs for 500 steps with 4000 atoms
Performance: 61589.821 tau/day, 142.569 timesteps/s
99.8% CPU use with 2 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 2.4976 | 2.5822 | 2.6669 | 5.3 | 73.63
Neigh | 0.69706 | 0.73285 | 0.76865 | 4.2 | 20.90
Comm | 0.11878 | 0.16671 | 0.21464 | 11.7 | 4.75
Output | 0.00026321 | 0.00028443 | 0.00030565 | 0.1 | 0.01
Modify | 0.013662 | 0.014432 | 0.015203 | 0.6 | 0.41
Other | | 0.01054 | | | 0.30
Nlocal: 2000 ave 2113 max 1887 min
Histogram: 1 0 0 0 0 0 0 0 0 1
Nghost: 10348.5 ave 10873 max 9824 min
Histogram: 1 0 0 0 0 0 0 0 0 1
Neighs: 302958 ave 314826 max 291091 min
Histogram: 1 0 0 0 0 0 0 0 0 1
Total # of neighbors = 605917
Ave neighs/atom = 151.479
Neighbor list builds = 51
Dangerous builds = 0
run 500
Memory usage per processor = 3.24081 Mbytes
Step Temp E_pair E_mol TotEng Press Volume
1500 0.54200616 -6.2571433 0 -5.4443373 -1.8000345 4738.2137
1550 0.5371361 -6.250403 0 -5.4449003 -1.7647032 4738.2137
1600 0.54679572 -6.2646443 0 -5.4446558 -1.8115723 4738.2137
1650 0.53806586 -6.2519009 0 -5.4450039 -1.7409151 4738.2137
1700 0.53479442 -6.2469034 0 -5.4449123 -1.7162447 4738.2137
1750 0.53714075 -6.2506513 0 -5.4451416 -1.7340207 4738.2137
1800 0.52750518 -6.2358818 0 -5.4448219 -1.6875359 4738.2137
1850 0.54585315 -6.2629365 0 -5.4443615 -1.7758587 4738.2137
1900 0.53011039 -6.238762 0 -5.4437952 -1.6381988 4738.2137
1950 0.54287744 -6.2583143 0 -5.4442018 -1.7367676 4738.2137
2000 0.52770954 -6.2349628 0 -5.4435964 -1.5593554 4738.2137
Loop time of 3.46214 on 2 procs for 500 steps with 4000 atoms
Performance: 62389.230 tau/day, 144.420 timesteps/s
99.9% CPU use with 2 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 2.5495 | 2.5809 | 2.6123 | 2.0 | 74.55
Neigh | 0.68762 | 0.72466 | 0.7617 | 4.4 | 20.93
Comm | 0.12518 | 0.13173 | 0.13829 | 1.8 | 3.80
Output | 0.00024581 | 0.00026357 | 0.00028133 | 0.1 | 0.01
Modify | 0.013486 | 0.014313 | 0.015139 | 0.7 | 0.41
Other | | 0.01028 | | | 0.30
Nlocal: 2000 ave 2135 max 1865 min
Histogram: 1 0 0 0 0 0 0 0 0 1
Nghost: 10311.5 ave 10838 max 9785 min
Histogram: 1 0 0 0 0 0 0 0 0 1
Neighs: 303996 ave 309135 max 298857 min
Histogram: 1 0 0 0 0 0 0 0 0 1
Total # of neighbors = 607992
Ave neighs/atom = 151.998
Neighbor list builds = 51
Dangerous builds = 0
Total wall time: 0:00:14

1022
examples/cmap/charmm22.cmap Normal file

File diff suppressed because it is too large Load Diff

380
examples/cmap/gagg.data Normal file
View File

@ -0,0 +1,380 @@
Created by charmm2lammps v1.8.2.6 beta on Sun Mar 20 00:26:35 EDT 2016
34 atoms
33 bonds
57 angles
75 dihedrals
7 impropers
2 crossterms
13 atom types
15 bond types
30 angle types
42 dihedral types
5 improper types
-34.414709 45.585291 xlo xhi
-36.134827 43.865173 ylo yhi
-39.349142 40.650858 zlo zhi
Masses
1 1.008 # H
2 1.008 # HC
3 1.008 # HA
4 1.008 # HB
5 12.011 # C
6 12.011 # CT1
7 12.011 # CT2
8 12.011 # CT3
9 12.011 # CC
10 14.007 # NH1
11 14.007 # NH3
12 15.999 # O
13 15.999 # OC
Pair Coeffs
1 0.046 0.400013524445 0.046 0.400013524445 # H
2 0.046 0.400013524445 0.046 0.400013524445 # HC
3 0.022 2.35197261589 0.022 2.35197261589 # HA
4 0.022 2.35197261589 0.022 2.35197261589 # HB
5 0.11 3.56359487256 0.11 3.56359487256 # C
6 0.02 4.05358916754 0.01 3.38541512893 # CT1
7 0.055 3.87540942391 0.01 3.38541512893 # CT2
8 0.08 3.67050271874 0.01 3.38541512893 # CT3
9 0.07 3.56359487256 0.07 3.56359487256 # CC
10 0.2 3.29632525712 0.2 2.76178602624 # NH1
11 0.2 3.29632525712 0.2 3.29632525712 # NH3
12 0.12 3.02905564168 0.12 2.49451641079 # O
13 0.12 3.02905564168 0.12 3.02905564168 # OC
Atoms
1 1 11 -0.3 0.0088076654 -0.0395361015 -0.0125765907 # NH3
2 1 2 0.33 -0.3781208354 -1.0038773849 -0.01724272 # HC
3 1 2 0.33 -0.3448285543 0.4901827566 -0.8403800387 # HC
4 1 2 0.33 -0.3306420078 0.4732826156 0.8294424358 # HC
5 1 7 0.13 1.526230489 -0.0164860529 -0.0402820599 # CT2
6 1 4 0.09 1.8596639218 -0.5263587482 -0.9333647137 # HB
7 1 4 0.09 1.8904342902 -0.4510777655 0.8809945249 # HB
8 1 5 0.51 2.0135471936 1.4020233344 -0.1137107587 # C
9 1 12 -0.51 1.1818164992 2.2781068718 -0.313197467 # O
10 2 10 -0.47 3.3194424268 1.666672014 0.0713249543 # NH1
11 2 1 0.31 4.0409429153 0.9783582555 0.1693897169 # H
12 2 6 0.07 3.8529467728 3.0161771739 0.0690818527 # CT1
13 2 4 0.09 3.5315723829 3.5134434764 -0.8378950509 # HB
14 2 8 -0.27 3.3981217437 3.8178727883 1.3071600161 # CT3
15 2 3 0.09 2.2921877645 3.9163330652 1.3111957959 # HA
16 2 3 0.09 3.7142964083 3.3104118688 2.2424399743 # HA
17 2 3 0.09 3.8238672849 4.8446179852 1.2978564897 # HA
18 2 5 0.51 5.3731873136 2.946062408 0.0042414688 # C
19 2 12 -0.51 5.9268816775 1.8488403755 0.0011766847 # O
20 3 10 -0.47 6.0445386951 4.1111769168 -0.0636349698 # NH1
21 3 1 0.31 5.5768514013 4.9972489389 -0.0653583036 # H
22 3 7 -0.02 7.4911642129 4.2772062416 -0.0346088891 # CT2
23 3 4 0.09 7.9218377956 3.8786283786 -0.9407244447 # HB
24 3 4 0.09 7.8877470687 3.8607990619 0.8803359097 # HB
25 3 5 0.51 7.7351287723 5.7597169026 -0.0088736611 # C
26 3 12 -0.51 6.7657462979 6.5189223559 0.005150418 # O
27 4 10 -0.47 9.0014031015 6.1940849758 -0.0045995102 # NH1
28 4 1 0.31 9.8272711181 5.6225413025 -0.008448093 # H
29 4 7 -0.02 9.4067557288 7.5845263022 0.0016383819 # CT2
30 4 4 0.09 9.0736276253 8.0578903151 0.9119901724 # HB
31 4 4 0.09 9.0736165596 8.064051906 -0.9055419386 # HB
32 4 9 0.34 10.9382207556 7.612479283 0.0008762597 # CC
33 4 13 -0.67 11.5487033003 6.5062943609 -0.0007524693 # OC
34 4 13 -0.67 11.5055524841 8.734223435 0.0013684148 # OC
Bond Coeffs
1 250 1.49 # C CT1
2 250 1.49 # C CT2
3 370 1.345 # C NH1
4 620 1.23 # C O
5 200 1.522 # CC CT2
6 525 1.26 # CC OC
7 222.5 1.538 # CT1 CT3
8 330 1.08 # CT1 HB
9 320 1.43 # CT1 NH1
10 330 1.08 # CT2 HB
11 320 1.43 # CT2 NH1
12 200 1.48 # CT2 NH3
13 322 1.111 # CT3 HA
14 440 0.997 # H NH1
15 403 1.04 # HC NH3
Bonds
1 15 2 1 # HC NH3
2 15 3 1 # HC NH3
3 15 4 1 # HC NH3
4 12 1 5 # CT2 NH3
5 2 8 5 # C CT2
6 3 8 10 # C NH1
7 10 5 6 # CT2 HB
8 10 5 7 # CT2 HB
9 4 9 8 # C O
10 7 14 12 # CT1 CT3
11 14 10 11 # H NH1
12 9 10 12 # CT1 NH1
13 1 18 12 # C CT1
14 3 18 20 # C NH1
15 8 12 13 # CT1 HB
16 13 14 15 # CT3 HA
17 13 14 16 # CT3 HA
18 13 14 17 # CT3 HA
19 4 19 18 # C O
20 14 20 21 # H NH1
21 11 20 22 # CT2 NH1
22 2 25 22 # C CT2
23 3 25 27 # C NH1
24 10 22 23 # CT2 HB
25 10 22 24 # CT2 HB
26 4 26 25 # C O
27 14 27 28 # H NH1
28 11 27 29 # CT2 NH1
29 5 32 29 # CC CT2
30 10 29 30 # CT2 HB
31 10 29 31 # CT2 HB
32 6 32 34 # CC OC
33 6 32 33 # CC OC
Angle Coeffs
1 52 108 0 0 # C CT1 CT3
2 50 109.5 0 0 # C CT1 HB
3 50 107 0 0 # C CT1 NH1
4 50 109.5 0 0 # C CT2 HB
5 50 107 0 0 # C CT2 NH1
6 43.7 110 0 0 # C CT2 NH3
7 50 120 0 0 # C NH1 CT1
8 50 120 0 0 # C NH1 CT2
9 34 123 0 0 # C NH1 H
10 50 109.5 0 0 # CC CT2 HB
11 50 107 0 0 # CC CT2 NH1
12 80 116.5 0 0 # CT1 C NH1
13 80 121 0 0 # CT1 C O
14 33.43 110.1 22.53 2.179 # CT1 CT3 HA
15 35 117 0 0 # CT1 NH1 H
16 80 116.5 0 0 # CT2 C NH1
17 80 121 0 0 # CT2 C O
18 40 118 50 2.388 # CT2 CC OC
19 35 117 0 0 # CT2 NH1 H
20 30 109.5 20 2.074 # CT2 NH3 HC
21 35 111 0 0 # CT3 CT1 HB
22 70 113.5 0 0 # CT3 CT1 NH1
23 35.5 108.4 5.4 1.802 # HA CT3 HA
24 48 108 0 0 # HB CT1 NH1
25 36 115 0 0 # HB CT2 HB
26 48 108 0 0 # HB CT2 NH1
27 51.5 107.5 0 0 # HB CT2 NH3
28 44 109.5 0 0 # HC NH3 HC
29 80 122.5 0 0 # NH1 C O
30 100 124 70 2.225 # OC CC OC
Angles
1 28 2 1 3 # HC NH3 HC
2 28 2 1 4 # HC NH3 HC
3 20 2 1 5 # CT2 NH3 HC
4 28 3 1 4 # HC NH3 HC
5 20 3 1 5 # CT2 NH3 HC
6 20 4 1 5 # CT2 NH3 HC
7 27 1 5 6 # HB CT2 NH3
8 27 1 5 7 # HB CT2 NH3
9 6 1 5 8 # C CT2 NH3
10 25 6 5 7 # HB CT2 HB
11 4 6 5 8 # C CT2 HB
12 4 7 5 8 # C CT2 HB
13 17 5 8 9 # CT2 C O
14 16 5 8 10 # CT2 C NH1
15 29 9 8 10 # NH1 C O
16 9 8 10 11 # C NH1 H
17 7 8 10 12 # C NH1 CT1
18 15 11 10 12 # CT1 NH1 H
19 24 10 12 13 # HB CT1 NH1
20 22 10 12 14 # CT3 CT1 NH1
21 3 10 12 18 # C CT1 NH1
22 21 13 12 14 # CT3 CT1 HB
23 2 13 12 18 # C CT1 HB
24 1 14 12 18 # C CT1 CT3
25 14 12 14 15 # CT1 CT3 HA
26 14 12 14 16 # CT1 CT3 HA
27 14 12 14 17 # CT1 CT3 HA
28 23 15 14 16 # HA CT3 HA
29 23 15 14 17 # HA CT3 HA
30 23 16 14 17 # HA CT3 HA
31 13 12 18 19 # CT1 C O
32 12 12 18 20 # CT1 C NH1
33 29 19 18 20 # NH1 C O
34 9 18 20 21 # C NH1 H
35 8 18 20 22 # C NH1 CT2
36 19 21 20 22 # CT2 NH1 H
37 26 20 22 23 # HB CT2 NH1
38 26 20 22 24 # HB CT2 NH1
39 5 20 22 25 # C CT2 NH1
40 25 23 22 24 # HB CT2 HB
41 4 23 22 25 # C CT2 HB
42 4 24 22 25 # C CT2 HB
43 17 22 25 26 # CT2 C O
44 16 22 25 27 # CT2 C NH1
45 29 26 25 27 # NH1 C O
46 9 25 27 28 # C NH1 H
47 8 25 27 29 # C NH1 CT2
48 19 28 27 29 # CT2 NH1 H
49 26 27 29 30 # HB CT2 NH1
50 26 27 29 31 # HB CT2 NH1
51 11 27 29 32 # CC CT2 NH1
52 25 30 29 31 # HB CT2 HB
53 10 30 29 32 # CC CT2 HB
54 10 31 29 32 # CC CT2 HB
55 18 29 32 33 # CT2 CC OC
56 18 29 32 34 # CT2 CC OC
57 30 33 32 34 # OC CC OC
Dihedral Coeffs
1 0.2 3 0 1 # C CT1 CT3 HA
2 0.2 1 180 1 # C CT1 NH1 C
3 0 1 0 1 # C CT1 NH1 H
4 0.2 1 180 1 # C CT2 NH1 C
5 0 1 0 1 # C CT2 NH1 H
6 0.1 3 0 1 # C CT2 NH3 HC
7 1.8 1 0 1 # C NH1 CT1 CT3
8 0 1 0 1 # C NH1 CT1 HB
9 0.2 1 180 1 # C NH1 CT2 CC
10 0 1 0 1 # C NH1 CT2 HB
11 0 1 0 1 # CC CT2 NH1 H
12 1.6 1 0 1 # CT1 C NH1 CT2
13 2.5 2 180 0 # CT1 C NH1 CT2
14 2.5 2 180 1 # CT1 C NH1 H
15 1.6 1 0 1 # CT1 NH1 C CT2
16 2.5 2 180 0 # CT1 NH1 C CT2
17 2.5 2 180 1 # CT1 NH1 C O
18 1.6 1 0 1 # CT2 C NH1 CT2
19 2.5 2 180 0 # CT2 C NH1 CT2
20 2.5 2 180 1 # CT2 C NH1 H
21 2.5 2 180 1 # CT2 NH1 C O
22 0 1 0 1 # CT3 CT1 C NH1
23 1.4 1 0 1 # CT3 CT1 C O
24 0 1 0 1 # CT3 CT1 NH1 H
25 2.5 2 180 1 # H NH1 C O
26 0 1 0 1 # H NH1 CT1 HB
27 0 1 0 1 # H NH1 CT2 HB
28 0.2 3 0 1 # HA CT3 CT1 HB
29 0.2 3 0 1 # HA CT3 CT1 NH1
30 0 1 0 1 # HB CT1 C NH1
31 0 1 0 1 # HB CT1 C O
32 0 1 0 1 # HB CT2 C NH1
33 0 1 0 1 # HB CT2 C O
34 0.05 6 180 1 # HB CT2 CC OC
35 0.1 3 0 1 # HB CT2 NH3 HC
36 0.6 1 0 1 # NH1 C CT1 NH1
37 0.6 1 0 1 # NH1 C CT2 NH1
38 0.4 1 0 1 # NH1 C CT2 NH3
39 0 1 0 1 # NH1 CT1 C O
40 0 1 0 1 # NH1 CT2 C O
41 0.05 6 180 1 # NH1 CT2 CC OC
42 0 1 0 1 # NH3 CT2 C O
Dihedrals
1 42 1 5 8 9 # NH3 CT2 C O
2 38 1 5 8 10 # NH1 C CT2 NH3
3 35 2 1 5 6 # HB CT2 NH3 HC
4 35 2 1 5 7 # HB CT2 NH3 HC
5 6 2 1 5 8 # C CT2 NH3 HC
6 35 3 1 5 6 # HB CT2 NH3 HC
7 35 3 1 5 7 # HB CT2 NH3 HC
8 6 3 1 5 8 # C CT2 NH3 HC
9 35 4 1 5 6 # HB CT2 NH3 HC
10 35 4 1 5 7 # HB CT2 NH3 HC
11 6 4 1 5 8 # C CT2 NH3 HC
12 20 5 8 10 11 # CT2 C NH1 H
13 15 5 8 10 12 # CT1 NH1 C CT2
14 16 5 8 10 12 # CT1 NH1 C CT2
15 33 6 5 8 9 # HB CT2 C O
16 32 6 5 8 10 # HB CT2 C NH1
17 33 7 5 8 9 # HB CT2 C O
18 32 7 5 8 10 # HB CT2 C NH1
19 8 8 10 12 13 # C NH1 CT1 HB
20 7 8 10 12 14 # C NH1 CT1 CT3
21 2 8 10 12 18 # C CT1 NH1 C
22 25 9 8 10 11 # H NH1 C O
23 17 9 8 10 12 # CT1 NH1 C O
24 29 10 12 14 15 # HA CT3 CT1 NH1
25 29 10 12 14 16 # HA CT3 CT1 NH1
26 29 10 12 14 17 # HA CT3 CT1 NH1
27 39 10 12 18 19 # NH1 CT1 C O
28 36 10 12 18 20 # NH1 C CT1 NH1
29 26 11 10 12 13 # H NH1 CT1 HB
30 24 11 10 12 14 # CT3 CT1 NH1 H
31 3 11 10 12 18 # C CT1 NH1 H
32 14 12 18 20 21 # CT1 C NH1 H
33 12 12 18 20 22 # CT1 C NH1 CT2
34 13 12 18 20 22 # CT1 C NH1 CT2
35 28 13 12 14 15 # HA CT3 CT1 HB
36 28 13 12 14 16 # HA CT3 CT1 HB
37 28 13 12 14 17 # HA CT3 CT1 HB
38 31 13 12 18 19 # HB CT1 C O
39 30 13 12 18 20 # HB CT1 C NH1
40 23 14 12 18 19 # CT3 CT1 C O
41 22 14 12 18 20 # CT3 CT1 C NH1
42 1 15 14 12 18 # C CT1 CT3 HA
43 1 16 14 12 18 # C CT1 CT3 HA
44 1 17 14 12 18 # C CT1 CT3 HA
45 10 18 20 22 23 # C NH1 CT2 HB
46 10 18 20 22 24 # C NH1 CT2 HB
47 4 18 20 22 25 # C CT2 NH1 C
48 25 19 18 20 21 # H NH1 C O
49 21 19 18 20 22 # CT2 NH1 C O
50 40 20 22 25 26 # NH1 CT2 C O
51 37 20 22 25 27 # NH1 C CT2 NH1
52 27 21 20 22 23 # H NH1 CT2 HB
53 27 21 20 22 24 # H NH1 CT2 HB
54 5 21 20 22 25 # C CT2 NH1 H
55 20 22 25 27 28 # CT2 C NH1 H
56 18 22 25 27 29 # CT2 C NH1 CT2
57 19 22 25 27 29 # CT2 C NH1 CT2
58 33 23 22 25 26 # HB CT2 C O
59 32 23 22 25 27 # HB CT2 C NH1
60 33 24 22 25 26 # HB CT2 C O
61 32 24 22 25 27 # HB CT2 C NH1
62 10 25 27 29 30 # C NH1 CT2 HB
63 10 25 27 29 31 # C NH1 CT2 HB
64 9 25 27 29 32 # C NH1 CT2 CC
65 25 26 25 27 28 # H NH1 C O
66 21 26 25 27 29 # CT2 NH1 C O
67 41 27 29 32 33 # NH1 CT2 CC OC
68 41 27 29 32 34 # NH1 CT2 CC OC
69 27 28 27 29 30 # H NH1 CT2 HB
70 27 28 27 29 31 # H NH1 CT2 HB
71 11 28 27 29 32 # CC CT2 NH1 H
72 34 30 29 32 33 # HB CT2 CC OC
73 34 30 29 32 34 # HB CT2 CC OC
74 34 31 29 32 33 # HB CT2 CC OC
75 34 31 29 32 34 # HB CT2 CC OC
Improper Coeffs
1 120 0 # C CT1 NH1 O
2 120 0 # C CT2 NH1 O
3 96 0 # CC CT2 OC OC
4 20 0 # H CT1 C NH1
5 20 0 # H CT2 C NH1
Impropers
1 2 8 5 10 9 # C CT2 NH1 O
2 4 10 8 12 11 # H CT1 C NH1
3 1 18 12 20 19 # C CT1 NH1 O
4 5 20 18 22 21 # H CT2 C NH1
5 2 25 22 27 26 # C CT2 NH1 O
6 5 27 25 29 28 # H CT2 C NH1
7 3 32 29 34 33 # CC CT2 OC OC
CMAP
1 1 8 10 12 18 20
2 5 18 20 22 25 27

36
examples/cmap/in.cmap Normal file
View File

@ -0,0 +1,36 @@
# Created by charmm2lammps v1.8.2.6 beta on Thu Mar 3 20:56:57 EST 2016
units real
neigh_modify delay 2 every 1
#newton off
boundary p p p
atom_style full
bond_style harmonic
angle_style charmm
dihedral_style charmm
improper_style harmonic
pair_style lj/charmm/coul/charmm 8 12
#pair_style lj/charmmfsw/coul/charmmfsh 8 12
pair_modify mix arithmetic
fix cmap all cmap charmm22.cmap
fix_modify cmap energy yes
read_data gagg.data fix cmap crossterm CMAP
special_bonds charmm
fix 1 all nve
#fix 1 all nvt temp 300 300 100.0
#fix 2 all shake 1e-9 500 0 m 1.0
velocity all create 0.0 12345678 dist uniform
thermo 1000
thermo_style custom step ecoul evdwl ebond eangle edihed f_cmap eimp
timestep 2.0
run 100000

View File

@ -0,0 +1,200 @@
LAMMPS (21 Sep 2016)
# Created by charmm2lammps v1.8.2.6 beta on Thu Mar 3 20:56:57 EST 2016
units real
neigh_modify delay 2 every 1
#newton off
boundary p p p
atom_style full
bond_style harmonic
angle_style charmm
dihedral_style charmm
improper_style harmonic
pair_style lj/charmm/coul/charmm 8 12
#pair_style lj/charmmfsw/coul/charmmfsh 8 12
pair_modify mix arithmetic
fix cmap all cmap charmm22.cmap
fix_modify cmap energy yes
read_data gagg.data fix cmap crossterm CMAP
orthogonal box = (-34.4147 -36.1348 -39.3491) to (45.5853 43.8652 40.6509)
1 by 1 by 1 MPI processor grid
reading atoms ...
34 atoms
scanning bonds ...
4 = max bonds/atom
scanning angles ...
6 = max angles/atom
scanning dihedrals ...
12 = max dihedrals/atom
scanning impropers ...
1 = max impropers/atom
reading bonds ...
33 bonds
reading angles ...
57 angles
reading dihedrals ...
75 dihedrals
reading impropers ...
7 impropers
4 = max # of 1-2 neighbors
7 = max # of 1-3 neighbors
13 = max # of 1-4 neighbors
16 = max # of special neighbors
special_bonds charmm
fix 1 all nve
#fix 1 all nvt temp 300 300 100.0
#fix 2 all shake 1e-9 500 0 m 1.0
velocity all create 0.0 12345678 dist uniform
thermo 1000
thermo_style custom step ecoul evdwl ebond eangle edihed f_cmap eimp
timestep 2.0
run 100000
Neighbor list info ...
1 neighbor list requests
update every 1 steps, delay 2 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 14
ghost atom cutoff = 14
binsize = 7 -> bins = 12 12 12
Memory usage per processor = 14.6355 Mbytes
Step E_coul E_vdwl E_bond E_angle E_dihed f_cmap E_impro
0 26.542777 -0.93822087 1.2470497 4.8441789 4.5432816 -1.473352 0.10453023
1000 28.673005 -0.47724367 0.80029132 3.151679 4.4684446 -2.3928648 0.18604953
2000 27.67955 -1.170342 0.72018905 4.0400131 4.4713764 -2.5490207 0.21834436
3000 29.256656 -0.35856055 0.73303546 3.7411606 4.4710568 -2.8939692 0.37728884
4000 30.097549 -1.1353905 0.79007053 3.0688444 4.4091469 -2.3383587 0.20743631
5000 28.357525 -1.0723742 0.9180297 3.6579424 4.8792664 -2.3185572 0.088366962
6000 29.214175 -0.95299225 0.81926009 3.6805429 4.6742897 -2.9343577 0.26697813
7000 27.018614 -0.52423475 0.72502764 3.8840137 4.7780956 -2.3916009 0.24952584
8000 29.682167 -1.0939711 0.76111486 3.1090116 4.9359719 -2.5662984 0.1411154
9000 27.909695 -0.80905986 0.78952533 4.203187 4.1301204 -2.000402 0.088859259
10000 27.480298 -0.86273377 1.1293962 4.3857421 4.899282 -3.3895621 0.12126215
11000 28.303203 -1.0221152 0.62762348 4.055414 4.5863024 -2.5842816 0.17996907
12000 28.311127 -0.94227367 0.91859012 3.6673926 4.7018632 -3.902715 0.30065704
13000 30.818607 -1.5220116 0.95710386 3.3364371 4.543427 -3.0423067 0.16712905
14000 27.643736 -1.0144117 0.95806952 4.1046912 4.800236 -4.0534389 0.29293405
15000 27.660491 -1.0390086 0.78061056 4.1139174 4.7197202 -2.3670379 0.22126985
16000 27.845157 -0.63654502 0.78007478 3.9365994 4.949418 -3.1470214 0.22335355
17000 28.44772 -1.0255112 0.70402007 4.0573343 4.2887527 -2.2099596 0.048050962
18000 27.128323 -0.96218536 1.1327159 4.3222585 4.326607 -2.2881766 0.13491257
19000 27.337633 -0.78999574 0.80152298 4.2239689 4.7073478 -2.2924164 0.12710292
20000 27.780537 -0.46458072 0.79707671 3.7232618 4.943417 -2.5290628 0.26191223
21000 26.435484 -0.7803224 1.0753217 4.4196051 5.9945933 -2.3340925 0.16448475
22000 28.619429 -1.1623149 0.9401731 3.8508844 5.1636737 -2.5551846 0.25318434
23000 28.399338 -0.79700962 0.85575503 4.488526 4.5975422 -2.5663549 0.13601693
24000 29.645532 -1.158744 0.83180313 3.8193399 4.60319 -2.6847864 0.24260466
25000 28.695339 -1.4802204 0.76583757 3.6786272 4.8959496 -2.3627896 0.080867326
26000 28.149711 -1.029689 0.79383806 3.7885067 4.3345813 -2.1041553 0.14598209
27000 29.580373 -1.0525813 1.0262723 3.7767318 4.6119758 -2.2802386 0.088556038
28000 28.44308 -0.93411225 0.8794395 3.948079 4.780246 -2.1814583 0.14340149
29000 29.335621 -1.6087988 0.71803091 3.7819186 4.6688385 -2.4282242 0.16061111
30000 28.706138 -1.3938241 0.67713818 4.031275 4.4756505 -2.1807056 0.11461356
31000 27.451944 0.010297225 0.65064883 3.6402029 4.3607811 -2.5511516 0.12637237
32000 27.070878 -1.103158 1.1932199 5.1329709 4.5201653 -2.2224479 0.11215427
33000 29.889976 -1.6228316 0.69407996 3.5361991 4.3502767 -1.9847454 0.09089949
34000 28.223151 -0.927208 1.043253 3.4650939 5.1028142 -2.8127219 0.10648823
35000 27.985986 -0.48153861 0.63878449 3.3724641 4.9551679 -2.6565919 0.12123115
36000 28.580688 -1.4500694 1.055762 4.0490064 4.423782 -2.3103578 0.072747638
37000 29.192947 -0.49678176 1.1146731 2.9233947 4.5738603 -2.4376144 0.22874047
38000 26.954594 -0.53812359 0.79230685 4.3356989 5.0284656 -2.3791255 0.0486081
39000 27.567555 -0.57870028 0.73614374 4.191991 4.9209556 -2.6122044 0.08635571
40000 28.494172 -0.79057135 0.79072816 4.1893209 4.4826919 -2.4179635 0.14612898
41000 28.44904 -1.1002948 0.93405654 4.3586358 4.4338415 -2.2950944 0.15705834
42000 28.95725 -1.0297067 1.1632348 4.274711 4.9979487 -2.7611464 0.15944725
43000 28.640394 -0.70938882 0.68100893 3.1844315 5.1817454 -2.2837487 0.14189233
44000 27.997558 -1.0115099 0.59125208 4.0883422 4.6033907 -2.2775964 0.094273258
45000 27.67163 -0.67992747 1.1225552 3.9020703 4.8171056 -2.1952679 0.041418433
46000 28.822607 -0.6687953 0.74160059 3.3193715 4.5546965 -2.3024572 0.047569065
47000 29.20147 -1.4456785 0.79223353 3.8288813 4.5811826 -2.5154936 0.061230141
48000 27.843026 -1.0222301 0.87322137 4.3432743 4.4266307 -2.1414153 0.06802794
49000 28.199573 -1.1887794 1.2781088 4.0779644 4.5881353 -2.319775 0.094803547
50000 28.759212 -1.354416 0.68534569 3.8394841 4.2308134 -2.1281844 0.1395951
51000 27.876455 -1.5705462 0.76557156 4.5335223 4.523708 -2.203702 0.14679803
52000 27.930587 -1.2277489 0.96071516 3.960953 5.1152188 -2.4101451 0.060949521
53000 27.031236 -1.4746477 1.2341141 5.0540975 4.3656865 -2.1288513 0.092725656
54000 28.809394 -1.1162427 0.94350207 3.4013958 4.4755547 -2.3342811 0.18855912
55000 28.948415 -1.1560418 0.6260139 3.5386373 4.5244978 -2.340212 0.17474657
56000 28.048368 -0.95784532 0.76432571 4.1404665 4.4570033 -2.0899628 0.045693628
57000 28.707642 -1.366574 0.9907873 3.729903 4.3131997 -2.2777698 0.065420213
58000 26.361663 -1.0424403 1.0452563 5.0977108 4.7035231 -2.3101244 0.13671642
59000 29.218218 -1.2210564 0.62435875 3.4236327 4.5481681 -2.1575943 0.037984042
60000 27.655546 -1.1053224 0.86323501 3.7641375 4.8946898 -2.2422249 0.077725979
61000 27.252108 -1.3744824 1.1150806 5.0444848 4.4878135 -2.2743829 0.058331257
62000 27.163469 -1.1715781 0.72099321 4.5295501 4.9509918 -2.2993961 0.050401105
63000 29.581575 -1.2238537 0.86303245 3.1194038 5.2218965 -2.5002427 0.055032632
64000 27.897822 -1.1011516 0.74540883 4.2869228 4.3394269 -2.2552393 0.1403321
65000 27.083245 -1.0633392 0.92771724 5.0805224 4.2747962 -2.2388039 0.064196692
66000 29.072723 -1.5514209 0.89798805 4.2600224 4.4261812 -2.3524752 0.15067414
67000 27.308181 -0.72224802 0.97109517 4.5074578 4.4559352 -2.1381121 0.089297603
68000 27.505686 -0.43855431 0.80785812 4.1917251 5.0157721 -2.3382145 0.11105164
69000 29.041681 -0.64735378 0.89874684 3.3891579 4.3753361 -2.2320941 0.14716747
70000 29.735756 -1.7061457 0.9206878 3.5767878 4.3851664 -2.2516304 0.097196062
71000 28.224352 -0.92217702 0.86093586 3.9507157 4.5596589 -2.2173397 0.089116669
72000 29.282336 -1.056142 0.65185725 3.8735742 4.4839333 -2.4314756 0.071909704
73000 26.257283 -0.64273826 0.98300685 5.063943 5.045958 -2.5544375 0.2180275
74000 28.825119 -0.97736616 0.87201848 3.55875 4.3653309 -2.2303567 0.098963875
75000 29.239507 -0.96508809 0.74517323 3.4306236 4.7651921 -2.6077732 0.17883654
76000 27.349841 -0.50990238 1.1183613 4.4252451 4.4097775 -2.4125794 0.18483606
77000 28.130197 -1.4081219 0.94921357 4.2572132 4.5162849 -2.4013797 0.073744606
78000 28.235774 -0.9214321 0.6324981 3.8697686 4.8092154 -2.2272847 0.092108346
79000 26.732846 -0.55949486 1.0989617 5.0088609 4.4930687 -2.277945 0.03855146
80000 28.529208 -0.94244671 0.79407482 3.961106 4.3930011 -2.3127726 0.091124948
81000 29.603852 -1.6116062 1.060847 3.7824932 4.151001 -1.9139868 0.19875986
82000 28.232876 -1.1833011 1.0182713 3.4195758 5.1394333 -2.4632697 0.28501012
83000 29.565482 -1.3479552 0.99056973 3.7851802 4.4781011 -2.7872481 0.2031991
84000 28.780274 -1.3073882 1.0512637 4.004638 4.502282 -2.3789146 0.015656202
85000 27.262312 -1.1305346 1.203524 4.7938623 4.1747105 -2.0952844 0.054240361
86000 28.157348 -1.0662817 0.81163796 3.9912709 4.8320213 -2.255237 0.14698333
87000 28.445543 -1.3365026 0.78156195 4.4767689 4.4457575 -2.5008786 0.13879386
88000 27.656717 -1.1490599 0.87974869 4.4629952 4.7023033 -2.3258145 0.081904139
89000 28.838821 -1.020709 0.85587929 3.7110705 4.4938307 -2.4914483 0.11447952
90000 27.356497 -0.59107077 0.81879666 4.5209332 4.4703836 -2.3806717 0.071307775
91000 27.780445 -0.80564513 0.94752313 3.8468943 4.2924253 -2.1011134 0.1118672
92000 28.555276 -1.3514732 0.80826674 3.9590742 4.5775954 -2.4891232 0.054254978
93000 28.747267 -1.2133243 0.75507246 4.1319789 4.9048611 -2.4913887 0.13045693
94000 27.479343 -0.69973695 0.99696121 3.5966229 4.549025 -2.4155312 0.41745762
95000 27.726945 -1.1905026 1.1120842 4.7433275 4.5386861 -2.7947142 0.33671682
96000 28.021114 -1.0341645 0.6663033 4.2397505 4.6203984 -1.9904034 0.10972565
97000 28.382022 -1.3916008 1.180588 4.0729621 4.6741792 -2.554927 0.13462346
98000 27.895969 -0.7496449 1.3072185 4.2611888 4.3726077 -2.1320701 0.15376665
99000 28.517889 -1.2183957 1.279778 3.957647 4.2638434 -2.2888407 0.042705003
100000 28.109211 -1.2538948 0.83671785 4.3734766 4.544545 -2.3076497 0.042189096
Loop time of 2.96683 on 1 procs for 100000 steps with 34 atoms
Performance: 5824.390 ns/day, 0.004 hours/ns, 33705.963 timesteps/s
100.0% CPU use with 1 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 0.98759 | 0.98759 | 0.98759 | 0.0 | 33.29
Bond | 1.6463 | 1.6463 | 1.6463 | 0.0 | 55.49
Neigh | 0.007688 | 0.007688 | 0.007688 | 0.0 | 0.26
Comm | 0.012214 | 0.012214 | 0.012214 | 0.0 | 0.41
Output | 0.0010295 | 0.0010295 | 0.0010295 | 0.0 | 0.03
Modify | 0.25684 | 0.25684 | 0.25684 | 0.0 | 8.66
Other | | 0.05519 | | | 1.86
Nlocal: 34 ave 34 max 34 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Nghost: 0 ave 0 max 0 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Neighs: 395 ave 395 max 395 min
Histogram: 1 0 0 0 0 0 0 0 0 0
Total # of neighbors = 395
Ave neighs/atom = 11.6176
Ave special neighs/atom = 9.52941
Neighbor list builds = 237
Dangerous builds = 0
Total wall time: 0:00:02

View File

@ -0,0 +1,200 @@
LAMMPS (21 Sep 2016)
# Created by charmm2lammps v1.8.2.6 beta on Thu Mar 3 20:56:57 EST 2016
units real
neigh_modify delay 2 every 1
#newton off
boundary p p p
atom_style full
bond_style harmonic
angle_style charmm
dihedral_style charmm
improper_style harmonic
pair_style lj/charmm/coul/charmm 8 12
#pair_style lj/charmmfsw/coul/charmmfsh 8 12
pair_modify mix arithmetic
fix cmap all cmap charmm22.cmap
fix_modify cmap energy yes
read_data gagg.data fix cmap crossterm CMAP
orthogonal box = (-34.4147 -36.1348 -39.3491) to (45.5853 43.8652 40.6509)
1 by 2 by 2 MPI processor grid
reading atoms ...
34 atoms
scanning bonds ...
4 = max bonds/atom
scanning angles ...
6 = max angles/atom
scanning dihedrals ...
12 = max dihedrals/atom
scanning impropers ...
1 = max impropers/atom
reading bonds ...
33 bonds
reading angles ...
57 angles
reading dihedrals ...
75 dihedrals
reading impropers ...
7 impropers
4 = max # of 1-2 neighbors
7 = max # of 1-3 neighbors
13 = max # of 1-4 neighbors
16 = max # of special neighbors
special_bonds charmm
fix 1 all nve
#fix 1 all nvt temp 300 300 100.0
#fix 2 all shake 1e-9 500 0 m 1.0
velocity all create 0.0 12345678 dist uniform
thermo 1000
thermo_style custom step ecoul evdwl ebond eangle edihed f_cmap eimp
timestep 2.0
run 100000
Neighbor list info ...
1 neighbor list requests
update every 1 steps, delay 2 steps, check yes
max neighbors/atom: 2000, page size: 100000
master list distance cutoff = 14
ghost atom cutoff = 14
binsize = 7 -> bins = 12 12 12
Memory usage per processor = 15.9307 Mbytes
Step E_coul E_vdwl E_bond E_angle E_dihed f_cmap E_impro
0 26.542777 -0.93822087 1.2470497 4.8441789 4.5432816 -1.473352 0.10453023
1000 28.673005 -0.47724367 0.80029132 3.151679 4.4684446 -2.3928648 0.18604953
2000 27.67955 -1.170342 0.72018905 4.0400131 4.4713764 -2.5490207 0.21834436
3000 29.256656 -0.35856055 0.73303546 3.7411606 4.4710568 -2.8939692 0.37728884
4000 30.097549 -1.1353905 0.79007053 3.0688444 4.4091469 -2.3383587 0.20743631
5000 28.357525 -1.0723742 0.9180297 3.6579424 4.8792663 -2.3185572 0.088366962
6000 29.214175 -0.95299239 0.81926011 3.6805428 4.6742897 -2.9343578 0.26697816
7000 27.018614 -0.52423469 0.72502751 3.8840141 4.7780958 -2.3916014 0.24952572
8000 29.682494 -1.0940368 0.76113051 3.1089345 4.9357863 -2.5662256 0.14112613
9000 27.853918 -0.7913741 0.79503268 4.2177256 4.146792 -2.00475 0.090585666
10000 27.13754 -0.80551128 1.1325023 4.4718283 5.2460631 -3.4947725 0.11893125
11000 28.277434 -1.4897448 0.90075953 4.1895717 4.3594269 -1.9553119 0.090222212
12000 28.630973 -1.222206 0.67796385 3.3905661 4.9691334 -2.9052721 0.13897658
13000 28.593007 -0.95684026 0.75585196 3.7242568 4.7417932 -2.3893117 0.2074121
14000 26.147115 -0.6026921 0.93591488 5.1292829 4.9821952 -2.2571835 0.11872421
15000 26.29432 -0.82424162 1.048979 4.5569495 5.1189308 -2.9750422 0.16195676
16000 29.189992 -0.80998247 0.74093508 3.8299275 4.4536688 -2.5497538 0.19155639
17000 25.878012 -0.3519646 1.0988924 4.7359591 5.3923098 -2.7211029 0.13405223
18000 27.726135 -0.28229987 0.63072344 4.1777888 4.7237271 -2.2177157 0.15939372
19000 27.153504 -0.66477422 0.77910129 4.2036117 5.113851 -2.3494315 0.094793307
20000 28.044833 -1.2835827 0.88745367 3.9955526 4.5077788 -3.0116467 0.17197859
21000 27.205696 -0.74090037 1.0023251 4.3421733 4.912671 -2.3473271 0.26089356
22000 27.385785 -0.93740972 0.84554838 4.562743 4.883866 -2.2110955 0.11573301
23000 27.05534 -0.95605442 0.96719024 3.9277618 5.0359014 -2.6135949 0.21368061
24000 28.273378 -0.97543103 0.8983443 4.2067985 4.4782971 -2.4230505 0.30311692
25000 27.477789 -0.20383849 0.8380706 3.8037992 4.8312504 -2.5831791 0.093843746
26000 30.344199 -1.9773473 0.92882437 3.7821405 4.5176677 -2.3020968 0.2194307
27000 27.32767 -0.9803839 0.92988865 3.7611603 5.0328211 -2.4647656 0.18213622
28000 27.34208 -1.037938 0.74488346 4.1727342 4.7056812 -2.2718346 0.17741362
29000 27.682777 -0.51006495 0.57074224 4.7332237 4.7080462 -2.0491512 0.2130517
30000 24.925731 0.13670248 0.84976065 4.4143762 6.0677158 -3.5479173 0.28059419
31000 28.623419 -0.90725708 1.0710501 3.6930688 4.6639301 -2.2225373 0.20988139
32000 27.732286 -1.1948367 0.89230134 4.4398373 4.8923907 -3.5849327 0.49167488
33000 28.800772 -1.5319589 0.93455495 4.1634728 4.6107706 -2.3503486 0.22636535
34000 27.374398 -1.0957453 0.89450276 3.9829508 4.991786 -2.3548834 0.15869465
35000 28.38753 -0.89261166 0.90000776 3.536864 4.4293294 -2.4218118 0.10640557
36000 27.713974 0.088038031 0.85190574 3.8969601 4.6256355 -2.7935475 0.34671662
37000 29.13007 -1.378597 0.74412556 3.131538 4.6458653 -2.9373734 0.38035616
38000 28.556573 -1.4055344 1.139984 4.0035753 4.2938358 -2.489329 0.25338326
39000 26.447036 -1.1829705 0.87032438 5.0804461 4.5772023 -2.7346466 0.32165802
40000 27.991454 -0.64295679 0.61020872 4.165871 4.4623087 -2.2244194 0.13826991
41000 29.483296 -1.2400745 0.66926627 3.3473666 4.5766617 -2.3051145 0.12171554
42000 26.948627 -1.2162288 1.1440628 4.3993073 5.1176533 -2.4734485 0.15497709
43000 28.04459 -0.26543193 0.83647367 3.5160747 4.6964397 -2.2805068 0.12618821
44000 28.213608 -1.216128 0.9132792 4.0206483 4.9483599 -2.3387049 0.10132022
45000 28.283506 -1.0390766 0.86113772 4.504509 4.7209088 -2.3043085 0.14588362
46000 27.433853 -0.57912107 0.78448334 4.5998579 5.1181394 -2.6165094 0.18722528
47000 27.552939 -1.1128925 0.80087638 4.3448001 4.8062869 -2.4296883 0.2702479
48000 28.874034 -1.3242519 0.71770727 3.5648565 4.4671824 -2.2608958 0.16115978
49000 29.216186 -1.2210307 0.76937497 3.9260628 4.7550577 -2.7316081 0.085505664
50000 28.065856 -1.1545547 0.86953819 4.4137666 4.732157 -2.4450867 0.23320539
51000 26.308975 -0.99728352 0.90408444 4.2400186 5.6340425 -2.2090554 0.079882158
52000 28.517571 -1.5027398 0.83520278 3.8176552 4.3001251 -2.0731682 0.1665375
53000 28.77579 -1.3564268 0.97253881 3.6866407 4.8532347 -2.5330776 0.17668411
54000 29.135315 -1.0994106 0.67605671 3.6819254 4.3134408 -1.9796929 0.076951331
55000 26.168938 -0.76247492 0.88784685 4.6533473 6.0484793 -2.1334561 0.036876985
56000 27.471775 -0.68648837 1.0576168 4.0354311 4.4767052 -2.2368959 0.24950568
57000 29.787083 -1.4914384 1.0702944 3.5388133 4.5173097 -2.6694464 0.27937092
58000 28.705448 -1.3016617 0.63337853 3.9552713 4.4119825 -1.8774657 0.17540021
59000 29.130155 -0.91647363 0.84384883 3.1076903 4.5346348 -2.3457338 0.16674486
60000 26.874199 -0.81598034 1.3432151 5.1322624 4.9545484 -2.9566615 0.25950486
61000 27.401306 -0.82895856 1.1636949 4.020154 4.5745928 -2.601466 0.18061051
62000 28.930313 -1.5231967 0.85173243 4.3517328 4.4878662 -2.5859205 0.1755493
63000 26.56874 0.026147233 0.60836216 4.4231618 4.4390677 -2.1721849 0.08594237
64000 26.729023 -0.76953985 0.76734633 4.5104288 5.0886456 -2.2118551 0.11339216
65000 28.900471 -1.3901477 0.86194657 4.2774976 4.498325 -2.3672362 0.20668335
66000 26.884253 -0.21198879 0.98509625 4.0843117 4.4344172 -2.3289416 0.23631017
67000 27.210888 -0.84075559 1.0396559 4.7253607 4.4314589 -2.2985702 0.19326507
68000 28.042102 -1.1898715 1.053534 3.8748712 4.4358449 -2.3998723 0.2431659
69000 28.939141 -1.6968936 0.98155912 4.0460838 5.0075204 -2.5547087 0.28645131
70000 27.15577 -0.85202797 1.1469079 4.7645212 4.6133209 -2.3410451 0.086576572
71000 25.507417 -0.27780727 0.95157881 4.8759406 4.853401 -2.9598705 0.41011008
72000 29.804703 -1.4847015 0.96345767 3.6797304 4.3678377 -2.4594626 0.14480206
73000 28.602798 -1.4906143 0.72497266 4.2442974 4.5360598 -2.3621638 0.14385651
74000 28.4928 -0.91319873 1.0377472 3.8033127 4.3991601 -2.4051911 0.095567428
75000 26.38168 -0.70733237 1.1557817 5.697939 4.5935618 -2.4285007 0.058980519
76000 27.16626 -0.83631031 0.84844246 4.7460887 4.5801472 -2.1260014 0.12845946
77000 29.040661 -1.3089499 0.80285084 4.664804 4.5215895 -2.6861939 0.13215598
78000 27.477871 -1.0600977 0.88595045 4.6264017 5.4095605 -2.474411 0.10987174
79000 26.151797 -0.55779685 0.91382436 4.99964 4.9184022 -2.2547241 0.22854038
80000 28.14523 -0.54460026 0.8982411 3.5374555 4.3785673 -2.3196807 0.088567964
81000 29.029941 -1.6467789 0.79042284 3.7269899 4.7407998 -2.3795824 0.1408727
82000 27.920287 -0.72798032 1.0076975 3.4449461 4.5621371 -2.8239074 0.25103454
83000 29.131054 -1.114367 0.76887285 3.459639 4.5163922 -2.607825 0.19991648
84000 28.249768 -0.69944068 1.0510846 4.0436296 4.6430538 -2.4213355 0.077299966
85000 28.06888 -0.62132922 0.91829312 4.1294147 4.3099557 -2.354063 0.15866186
86000 28.664264 -1.1022906 0.87831695 4.5773522 4.6045802 -2.9206875 0.33950063
87000 27.960967 -1.2852756 0.77694253 3.9011301 4.9114139 -3.2374868 0.3068138
88000 27.190678 -1.2803268 1.1545301 4.5769709 5.2404761 -2.3825838 0.10356039
89000 26.792931 -0.44516641 1.0236244 4.2007253 4.7098685 -2.3608551 0.034447062
90000 27.173991 -0.87185611 1.065719 4.1953618 4.6856408 -2.6539232 0.16957757
91000 28.626528 -1.239257 0.89524651 4.7048012 4.6344201 -2.7367901 0.43534143
92000 27.661812 -1.109044 0.92817391 5.0294489 4.3890711 -2.4108669 0.12570139
93000 28.156793 -1.0820907 0.92812693 4.938385 4.4901426 -2.4023366 0.30135781
94000 28.842149 -1.3524969 1.1451109 4.3125908 4.6959035 -2.6747199 0.2254607
95000 27.862247 -1.2119045 1.0218976 4.2614082 4.4931316 -2.6902934 0.16345201
96000 27.084973 -0.93738328 1.3984324 4.5647189 4.4232205 -2.2834097 0.11217888
97000 27.587078 -0.89397255 0.78218462 3.8944421 4.3981479 -2.4205318 0.16570942
98000 27.981746 -1.2380545 0.84847869 4.311441 4.7340377 -2.4270441 0.023565612
99000 27.476625 -0.8569146 0.82550381 4.1656963 4.4064921 -2.4169708 0.160814
100000 26.121325 -0.63610855 1.0803389 4.9257118 4.7073263 -2.4010334 0.066303044
Loop time of 2.60487 on 4 procs for 100000 steps with 34 atoms
Performance: 6633.735 ns/day, 0.004 hours/ns, 38389.667 timesteps/s
99.1% CPU use with 4 MPI tasks x no OpenMP threads
MPI task timing breakdown:
Section | min time | avg time | max time |%varavg| %total
---------------------------------------------------------------
Pair | 0.066848 | 0.26055 | 0.6843 | 48.6 | 10.00
Bond | 0.067332 | 0.45486 | 0.93545 | 55.1 | 17.46
Neigh | 0.0078266 | 0.007863 | 0.0078835 | 0.0 | 0.30
Comm | 0.41829 | 1.3207 | 1.8951 | 50.8 | 50.70
Output | 0.0033038 | 0.0036355 | 0.0040481 | 0.4 | 0.14
Modify | 0.040861 | 0.15162 | 0.27091 | 27.3 | 5.82
Other | | 0.4057 | | | 15.57
Nlocal: 8.5 ave 15 max 2 min
Histogram: 1 1 0 0 0 0 0 0 1 1
Nghost: 25.5 ave 32 max 19 min
Histogram: 1 1 0 0 0 0 0 0 1 1
Neighs: 98.75 ave 257 max 18 min
Histogram: 1 1 1 0 0 0 0 0 0 1
Total # of neighbors = 395
Ave neighs/atom = 11.6176
Ave special neighs/atom = 9.52941
Neighbor list builds = 294
Dangerous builds = 0
Total wall time: 0:00:02

View File

@ -1,12 +1,18 @@
Run these examples as:
mpirun -np 4 lmp_linux -partition 4x1 -in in.neb.hop1
mpirun -np 4 lmp_linux -partition 4x1 -in in.neb.hop2
mpirun -np 3 lmp_linux -partition 3x1 -in in.neb.sivac
mpirun -np 4 lmp_g++ -partition 4x1 -in in.neb.hop1
mpirun -np 4 lmp_g++ -partition 4x1 -in in.neb.hop2
mpirun -np 3 lmp_g++ -partition 3x1 -in in.neb.sivac
Create dump files to do visualization from via Python tools:
(see lammps/tools/README and lammps/tools/python/README
for more info on these Python scripts)
mpirun -np 8 lmp_g++ -partition 4x2 -in in.neb.hop1
mpirun -np 8 lmp_g++ -partition 4x2 -in in.neb.hop2
mpirun -np 6 lmp_g++ -partition 3x2 -in in.neb.sivac
mpirun -np 9 lmp_g++ -partition 3x3 -in in.neb.sivac
If you uncomment the dump command lines in the input scripts, you can
create dump files to do visualization from via Python tools: (see
lammps/tools/README and lammps/tools/python/README for more info on
these Python scripts)
python ~/lammps/tools/python/neb_combine.py -o dump.hop1.combine
-b dump.nonneb.1

View File

@ -14,10 +14,13 @@ variable u uloop 20
lattice hex 0.9
region box block 0 20 0 10 -0.25 0.25
create_box 3 box
create_atoms 1 box
mass * 1.0
#create_box 3 box
#create_atoms 1 box
#mass * 1.0
#write_data initial.hop1
read_data initial.hop1
# LJ potentials

View File

@ -15,11 +15,14 @@ variable u uloop 20
lattice hex 0.9
region box block 0 20 0 11 -0.25 0.25
region box1 block 0 20 0 10 -0.25 0.25
create_box 3 box
create_atoms 1 region box1
create_atoms 1 single 11.5 10.5 0
mass * 1.0
#create_box 3 box
#create_atoms 1 region box1
#create_atoms 1 single 11.5 10.5 0
#mass * 1.0
#write_data initial.hop2
read_data initial.hop2
# LJ potentials

View File

@ -30,17 +30,20 @@ lattice custom $a &
region myreg block 0 4 &
0 4 &
0 4
create_box 1 myreg
create_atoms 1 region myreg
mass 1 28.06
#create_box 1 myreg
#create_atoms 1 region myreg
#mass 1 28.06
#write_data initial.sivac
group Si type 1
read_data initial.sivac
# make a vacancy
group Si type 1
group del id 300
delete_atoms group del
delete_atoms group del compress no
group vacneigh id 174 175 301 304 306 331 337
# choose potential
@ -54,7 +57,7 @@ variable u uloop 20
# only output atoms near vacancy
dump events vacneigh custom 1000 dump.neb.sivac.$u id type x y z
#dump events vacneigh custom 1000 dump.neb.sivac.$u id type x y z
# initial minimization to relax vacancy
@ -72,5 +75,4 @@ thermo 100
timestep 0.01
min_style quickmin
neb 0.0 0.01 50 100 10 final final.sivac
neb 0.0 0.01 100 100 10 final final.sivac

860
examples/neb/initial.hop1 Normal file
View File

@ -0,0 +1,860 @@
LAMMPS data file via write_data, version 27 Sep 2016, timestep = 0
420 atoms
3 atom types
0.0000000000000000e+00 2.2653923264628304e+01 xlo xhi
-1.9618873042551413e-03 1.9620834929855668e+01 ylo yhi
-2.8317404080785380e-01 2.8317404080785380e-01 zlo zhi
Masses
1 1
2 1
3 1
Atoms # atomic
1 1 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
2 1 5.6634808161570760e-01 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
3 1 1.1326961632314152e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
4 1 1.6990442448471228e+00 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
5 1 2.2653923264628304e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
6 1 2.8317404080785380e+00 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
7 1 3.3980884896942456e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
8 1 3.9644365713099532e+00 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
9 1 4.5307846529256608e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
10 1 5.0971327345413684e+00 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
11 1 5.6634808161570760e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
12 1 6.2298288977727836e+00 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
13 1 6.7961769793884912e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
14 1 7.3625250610041988e+00 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
15 1 7.9288731426199064e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
16 1 8.4952212242356140e+00 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
17 1 9.0615693058513216e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
18 1 9.6279173874670292e+00 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
19 1 1.0194265469082737e+01 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
20 1 1.0760613550698444e+01 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
21 1 1.1326961632314152e+01 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
22 1 1.1893309713929860e+01 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
23 1 1.2459657795545567e+01 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
24 1 1.3026005877161275e+01 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
25 1 1.3592353958776982e+01 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
26 1 1.4158702040392690e+01 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
27 1 1.4725050122008398e+01 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
28 1 1.5291398203624105e+01 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
29 1 1.5857746285239813e+01 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
30 1 1.6424094366855520e+01 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
31 1 1.6990442448471228e+01 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
32 1 1.7556790530086936e+01 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
33 1 1.8123138611702643e+01 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
34 1 1.8689486693318351e+01 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
35 1 1.9255834774934058e+01 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
36 1 1.9822182856549766e+01 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
37 1 2.0388530938165474e+01 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
38 1 2.0954879019781181e+01 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
39 1 2.1521227101396889e+01 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
40 1 2.2087575183012596e+01 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
41 1 0.0000000000000000e+00 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
42 1 5.6634808161570760e-01 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
43 1 1.1326961632314152e+00 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
44 1 1.6990442448471228e+00 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
45 1 2.2653923264628304e+00 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
46 1 2.8317404080785380e+00 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
47 1 3.3980884896942456e+00 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
48 1 3.9644365713099532e+00 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
49 1 4.5307846529256608e+00 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
50 1 5.0971327345413684e+00 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
51 1 5.6634808161570760e+00 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
52 1 6.2298288977727836e+00 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
53 1 6.7961769793884912e+00 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
54 1 7.3625250610041988e+00 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
55 1 7.9288731426199064e+00 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
56 1 8.4952212242356140e+00 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
57 1 9.0615693058513216e+00 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
58 1 9.6279173874670292e+00 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
59 1 1.0194265469082737e+01 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
60 1 1.0760613550698444e+01 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
61 1 1.1326961632314152e+01 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
62 1 1.1893309713929860e+01 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
63 1 1.2459657795545567e+01 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
64 1 1.3026005877161275e+01 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
65 1 1.3592353958776982e+01 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
66 1 1.4158702040392690e+01 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
67 1 1.4725050122008398e+01 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
68 1 1.5291398203624105e+01 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
69 1 1.5857746285239813e+01 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
70 1 1.6424094366855520e+01 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
71 1 1.6990442448471228e+01 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
72 1 1.7556790530086936e+01 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
73 1 1.8123138611702643e+01 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
74 1 1.8689486693318351e+01 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
75 1 1.9255834774934058e+01 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
76 1 1.9822182856549766e+01 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
77 1 2.0388530938165474e+01 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
78 1 2.0954879019781181e+01 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
79 1 2.1521227101396889e+01 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
80 1 2.2087575183012596e+01 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
81 1 0.0000000000000000e+00 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
82 1 5.6634808161570760e-01 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
83 1 1.1326961632314152e+00 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
84 1 1.6990442448471228e+00 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
85 1 2.2653923264628304e+00 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
86 1 2.8317404080785380e+00 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
87 1 3.3980884896942456e+00 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
88 1 3.9644365713099532e+00 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
89 1 4.5307846529256608e+00 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
90 1 5.0971327345413684e+00 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
91 1 5.6634808161570760e+00 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
92 1 6.2298288977727836e+00 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
93 1 6.7961769793884912e+00 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
94 1 7.3625250610041988e+00 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
95 1 7.9288731426199064e+00 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
96 1 8.4952212242356140e+00 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
97 1 9.0615693058513216e+00 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
98 1 9.6279173874670292e+00 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
99 1 1.0194265469082737e+01 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
100 1 1.0760613550698444e+01 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
101 1 1.1326961632314152e+01 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
102 1 1.1893309713929860e+01 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
103 1 1.2459657795545567e+01 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
104 1 1.3026005877161275e+01 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
105 1 1.3592353958776982e+01 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
106 1 1.4158702040392690e+01 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
107 1 1.4725050122008398e+01 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
108 1 1.5291398203624105e+01 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
109 1 1.5857746285239813e+01 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
110 1 1.6424094366855520e+01 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
111 1 1.6990442448471228e+01 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
112 1 1.7556790530086936e+01 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
113 1 1.8123138611702643e+01 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
114 1 1.8689486693318351e+01 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
115 1 1.9255834774934058e+01 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
116 1 1.9822182856549766e+01 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
117 1 2.0388530938165474e+01 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
118 1 2.0954879019781181e+01 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
119 1 2.1521227101396889e+01 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
120 1 2.2087575183012596e+01 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
121 1 0.0000000000000000e+00 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
122 1 5.6634808161570760e-01 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
123 1 1.1326961632314152e+00 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
124 1 1.6990442448471228e+00 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
125 1 2.2653923264628304e+00 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
126 1 2.8317404080785380e+00 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
127 1 3.3980884896942456e+00 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
128 1 3.9644365713099532e+00 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
129 1 4.5307846529256608e+00 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
130 1 5.0971327345413684e+00 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
131 1 5.6634808161570760e+00 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
132 1 6.2298288977727836e+00 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
133 1 6.7961769793884912e+00 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
134 1 7.3625250610041988e+00 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
135 1 7.9288731426199064e+00 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
136 1 8.4952212242356140e+00 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
137 1 9.0615693058513216e+00 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
138 1 9.6279173874670292e+00 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
139 1 1.0194265469082737e+01 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
140 1 1.0760613550698444e+01 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
141 1 1.1326961632314152e+01 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
142 1 1.1893309713929860e+01 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
143 1 1.2459657795545567e+01 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
144 1 1.3026005877161275e+01 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
145 1 1.3592353958776982e+01 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
146 1 1.4158702040392690e+01 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
147 1 1.4725050122008398e+01 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
148 1 1.5291398203624105e+01 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
149 1 1.5857746285239813e+01 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
150 1 1.6424094366855520e+01 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
151 1 1.6990442448471228e+01 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
152 1 1.7556790530086936e+01 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
153 1 1.8123138611702643e+01 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
154 1 1.8689486693318351e+01 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
155 1 1.9255834774934058e+01 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
156 1 1.9822182856549766e+01 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
157 1 2.0388530938165474e+01 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
158 1 2.0954879019781181e+01 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
159 1 2.1521227101396889e+01 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
160 1 2.2087575183012596e+01 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
161 1 0.0000000000000000e+00 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
162 1 5.6634808161570760e-01 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
163 1 1.1326961632314152e+00 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
164 1 1.6990442448471228e+00 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
165 1 2.2653923264628304e+00 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
166 1 2.8317404080785380e+00 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
167 1 3.3980884896942456e+00 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
168 1 3.9644365713099532e+00 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
169 1 4.5307846529256608e+00 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
170 1 5.0971327345413684e+00 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
171 1 5.6634808161570760e+00 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
172 1 6.2298288977727836e+00 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
173 1 6.7961769793884912e+00 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
174 1 7.3625250610041988e+00 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
175 1 7.9288731426199064e+00 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
176 1 8.4952212242356140e+00 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
177 1 9.0615693058513216e+00 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
178 1 9.6279173874670292e+00 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
179 1 1.0194265469082737e+01 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
180 1 1.0760613550698444e+01 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
181 1 1.1326961632314152e+01 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
182 1 1.1893309713929860e+01 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
183 1 1.2459657795545567e+01 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
184 1 1.3026005877161275e+01 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
185 1 1.3592353958776982e+01 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
186 1 1.4158702040392690e+01 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
187 1 1.4725050122008398e+01 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
188 1 1.5291398203624105e+01 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
189 1 1.5857746285239813e+01 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
190 1 1.6424094366855520e+01 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
191 1 1.6990442448471228e+01 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
192 1 1.7556790530086936e+01 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
193 1 1.8123138611702643e+01 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
194 1 1.8689486693318351e+01 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
195 1 1.9255834774934058e+01 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
196 1 1.9822182856549766e+01 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
197 1 2.0388530938165474e+01 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
198 1 2.0954879019781181e+01 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
199 1 2.1521227101396889e+01 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
200 1 2.2087575183012596e+01 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
201 1 0.0000000000000000e+00 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
202 1 5.6634808161570760e-01 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
203 1 1.1326961632314152e+00 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
204 1 1.6990442448471228e+00 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
205 1 2.2653923264628304e+00 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
206 1 2.8317404080785380e+00 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
207 1 3.3980884896942456e+00 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
208 1 3.9644365713099532e+00 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
209 1 4.5307846529256608e+00 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
210 1 5.0971327345413684e+00 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
211 1 5.6634808161570760e+00 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
212 1 6.2298288977727836e+00 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
213 1 6.7961769793884912e+00 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
214 1 7.3625250610041988e+00 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
215 1 7.9288731426199064e+00 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
216 1 8.4952212242356140e+00 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
217 1 9.0615693058513216e+00 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
218 1 9.6279173874670292e+00 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
219 1 1.0194265469082737e+01 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
220 1 1.0760613550698444e+01 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
221 1 1.1326961632314152e+01 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
222 1 1.1893309713929860e+01 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
223 1 1.2459657795545567e+01 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
224 1 1.3026005877161275e+01 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
225 1 1.3592353958776982e+01 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
226 1 1.4158702040392690e+01 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
227 1 1.4725050122008398e+01 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
228 1 1.5291398203624105e+01 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
229 1 1.5857746285239813e+01 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
230 1 1.6424094366855520e+01 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
231 1 1.6990442448471228e+01 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
232 1 1.7556790530086936e+01 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
233 1 1.8123138611702643e+01 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
234 1 1.8689486693318351e+01 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
235 1 1.9255834774934058e+01 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
236 1 1.9822182856549766e+01 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
237 1 2.0388530938165474e+01 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
238 1 2.0954879019781181e+01 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
239 1 2.1521227101396889e+01 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
240 1 2.2087575183012596e+01 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
241 1 0.0000000000000000e+00 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
242 1 5.6634808161570760e-01 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
243 1 1.1326961632314152e+00 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
244 1 1.6990442448471228e+00 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
245 1 2.2653923264628304e+00 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
246 1 2.8317404080785380e+00 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
247 1 3.3980884896942456e+00 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
248 1 3.9644365713099532e+00 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
249 1 4.5307846529256608e+00 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
250 1 5.0971327345413684e+00 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
251 1 5.6634808161570760e+00 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
252 1 6.2298288977727836e+00 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
253 1 6.7961769793884912e+00 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
254 1 7.3625250610041988e+00 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
255 1 7.9288731426199064e+00 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
256 1 8.4952212242356140e+00 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
257 1 9.0615693058513216e+00 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
258 1 9.6279173874670292e+00 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
259 1 1.0194265469082737e+01 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
260 1 1.0760613550698444e+01 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
261 1 1.1326961632314152e+01 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
262 1 1.1893309713929860e+01 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
263 1 1.2459657795545567e+01 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
264 1 1.3026005877161275e+01 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
265 1 1.3592353958776982e+01 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
266 1 1.4158702040392690e+01 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
267 1 1.4725050122008398e+01 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
268 1 1.5291398203624105e+01 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
269 1 1.5857746285239813e+01 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
270 1 1.6424094366855520e+01 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
271 1 1.6990442448471228e+01 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
272 1 1.7556790530086936e+01 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
273 1 1.8123138611702643e+01 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
274 1 1.8689486693318351e+01 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
275 1 1.9255834774934058e+01 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
276 1 1.9822182856549766e+01 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
277 1 2.0388530938165474e+01 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
278 1 2.0954879019781181e+01 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
279 1 2.1521227101396889e+01 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
280 1 2.2087575183012596e+01 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
281 1 0.0000000000000000e+00 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
282 1 5.6634808161570760e-01 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
283 1 1.1326961632314152e+00 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
284 1 1.6990442448471228e+00 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
285 1 2.2653923264628304e+00 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
286 1 2.8317404080785380e+00 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
287 1 3.3980884896942456e+00 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
288 1 3.9644365713099532e+00 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
289 1 4.5307846529256608e+00 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
290 1 5.0971327345413684e+00 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
291 1 5.6634808161570760e+00 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
292 1 6.2298288977727836e+00 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
293 1 6.7961769793884912e+00 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
294 1 7.3625250610041988e+00 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
295 1 7.9288731426199064e+00 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
296 1 8.4952212242356140e+00 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
297 1 9.0615693058513216e+00 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
298 1 9.6279173874670292e+00 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
299 1 1.0194265469082737e+01 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
300 1 1.0760613550698444e+01 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
301 1 1.1326961632314152e+01 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
302 1 1.1893309713929860e+01 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
303 1 1.2459657795545567e+01 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
304 1 1.3026005877161275e+01 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
305 1 1.3592353958776982e+01 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
306 1 1.4158702040392690e+01 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
307 1 1.4725050122008398e+01 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
308 1 1.5291398203624105e+01 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
309 1 1.5857746285239813e+01 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
310 1 1.6424094366855520e+01 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
311 1 1.6990442448471228e+01 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
312 1 1.7556790530086936e+01 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
313 1 1.8123138611702643e+01 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
314 1 1.8689486693318351e+01 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
315 1 1.9255834774934058e+01 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
316 1 1.9822182856549766e+01 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
317 1 2.0388530938165474e+01 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
318 1 2.0954879019781181e+01 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
319 1 2.1521227101396889e+01 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
320 1 2.2087575183012596e+01 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
321 1 0.0000000000000000e+00 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
322 1 5.6634808161570760e-01 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
323 1 1.1326961632314152e+00 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
324 1 1.6990442448471228e+00 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
325 1 2.2653923264628304e+00 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
326 1 2.8317404080785380e+00 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
327 1 3.3980884896942456e+00 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
328 1 3.9644365713099532e+00 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
329 1 4.5307846529256608e+00 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
330 1 5.0971327345413684e+00 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
331 1 5.6634808161570760e+00 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
332 1 6.2298288977727836e+00 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
333 1 6.7961769793884912e+00 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
334 1 7.3625250610041988e+00 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
335 1 7.9288731426199064e+00 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
336 1 8.4952212242356140e+00 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
337 1 9.0615693058513216e+00 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
338 1 9.6279173874670292e+00 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
339 1 1.0194265469082737e+01 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
340 1 1.0760613550698444e+01 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
341 1 1.1326961632314152e+01 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
342 1 1.1893309713929860e+01 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
343 1 1.2459657795545567e+01 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
344 1 1.3026005877161275e+01 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
345 1 1.3592353958776982e+01 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
346 1 1.4158702040392690e+01 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
347 1 1.4725050122008398e+01 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
348 1 1.5291398203624105e+01 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
349 1 1.5857746285239813e+01 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
350 1 1.6424094366855520e+01 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
351 1 1.6990442448471228e+01 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
352 1 1.7556790530086936e+01 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
353 1 1.8123138611702643e+01 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
354 1 1.8689486693318351e+01 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
355 1 1.9255834774934058e+01 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
356 1 1.9822182856549766e+01 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
357 1 2.0388530938165474e+01 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
358 1 2.0954879019781181e+01 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
359 1 2.1521227101396889e+01 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
360 1 2.2087575183012596e+01 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
361 1 0.0000000000000000e+00 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
362 1 5.6634808161570760e-01 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
363 1 1.1326961632314152e+00 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
364 1 1.6990442448471228e+00 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
365 1 2.2653923264628304e+00 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
366 1 2.8317404080785380e+00 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
367 1 3.3980884896942456e+00 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
368 1 3.9644365713099532e+00 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
369 1 4.5307846529256608e+00 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
370 1 5.0971327345413684e+00 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
371 1 5.6634808161570760e+00 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
372 1 6.2298288977727836e+00 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
373 1 6.7961769793884912e+00 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
374 1 7.3625250610041988e+00 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
375 1 7.9288731426199064e+00 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
376 1 8.4952212242356140e+00 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
377 1 9.0615693058513216e+00 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
378 1 9.6279173874670292e+00 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
379 1 1.0194265469082737e+01 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
380 1 1.0760613550698444e+01 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
381 1 1.1326961632314152e+01 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
382 1 1.1893309713929860e+01 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
383 1 1.2459657795545567e+01 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
384 1 1.3026005877161275e+01 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
385 1 1.3592353958776982e+01 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
386 1 1.4158702040392690e+01 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
387 1 1.4725050122008398e+01 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
388 1 1.5291398203624105e+01 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
389 1 1.5857746285239813e+01 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
390 1 1.6424094366855520e+01 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
391 1 1.6990442448471228e+01 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
392 1 1.7556790530086936e+01 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
393 1 1.8123138611702643e+01 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
394 1 1.8689486693318351e+01 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
395 1 1.9255834774934058e+01 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
396 1 1.9822182856549766e+01 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
397 1 2.0388530938165474e+01 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
398 1 2.0954879019781181e+01 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
399 1 2.1521227101396889e+01 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
400 1 2.2087575183012596e+01 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
401 1 0.0000000000000000e+00 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
402 1 1.1326961632314152e+00 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
403 1 2.2653923264628304e+00 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
404 1 3.3980884896942456e+00 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
405 1 4.5307846529256608e+00 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
406 1 5.6634808161570760e+00 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
407 1 6.7961769793884912e+00 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
408 1 7.9288731426199064e+00 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
409 1 9.0615693058513216e+00 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
410 1 1.0194265469082737e+01 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
411 1 1.1326961632314152e+01 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
412 1 1.2459657795545567e+01 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
413 1 1.3592353958776982e+01 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
414 1 1.4725050122008398e+01 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
415 1 1.5857746285239813e+01 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
416 1 1.6990442448471228e+01 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
417 1 1.8123138611702643e+01 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
418 1 1.9255834774934058e+01 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
419 1 2.0388530938165474e+01 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
420 1 2.1521227101396889e+01 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
Velocities
1 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
2 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
3 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
4 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
5 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
6 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
7 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
8 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
9 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
10 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
11 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
12 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
13 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
14 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
15 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
16 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
17 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
18 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
19 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
20 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
21 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
22 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
23 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
24 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
25 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
26 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
27 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
28 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
29 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
30 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
31 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
32 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
33 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
34 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
35 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
36 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
37 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
38 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
39 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
40 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
41 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
42 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
43 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
44 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
45 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
46 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
47 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
48 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
49 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
50 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
51 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
52 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
53 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
54 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
55 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
56 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
57 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
58 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
59 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
60 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
61 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
62 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
63 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
64 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
65 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
66 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
67 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
68 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
69 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
70 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
71 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
72 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
73 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
74 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
75 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
76 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
77 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
78 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
79 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
80 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
81 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
82 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
83 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
84 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
85 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
86 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
87 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
88 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
89 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
90 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
91 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
92 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
93 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
94 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
95 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
96 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
97 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
98 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
99 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
100 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
101 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
102 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
103 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
104 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
105 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
106 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
107 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
108 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
109 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
110 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
111 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
112 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
113 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
114 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
115 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
116 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
117 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
118 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
119 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
120 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
121 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
122 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
123 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
124 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
125 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
126 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
127 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
128 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
129 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
130 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
131 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
132 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
133 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
134 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
135 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
136 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
137 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
138 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
139 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
140 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
141 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
142 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
143 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
144 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
145 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
146 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
147 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
148 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
149 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
150 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
151 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
152 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
153 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
154 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
155 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
156 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
157 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
158 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
159 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
160 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
161 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
162 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
163 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
164 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
165 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
166 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
167 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
168 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
169 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
170 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
171 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
172 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
173 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
174 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
175 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
176 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
177 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
178 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
179 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
180 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
181 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
182 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
183 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
184 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
185 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
186 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
187 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
188 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
189 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
190 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
191 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
192 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
193 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
194 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
195 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
196 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
197 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
198 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
199 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
200 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
201 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
202 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
203 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
204 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
205 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
206 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
207 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
208 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
209 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
210 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
211 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
212 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
213 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
214 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
215 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
216 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
217 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
218 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
219 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
220 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
221 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
222 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
223 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
224 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
225 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
226 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
227 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
228 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
229 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
230 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
231 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
232 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
233 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
234 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
235 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
236 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
237 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
238 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
239 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
240 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
241 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
242 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
243 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
244 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
245 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
246 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
247 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
248 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
249 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
250 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
251 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
252 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
253 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
254 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
255 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
256 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
257 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
258 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
259 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
260 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
261 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
262 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
263 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
264 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
265 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
266 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
267 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
268 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
269 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
270 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
271 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
272 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
273 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
274 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
275 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
276 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
277 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
278 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
279 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
280 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
281 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
282 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
283 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
284 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
285 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
286 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
287 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
288 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
289 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
290 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
291 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
292 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
293 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
294 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
295 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
296 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
297 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
298 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
299 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
300 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
301 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
302 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
303 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
304 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
305 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
306 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
307 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
308 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
309 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
310 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
311 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
312 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
313 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
314 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
315 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
316 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
317 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
318 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
319 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
320 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
321 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
322 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
323 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
324 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
325 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
326 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
327 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
328 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
329 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
330 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
331 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
332 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
333 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
334 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
335 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
336 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
337 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
338 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
339 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
340 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
341 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
342 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
343 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
344 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
345 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
346 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
347 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
348 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
349 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
350 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
351 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
352 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
353 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
354 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
355 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
356 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
357 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
358 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
359 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
360 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
361 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
362 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
363 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
364 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
365 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
366 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
367 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
368 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
369 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
370 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
371 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
372 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
373 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
374 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
375 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
376 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
377 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
378 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
379 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
380 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
381 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
382 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
383 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
384 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
385 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
386 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
387 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
388 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
389 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
390 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
391 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
392 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
393 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
394 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
395 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
396 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
397 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
398 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
399 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
400 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
401 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
402 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
403 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
404 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
405 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
406 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
407 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
408 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
409 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
410 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
411 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
412 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
413 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
414 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
415 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
416 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
417 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
418 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
419 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
420 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00

862
examples/neb/initial.hop2 Normal file
View File

@ -0,0 +1,862 @@
LAMMPS data file via write_data, version 27 Sep 2016, timestep = 0
421 atoms
3 atom types
0.0000000000000000e+00 2.2653923264628304e+01 xlo xhi
-2.1580760346806556e-03 2.0601974770713667e+01 ylo yhi
-2.8317404080785380e-01 2.8317404080785380e-01 zlo zhi
Masses
1 1
2 1
3 1
Atoms # atomic
1 1 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
2 1 5.6634808161570760e-01 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
3 1 1.1326961632314152e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
4 1 1.6990442448471228e+00 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
5 1 2.2653923264628304e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
6 1 2.8317404080785380e+00 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
7 1 3.3980884896942456e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
8 1 3.9644365713099532e+00 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
9 1 4.5307846529256608e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
10 1 5.0971327345413684e+00 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
11 1 5.6634808161570760e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
12 1 6.2298288977727836e+00 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
13 1 6.7961769793884912e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
14 1 7.3625250610041988e+00 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
15 1 7.9288731426199064e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
16 1 8.4952212242356140e+00 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
17 1 9.0615693058513216e+00 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
18 1 9.6279173874670292e+00 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
19 1 1.0194265469082737e+01 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
20 1 1.0760613550698444e+01 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
21 1 1.1326961632314152e+01 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
22 1 1.1893309713929860e+01 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
23 1 1.2459657795545567e+01 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
24 1 1.3026005877161275e+01 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
25 1 1.3592353958776982e+01 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
26 1 1.4158702040392690e+01 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
27 1 1.4725050122008398e+01 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
28 1 1.5291398203624105e+01 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
29 1 1.5857746285239813e+01 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
30 1 1.6424094366855520e+01 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
31 1 1.6990442448471228e+01 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
32 1 1.7556790530086936e+01 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
33 1 1.8123138611702643e+01 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
34 1 1.8689486693318351e+01 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
35 1 1.9255834774934058e+01 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
36 1 1.9822182856549766e+01 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
37 1 2.0388530938165474e+01 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
38 1 2.0954879019781181e+01 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
39 1 2.1521227101396889e+01 0.0000000000000000e+00 0.0000000000000000e+00 0 0 0
40 1 2.2087575183012596e+01 9.8094365212757073e-01 0.0000000000000000e+00 0 0 0
41 1 0.0000000000000000e+00 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
42 1 5.6634808161570760e-01 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
43 1 1.1326961632314152e+00 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
44 1 1.6990442448471228e+00 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
45 1 2.2653923264628304e+00 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
46 1 2.8317404080785380e+00 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
47 1 3.3980884896942456e+00 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
48 1 3.9644365713099532e+00 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
49 1 4.5307846529256608e+00 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
50 1 5.0971327345413684e+00 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
51 1 5.6634808161570760e+00 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
52 1 6.2298288977727836e+00 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
53 1 6.7961769793884912e+00 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
54 1 7.3625250610041988e+00 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
55 1 7.9288731426199064e+00 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
56 1 8.4952212242356140e+00 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
57 1 9.0615693058513216e+00 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
58 1 9.6279173874670292e+00 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
59 1 1.0194265469082737e+01 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
60 1 1.0760613550698444e+01 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
61 1 1.1326961632314152e+01 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
62 1 1.1893309713929860e+01 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
63 1 1.2459657795545567e+01 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
64 1 1.3026005877161275e+01 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
65 1 1.3592353958776982e+01 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
66 1 1.4158702040392690e+01 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
67 1 1.4725050122008398e+01 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
68 1 1.5291398203624105e+01 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
69 1 1.5857746285239813e+01 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
70 1 1.6424094366855520e+01 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
71 1 1.6990442448471228e+01 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
72 1 1.7556790530086936e+01 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
73 1 1.8123138611702643e+01 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
74 1 1.8689486693318351e+01 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
75 1 1.9255834774934058e+01 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
76 1 1.9822182856549766e+01 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
77 1 2.0388530938165474e+01 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
78 1 2.0954879019781181e+01 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
79 1 2.1521227101396889e+01 1.9618873042551415e+00 0.0000000000000000e+00 0 0 0
80 1 2.2087575183012596e+01 2.9428309563827124e+00 0.0000000000000000e+00 0 0 0
81 1 0.0000000000000000e+00 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
82 1 5.6634808161570760e-01 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
83 1 1.1326961632314152e+00 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
84 1 1.6990442448471228e+00 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
85 1 2.2653923264628304e+00 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
86 1 2.8317404080785380e+00 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
87 1 3.3980884896942456e+00 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
88 1 3.9644365713099532e+00 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
89 1 4.5307846529256608e+00 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
90 1 5.0971327345413684e+00 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
91 1 5.6634808161570760e+00 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
92 1 6.2298288977727836e+00 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
93 1 6.7961769793884912e+00 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
94 1 7.3625250610041988e+00 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
95 1 7.9288731426199064e+00 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
96 1 8.4952212242356140e+00 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
97 1 9.0615693058513216e+00 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
98 1 9.6279173874670292e+00 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
99 1 1.0194265469082737e+01 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
100 1 1.0760613550698444e+01 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
101 1 1.1326961632314152e+01 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
102 1 1.1893309713929860e+01 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
103 1 1.2459657795545567e+01 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
104 1 1.3026005877161275e+01 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
105 1 1.3592353958776982e+01 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
106 1 1.4158702040392690e+01 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
107 1 1.4725050122008398e+01 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
108 1 1.5291398203624105e+01 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
109 1 1.5857746285239813e+01 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
110 1 1.6424094366855520e+01 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
111 1 1.6990442448471228e+01 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
112 1 1.7556790530086936e+01 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
113 1 1.8123138611702643e+01 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
114 1 1.8689486693318351e+01 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
115 1 1.9255834774934058e+01 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
116 1 1.9822182856549766e+01 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
117 1 2.0388530938165474e+01 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
118 1 2.0954879019781181e+01 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
119 1 2.1521227101396889e+01 3.9237746085102829e+00 0.0000000000000000e+00 0 0 0
120 1 2.2087575183012596e+01 4.9047182606378534e+00 0.0000000000000000e+00 0 0 0
121 1 0.0000000000000000e+00 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
122 1 5.6634808161570760e-01 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
123 1 1.1326961632314152e+00 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
124 1 1.6990442448471228e+00 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
125 1 2.2653923264628304e+00 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
126 1 2.8317404080785380e+00 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
127 1 3.3980884896942456e+00 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
128 1 3.9644365713099532e+00 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
129 1 4.5307846529256608e+00 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
130 1 5.0971327345413684e+00 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
131 1 5.6634808161570760e+00 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
132 1 6.2298288977727836e+00 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
133 1 6.7961769793884912e+00 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
134 1 7.3625250610041988e+00 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
135 1 7.9288731426199064e+00 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
136 1 8.4952212242356140e+00 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
137 1 9.0615693058513216e+00 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
138 1 9.6279173874670292e+00 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
139 1 1.0194265469082737e+01 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
140 1 1.0760613550698444e+01 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
141 1 1.1326961632314152e+01 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
142 1 1.1893309713929860e+01 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
143 1 1.2459657795545567e+01 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
144 1 1.3026005877161275e+01 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
145 1 1.3592353958776982e+01 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
146 1 1.4158702040392690e+01 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
147 1 1.4725050122008398e+01 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
148 1 1.5291398203624105e+01 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
149 1 1.5857746285239813e+01 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
150 1 1.6424094366855520e+01 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
151 1 1.6990442448471228e+01 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
152 1 1.7556790530086936e+01 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
153 1 1.8123138611702643e+01 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
154 1 1.8689486693318351e+01 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
155 1 1.9255834774934058e+01 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
156 1 1.9822182856549766e+01 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
157 1 2.0388530938165474e+01 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
158 1 2.0954879019781181e+01 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
159 1 2.1521227101396889e+01 5.8856619127654248e+00 0.0000000000000000e+00 0 0 0
160 1 2.2087575183012596e+01 6.8666055648929953e+00 0.0000000000000000e+00 0 0 0
161 1 0.0000000000000000e+00 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
162 1 5.6634808161570760e-01 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
163 1 1.1326961632314152e+00 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
164 1 1.6990442448471228e+00 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
165 1 2.2653923264628304e+00 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
166 1 2.8317404080785380e+00 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
167 1 3.3980884896942456e+00 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
168 1 3.9644365713099532e+00 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
169 1 4.5307846529256608e+00 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
170 1 5.0971327345413684e+00 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
171 1 5.6634808161570760e+00 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
172 1 6.2298288977727836e+00 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
173 1 6.7961769793884912e+00 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
174 1 7.3625250610041988e+00 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
175 1 7.9288731426199064e+00 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
176 1 8.4952212242356140e+00 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
177 1 9.0615693058513216e+00 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
178 1 9.6279173874670292e+00 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
179 1 1.0194265469082737e+01 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
180 1 1.0760613550698444e+01 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
181 1 1.1326961632314152e+01 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
182 1 1.1893309713929860e+01 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
183 1 1.2459657795545567e+01 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
184 1 1.3026005877161275e+01 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
185 1 1.3592353958776982e+01 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
186 1 1.4158702040392690e+01 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
187 1 1.4725050122008398e+01 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
188 1 1.5291398203624105e+01 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
189 1 1.5857746285239813e+01 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
190 1 1.6424094366855520e+01 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
191 1 1.6990442448471228e+01 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
192 1 1.7556790530086936e+01 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
193 1 1.8123138611702643e+01 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
194 1 1.8689486693318351e+01 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
195 1 1.9255834774934058e+01 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
196 1 1.9822182856549766e+01 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
197 1 2.0388530938165474e+01 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
198 1 2.0954879019781181e+01 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
199 1 2.1521227101396889e+01 7.8475492170205658e+00 0.0000000000000000e+00 0 0 0
200 1 2.2087575183012596e+01 8.8284928691481355e+00 0.0000000000000000e+00 0 0 0
201 1 0.0000000000000000e+00 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
202 1 5.6634808161570760e-01 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
203 1 1.1326961632314152e+00 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
204 1 1.6990442448471228e+00 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
205 1 2.2653923264628304e+00 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
206 1 2.8317404080785380e+00 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
207 1 3.3980884896942456e+00 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
208 1 3.9644365713099532e+00 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
209 1 4.5307846529256608e+00 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
210 1 5.0971327345413684e+00 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
211 1 5.6634808161570760e+00 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
212 1 6.2298288977727836e+00 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
213 1 6.7961769793884912e+00 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
214 1 7.3625250610041988e+00 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
215 1 7.9288731426199064e+00 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
216 1 8.4952212242356140e+00 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
217 1 9.0615693058513216e+00 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
218 1 9.6279173874670292e+00 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
219 1 1.0194265469082737e+01 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
220 1 1.0760613550698444e+01 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
221 1 1.1326961632314152e+01 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
222 1 1.1893309713929860e+01 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
223 1 1.2459657795545567e+01 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
224 1 1.3026005877161275e+01 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
225 1 1.3592353958776982e+01 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
226 1 1.4158702040392690e+01 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
227 1 1.4725050122008398e+01 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
228 1 1.5291398203624105e+01 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
229 1 1.5857746285239813e+01 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
230 1 1.6424094366855520e+01 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
231 1 1.6990442448471228e+01 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
232 1 1.7556790530086936e+01 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
233 1 1.8123138611702643e+01 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
234 1 1.8689486693318351e+01 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
235 1 1.9255834774934058e+01 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
236 1 1.9822182856549766e+01 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
237 1 2.0388530938165474e+01 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
238 1 2.0954879019781181e+01 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
239 1 2.1521227101396889e+01 9.8094365212757069e+00 0.0000000000000000e+00 0 0 0
240 1 2.2087575183012596e+01 1.0790380173403278e+01 0.0000000000000000e+00 0 0 0
241 1 0.0000000000000000e+00 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
242 1 5.6634808161570760e-01 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
243 1 1.1326961632314152e+00 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
244 1 1.6990442448471228e+00 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
245 1 2.2653923264628304e+00 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
246 1 2.8317404080785380e+00 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
247 1 3.3980884896942456e+00 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
248 1 3.9644365713099532e+00 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
249 1 4.5307846529256608e+00 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
250 1 5.0971327345413684e+00 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
251 1 5.6634808161570760e+00 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
252 1 6.2298288977727836e+00 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
253 1 6.7961769793884912e+00 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
254 1 7.3625250610041988e+00 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
255 1 7.9288731426199064e+00 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
256 1 8.4952212242356140e+00 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
257 1 9.0615693058513216e+00 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
258 1 9.6279173874670292e+00 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
259 1 1.0194265469082737e+01 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
260 1 1.0760613550698444e+01 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
261 1 1.1326961632314152e+01 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
262 1 1.1893309713929860e+01 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
263 1 1.2459657795545567e+01 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
264 1 1.3026005877161275e+01 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
265 1 1.3592353958776982e+01 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
266 1 1.4158702040392690e+01 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
267 1 1.4725050122008398e+01 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
268 1 1.5291398203624105e+01 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
269 1 1.5857746285239813e+01 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
270 1 1.6424094366855520e+01 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
271 1 1.6990442448471228e+01 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
272 1 1.7556790530086936e+01 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
273 1 1.8123138611702643e+01 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
274 1 1.8689486693318351e+01 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
275 1 1.9255834774934058e+01 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
276 1 1.9822182856549766e+01 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
277 1 2.0388530938165474e+01 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
278 1 2.0954879019781181e+01 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
279 1 2.1521227101396889e+01 1.1771323825530850e+01 0.0000000000000000e+00 0 0 0
280 1 2.2087575183012596e+01 1.2752267477658419e+01 0.0000000000000000e+00 0 0 0
281 1 0.0000000000000000e+00 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
282 1 5.6634808161570760e-01 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
283 1 1.1326961632314152e+00 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
284 1 1.6990442448471228e+00 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
285 1 2.2653923264628304e+00 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
286 1 2.8317404080785380e+00 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
287 1 3.3980884896942456e+00 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
288 1 3.9644365713099532e+00 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
289 1 4.5307846529256608e+00 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
290 1 5.0971327345413684e+00 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
291 1 5.6634808161570760e+00 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
292 1 6.2298288977727836e+00 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
293 1 6.7961769793884912e+00 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
294 1 7.3625250610041988e+00 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
295 1 7.9288731426199064e+00 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
296 1 8.4952212242356140e+00 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
297 1 9.0615693058513216e+00 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
298 1 9.6279173874670292e+00 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
299 1 1.0194265469082737e+01 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
300 1 1.0760613550698444e+01 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
301 1 1.1326961632314152e+01 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
302 1 1.1893309713929860e+01 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
303 1 1.2459657795545567e+01 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
304 1 1.3026005877161275e+01 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
305 1 1.3592353958776982e+01 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
306 1 1.4158702040392690e+01 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
307 1 1.4725050122008398e+01 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
308 1 1.5291398203624105e+01 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
309 1 1.5857746285239813e+01 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
310 1 1.6424094366855520e+01 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
311 1 1.6990442448471228e+01 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
312 1 1.7556790530086936e+01 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
313 1 1.8123138611702643e+01 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
314 1 1.8689486693318351e+01 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
315 1 1.9255834774934058e+01 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
316 1 1.9822182856549766e+01 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
317 1 2.0388530938165474e+01 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
318 1 2.0954879019781181e+01 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
319 1 2.1521227101396889e+01 1.3733211129785991e+01 0.0000000000000000e+00 0 0 0
320 1 2.2087575183012596e+01 1.4714154781913560e+01 0.0000000000000000e+00 0 0 0
321 1 0.0000000000000000e+00 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
322 1 5.6634808161570760e-01 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
323 1 1.1326961632314152e+00 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
324 1 1.6990442448471228e+00 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
325 1 2.2653923264628304e+00 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
326 1 2.8317404080785380e+00 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
327 1 3.3980884896942456e+00 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
328 1 3.9644365713099532e+00 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
329 1 4.5307846529256608e+00 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
330 1 5.0971327345413684e+00 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
331 1 5.6634808161570760e+00 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
332 1 6.2298288977727836e+00 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
333 1 6.7961769793884912e+00 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
334 1 7.3625250610041988e+00 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
335 1 7.9288731426199064e+00 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
336 1 8.4952212242356140e+00 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
337 1 9.0615693058513216e+00 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
338 1 9.6279173874670292e+00 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
339 1 1.0194265469082737e+01 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
340 1 1.0760613550698444e+01 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
341 1 1.1326961632314152e+01 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
342 1 1.1893309713929860e+01 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
343 1 1.2459657795545567e+01 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
344 1 1.3026005877161275e+01 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
345 1 1.3592353958776982e+01 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
346 1 1.4158702040392690e+01 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
347 1 1.4725050122008398e+01 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
348 1 1.5291398203624105e+01 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
349 1 1.5857746285239813e+01 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
350 1 1.6424094366855520e+01 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
351 1 1.6990442448471228e+01 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
352 1 1.7556790530086936e+01 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
353 1 1.8123138611702643e+01 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
354 1 1.8689486693318351e+01 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
355 1 1.9255834774934058e+01 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
356 1 1.9822182856549766e+01 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
357 1 2.0388530938165474e+01 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
358 1 2.0954879019781181e+01 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
359 1 2.1521227101396889e+01 1.5695098434041132e+01 0.0000000000000000e+00 0 0 0
360 1 2.2087575183012596e+01 1.6676042086168703e+01 0.0000000000000000e+00 0 0 0
361 1 0.0000000000000000e+00 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
362 1 5.6634808161570760e-01 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
363 1 1.1326961632314152e+00 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
364 1 1.6990442448471228e+00 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
365 1 2.2653923264628304e+00 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
366 1 2.8317404080785380e+00 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
367 1 3.3980884896942456e+00 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
368 1 3.9644365713099532e+00 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
369 1 4.5307846529256608e+00 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
370 1 5.0971327345413684e+00 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
371 1 5.6634808161570760e+00 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
372 1 6.2298288977727836e+00 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
373 1 6.7961769793884912e+00 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
374 1 7.3625250610041988e+00 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
375 1 7.9288731426199064e+00 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
376 1 8.4952212242356140e+00 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
377 1 9.0615693058513216e+00 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
378 1 9.6279173874670292e+00 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
379 1 1.0194265469082737e+01 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
380 1 1.0760613550698444e+01 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
381 1 1.1326961632314152e+01 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
382 1 1.1893309713929860e+01 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
383 1 1.2459657795545567e+01 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
384 1 1.3026005877161275e+01 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
385 1 1.3592353958776982e+01 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
386 1 1.4158702040392690e+01 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
387 1 1.4725050122008398e+01 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
388 1 1.5291398203624105e+01 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
389 1 1.5857746285239813e+01 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
390 1 1.6424094366855520e+01 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
391 1 1.6990442448471228e+01 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
392 1 1.7556790530086936e+01 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
393 1 1.8123138611702643e+01 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
394 1 1.8689486693318351e+01 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
395 1 1.9255834774934058e+01 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
396 1 1.9822182856549766e+01 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
397 1 2.0388530938165474e+01 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
398 1 2.0954879019781181e+01 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
399 1 2.1521227101396889e+01 1.7656985738296271e+01 0.0000000000000000e+00 0 0 0
400 1 2.2087575183012596e+01 1.8637929390423842e+01 0.0000000000000000e+00 0 0 0
401 1 0.0000000000000000e+00 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
402 1 1.1326961632314152e+00 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
403 1 2.2653923264628304e+00 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
404 1 3.3980884896942456e+00 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
405 1 4.5307846529256608e+00 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
406 1 5.6634808161570760e+00 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
407 1 6.7961769793884912e+00 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
408 1 7.9288731426199064e+00 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
409 1 9.0615693058513216e+00 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
410 1 1.0194265469082737e+01 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
411 1 1.1326961632314152e+01 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
412 1 1.2459657795545567e+01 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
413 1 1.3592353958776982e+01 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
414 1 1.4725050122008398e+01 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
415 1 1.5857746285239813e+01 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
416 1 1.6990442448471228e+01 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
417 1 1.8123138611702643e+01 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
418 1 1.9255834774934058e+01 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
419 1 2.0388530938165474e+01 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
420 1 2.1521227101396889e+01 1.9618873042551414e+01 0.0000000000000000e+00 0 0 0
421 1 1.3026005877161275e+01 2.0599816694678985e+01 0.0000000000000000e+00 0 0 0
Velocities
1 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
2 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
3 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
4 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
5 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
6 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
7 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
8 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
9 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
10 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
11 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
12 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
13 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
14 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
15 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
16 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
17 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
18 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
19 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
20 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
21 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
22 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
23 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
24 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
25 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
26 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
27 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
28 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
29 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
30 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
31 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
32 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
33 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
34 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
35 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
36 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
37 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
38 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
39 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
40 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
41 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
42 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
43 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
44 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
45 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
46 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
47 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
48 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
49 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
50 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
51 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
52 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
53 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
54 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
55 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
56 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
57 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
58 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
59 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
60 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
61 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
62 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
63 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
64 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
65 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
66 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
67 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
68 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
69 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
70 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
71 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
72 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
73 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
74 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
75 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
76 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
77 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
78 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
79 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
80 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
81 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
82 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
83 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
84 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
85 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
86 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
87 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
88 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
89 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
90 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
91 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
92 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
93 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
94 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
95 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
96 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
97 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
98 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
99 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
100 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
101 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
102 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
103 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
104 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
105 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
106 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
107 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
108 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
109 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
110 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
111 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
112 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
113 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
114 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
115 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
116 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
117 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
118 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
119 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
120 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
121 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
122 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
123 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
124 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
125 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
126 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
127 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
128 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
129 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
130 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
131 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
132 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
133 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
134 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
135 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
136 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
137 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
138 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
139 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
140 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
141 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
142 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
143 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
144 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
145 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
146 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
147 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
148 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
149 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
150 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
151 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
152 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
153 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
154 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
155 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
156 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
157 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
158 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
159 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
160 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
161 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
162 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
163 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
164 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
165 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
166 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
167 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
168 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
169 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
170 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
171 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
172 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
173 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
174 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
175 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
176 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
177 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
178 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
179 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
180 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
181 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
182 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
183 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
184 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
185 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
186 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
187 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
188 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
189 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
190 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
191 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
192 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
193 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
194 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
195 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
196 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
197 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
198 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
199 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
200 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
201 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
202 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
203 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
204 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
205 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
206 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
207 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
208 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
209 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
210 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
211 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
212 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
213 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
214 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
215 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
216 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
217 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
218 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
219 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
220 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
221 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
222 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
223 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
224 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
225 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
226 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
227 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
228 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
229 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
230 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
231 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
232 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
233 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
234 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
235 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
236 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
237 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
238 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
239 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
240 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
241 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
242 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
243 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
244 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
245 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
246 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
247 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
248 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
249 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
250 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
251 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
252 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
253 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
254 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
255 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
256 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
257 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
258 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
259 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
260 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
261 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
262 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
263 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
264 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
265 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
266 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
267 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
268 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
269 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
270 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
271 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
272 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
273 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
274 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
275 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
276 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
277 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
278 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
279 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
280 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
281 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
282 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
283 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
284 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
285 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
286 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
287 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
288 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
289 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
290 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
291 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
292 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
293 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
294 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
295 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
296 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
297 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
298 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
299 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
300 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
301 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
302 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
303 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
304 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
305 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
306 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
307 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
308 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
309 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
310 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
311 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
312 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
313 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
314 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
315 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
316 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
317 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
318 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
319 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
320 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
321 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
322 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
323 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
324 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
325 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
326 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
327 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
328 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
329 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
330 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
331 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
332 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
333 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
334 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
335 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
336 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
337 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
338 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
339 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
340 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
341 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
342 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
343 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
344 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
345 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
346 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
347 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
348 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
349 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
350 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
351 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
352 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
353 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
354 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
355 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
356 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
357 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
358 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
359 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
360 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
361 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
362 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
363 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
364 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
365 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
366 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
367 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
368 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
369 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
370 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
371 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
372 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
373 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
374 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
375 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
376 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
377 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
378 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
379 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
380 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
381 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
382 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
383 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
384 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
385 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
386 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
387 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
388 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
389 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
390 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
391 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
392 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
393 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
394 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
395 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
396 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
397 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
398 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
399 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
400 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
401 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
402 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
403 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
404 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
405 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
406 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
407 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
408 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
409 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
410 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
411 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
412 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
413 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
414 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
415 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
416 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
417 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
418 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
419 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
420 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00
421 0.0000000000000000e+00 0.0000000000000000e+00 0.0000000000000000e+00

1042
examples/neb/initial.sivac Normal file

File diff suppressed because it is too large Load Diff

View File

@ -1,4 +1,4 @@
LAMMPS (15 Feb 2016)
LAMMPS (27 Sep 2016)
Running on 4 partitions of processors
Step MaxReplicaForce MaxAtomForce GradV0 GradV1 GradVc EBF EBR RDT RD1 PE1 RD2 PE2 ... RDN PEN
0 4327.2753 2746.3378 0.3387091 5.0075576 4514.5424 0.42933428 0.42323635 1.8941131 0 -3.0535948 0.33333333 -2.6242605 0.66666667 -2.7623811 1 -3.0474969

View File

@ -0,0 +1,10 @@
LAMMPS (27 Sep 2016)
Running on 4 partitions of processors
Step MaxReplicaForce MaxAtomForce GradV0 GradV1 GradVc EBF EBR RDT RD1 PE1 RD2 PE2 ... RDN PEN
0 4327.2753 2746.3378 0.3387091 5.0075576 4514.5424 0.42933428 0.42323635 1.8941131 0 -3.0535948 0.33333333 -2.6242605 0.66666667 -2.7623811 1 -3.0474969
100 0.10482171 0.085218406 0.014588234 0.066178435 0.19602242 0.0070900401 0.0022691875 2.3031875 0 -3.0535967 0.31839181 -3.0473647 0.639876 -3.0465067 1 -3.0487759
111 0.096708718 0.078036984 0.013922966 0.054175505 0.20234693 0.0070871172 0.0022668002 2.3052946 0 -3.0535968 0.31853431 -3.0473633 0.64178873 -3.0465096 1 -3.0487764
Climbing replica = 3
Step MaxReplicaForce MaxAtomForce GradV0 GradV1 GradVc EBF EBR RDT RD1 PE1 RD2 PE2 ... RDN PEN
111 0.20234693 0.17770387 0.013922966 0.054175505 0.20234693 0.0070871172 0.0022668002 2.3052946 0 -3.0535968 0.31853431 -3.0473633 0.64178873 -3.0465096 1 -3.0487764
178 0.09975409 0.093814031 0.010577358 0.024247224 0.09975409 0.0071042931 0.0022851195 2.312004 0 -3.0535969 0.31607934 -3.0473923 0.618931 -3.0464926 1 -3.0487777

View File

@ -1,4 +1,4 @@
LAMMPS (15 Feb 2016)
LAMMPS (27 Sep 2016)
Running on 4 partitions of processors
Step MaxReplicaForce MaxAtomForce GradV0 GradV1 GradVc EBF EBR RDT RD1 PE1 RD2 PE2 ... RDN PEN
0 14.104748 10.419633 0.24852044 5.0039071 8.2116049 0.0018276223 0.00064050211 0.98401186 0 -3.0514921 0.33333333 -3.0496673 0.66666667 -3.0496645 1 -3.050305

View File

@ -0,0 +1,18 @@
LAMMPS (27 Sep 2016)
Running on 4 partitions of processors
Step MaxReplicaForce MaxAtomForce GradV0 GradV1 GradVc EBF EBR RDT RD1 PE1 RD2 PE2 ... RDN PEN
0 14.104748 10.419633 0.24852044 5.0039071 8.2116049 0.0018276223 0.00064050211 0.98401186 0 -3.0514921 0.33333333 -3.0496673 0.66666667 -3.0496645 1 -3.050305
100 0.24646695 0.10792196 0.01781018 0.098854684 0.63725646 0.001516756 0.0015151635 1.165391 0 -3.0514939 0.2890334 -3.0503533 0.59718494 -3.0499771 1 -3.0514923
200 0.061777741 0.050288749 0.012466513 0.020420207 0.88741041 0.0014465772 0.0014462528 1.1692938 0 -3.0514941 0.29975094 -3.0503052 0.62768286 -3.0500476 1 -3.0514938
300 0.056346766 0.030000618 0.0093152917 0.013765031 1.0101529 0.0014069751 0.0014068154 1.1699608 0 -3.0514942 0.30992449 -3.0502613 0.64174291 -3.0500873 1 -3.0514941
400 0.025589489 0.015671005 0.0061287063 0.008588518 1.1136424 0.001370987 0.0013709154 1.1704204 0 -3.0514943 0.32016645 -3.0502198 0.65324019 -3.0501233 1 -3.0514943
500 0.014778626 0.0092108366 0.0042668521 0.0059963914 1.1636579 0.0013527466 0.0013527072 1.1706283 0 -3.0514944 0.32550275 -3.0501993 0.65875414 -3.0501416 1 -3.0514943
600 0.08786211 0.020876327 0.0031421548 0.0051657363 1.1898894 0.0013430848 0.0013430599 1.1707681 0 -3.0514944 0.32831927 -3.0501889 0.66160681 -3.0501513 1 -3.0514944
633 0.0098132678 0.0055392541 0.0030063464 0.0043091323 1.1924486 0.0013420127 0.0013419893 1.1707818 0 -3.0514944 0.32862625 -3.0501878 0.66191769 -3.0501524 1 -3.0514944
Climbing replica = 3
Step MaxReplicaForce MaxAtomForce GradV0 GradV1 GradVc EBF EBR RDT RD1 PE1 RD2 PE2 ... RDN PEN
633 1.1924486 1.1648685 0.0030063464 0.0043091323 1.1924486 0.0013420127 0.0013419893 1.1707818 0 -3.0514944 0.32862625 -3.0501878 0.66191769 -3.0501524 1 -3.0514944
733 0.095331134 0.089136608 0.0021551441 0.0031844438 0.043042998 0.0016022317 0.0016022168 1.170789 0 -3.0514944 0.29157063 -3.0503375 0.50358402 -3.0498922 1 -3.0514944
833 0.10539135 0.030724373 0.0013749699 0.002221013 0.10539135 0.0016019798 0.001601971 1.1732118 0 -3.0514944 0.26249002 -3.0504848 0.50415223 -3.0498924 1 -3.0514944
933 0.01883894 0.011496399 0.0011058925 0.0018178041 0.014621806 0.0016018934 0.0016018865 1.173866 0 -3.0514944 0.25788763 -3.0505113 0.50466375 -3.0498925 1 -3.0514944
996 0.0082457876 0.0036336551 0.00077325986 0.0013910671 0.0068823708 0.0016018293 0.0016018244 1.174511 0 -3.0514944 0.2544553 -3.0505324 0.50520462 -3.0498926 1 -3.0514944

View File

@ -0,0 +1,14 @@
LAMMPS (27 Sep 2016)
Running on 3 partitions of processors
Step MaxReplicaForce MaxAtomForce GradV0 GradV1 GradVc EBF EBR RDT RD1 PE1 RD2 PE2 ... RDN PEN
0 7.5525391 1.6345605 0.16683659 7.5525391 7.5525391 1.5383951 0 1.6207355 0 -2213.3343 0.5 -2212.4096 1 -2211.7959
10 0.27332818 0.040944923 0.039164338 0.27332818 0.17804882 0.51235911 0.497084 1.6790474 0 -2213.3364 0.49024121 -2212.824 1 -2213.3211
20 0.1820396 0.018049916 0.024428411 0.1820396 0.08601739 0.51038174 0.5080746 1.7224961 0 -2213.337 0.49199582 -2212.8266 1 -2213.3347
30 0.043288796 0.0068108825 0.017372479 0.043288796 0.049466709 0.51032316 0.5095943 1.7304745 0 -2213.3371 0.49553568 -2212.8268 1 -2213.3364
40 0.0421393 0.0037035761 0.01173707 0.0421393 0.026104735 0.51022733 0.5100163 1.7366752 0 -2213.3373 0.49838067 -2212.8271 1 -2213.3371
50 0.025897844 0.0022804241 0.0081056535 0.025897844 0.016908913 0.5101712 0.51008591 1.739143 0 -2213.3373 0.49923344 -2212.8272 1 -2213.3373
59 0.00962839 0.0012946076 0.005657505 0.009365729 0.012040803 0.51014185 0.51010207 1.7404554 0 -2213.3374 0.49955698 -2212.8272 1 -2213.3373
Climbing replica = 2
Step MaxReplicaForce MaxAtomForce GradV0 GradV1 GradVc EBF EBR RDT RD1 PE1 RD2 PE2 ... RDN PEN
59 0.012040803 0.0031505502 0.005657505 0.009365729 0.012040803 0.51014185 0.51010207 1.7404554 0 -2213.3374 0.49955698 -2212.8272 1 -2213.3373
63 0.009152118 0.0016692472 0.0049645771 0.0081967836 0.009152118 0.51013743 0.51010776 1.7409028 0 -2213.3374 0.50022239 -2212.8272 1 -2213.3373

View File

@ -0,0 +1,14 @@
LAMMPS (27 Sep 2016)
Running on 3 partitions of processors
Step MaxReplicaForce MaxAtomForce GradV0 GradV1 GradVc EBF EBR RDT RD1 PE1 RD2 PE2 ... RDN PEN
0 7.5525391 1.6345605 0.16683659 7.5525391 7.5525391 1.5383951 0 1.6207355 0 -2213.3343 0.5 -2212.4096 1 -2211.7959
10 0.27332818 0.040944923 0.039164338 0.27332818 0.17804882 0.51235911 0.497084 1.6790474 0 -2213.3364 0.49024121 -2212.824 1 -2213.3211
20 0.1820396 0.018049916 0.024428411 0.1820396 0.08601739 0.51038174 0.5080746 1.7224961 0 -2213.337 0.49199582 -2212.8266 1 -2213.3347
30 0.043288796 0.0068108825 0.017372479 0.043288796 0.049466709 0.51032316 0.5095943 1.7304745 0 -2213.3371 0.49553568 -2212.8268 1 -2213.3364
40 0.042139305 0.0037035764 0.01173707 0.042139305 0.026104735 0.51022733 0.5100163 1.7366752 0 -2213.3373 0.49838067 -2212.8271 1 -2213.3371
50 0.025899631 0.0022805513 0.0081057075 0.025899631 0.016908929 0.5101712 0.51008591 1.739143 0 -2213.3373 0.49923345 -2212.8272 1 -2213.3373
59 0.0096285044 0.0012946258 0.0056576061 0.0093678253 0.012040919 0.51014185 0.51010207 1.7404554 0 -2213.3374 0.49955698 -2212.8272 1 -2213.3373
Climbing replica = 2
Step MaxReplicaForce MaxAtomForce GradV0 GradV1 GradVc EBF EBR RDT RD1 PE1 RD2 PE2 ... RDN PEN
59 0.012040919 0.0031505771 0.0056576061 0.0093678253 0.012040919 0.51014185 0.51010207 1.7404554 0 -2213.3374 0.49955698 -2212.8272 1 -2213.3373
63 0.0091523813 0.0016692845 0.0049647607 0.0081998372 0.0091523813 0.51013743 0.51010775 1.7409028 0 -2213.3374 0.50022236 -2212.8272 1 -2213.3373

View File

@ -1,4 +1,4 @@
LAMMPS (15 Feb 2016)
LAMMPS (27 Sep 2016)
Running on 3 partitions of processors
Step MaxReplicaForce MaxAtomForce GradV0 GradV1 GradVc EBF EBR RDT RD1 PE1 RD2 PE2 ... RDN PEN
0 7.5525391 1.6345605 0.16683659 7.5525391 7.5525391 1.5383951 0 1.6207355 0 -2213.3343 0.5 -2212.4096 1 -2211.7959
@ -6,9 +6,9 @@ Step MaxReplicaForce MaxAtomForce GradV0 GradV1 GradVc EBF EBR RDT RD1 PE1 RD2 P
20 0.1820396 0.018049916 0.024428411 0.1820396 0.08601739 0.51038174 0.5080746 1.7224961 0 -2213.337 0.49199582 -2212.8266 1 -2213.3347
30 0.043288796 0.0068108825 0.017372479 0.043288796 0.049466709 0.51032316 0.5095943 1.7304745 0 -2213.3371 0.49553568 -2212.8268 1 -2213.3364
40 0.042139318 0.0037035773 0.011737071 0.042139318 0.026104737 0.51022733 0.5100163 1.7366752 0 -2213.3373 0.49838067 -2212.8271 1 -2213.3371
50 0.025904252 0.0022808801 0.008105847 0.025904252 0.016908971 0.5101712 0.51008591 1.7391431 0 -2213.3373 0.49923347 -2212.8272 1 -2213.3373
50 0.025904121 0.0022808707 0.0081058431 0.025904121 0.016908969 0.5101712 0.51008591 1.7391431 0 -2213.3373 0.49923346 -2212.8272 1 -2213.3373
59 0.0096287928 0.0012946716 0.005657861 0.0093731008 0.01204121 0.51014185 0.51010207 1.7404554 0 -2213.3374 0.49955696 -2212.8272 1 -2213.3373
Climbing replica = 2
Step MaxReplicaForce MaxAtomForce GradV0 GradV1 GradVc EBF EBR RDT RD1 PE1 RD2 PE2 ... RDN PEN
50 0.025904252 0.0044134315 0.008105847 0.025904252 0.016908971 0.5101712 0.51008591 1.7391431 0 -2213.3373 0.49923347 -2212.8272 1 -2213.3373
60 0.011518317 0.0013089596 0.0054472815 0.011518317 0.0091629734 0.51014415 0.51010903 1.7406815 0 -2213.3374 0.50065207 -2212.8272 1 -2213.3373
61 0.0089525108 0.0012703829 0.0052524345 0.0088142351 0.0089525108 0.51014321 0.51010962 1.7407173 0 -2213.3374 0.50065779 -2212.8272 1 -2213.3373
59 0.01204121 0.0031506449 0.005657861 0.0093731008 0.01204121 0.51014185 0.51010207 1.7404554 0 -2213.3374 0.49955696 -2212.8272 1 -2213.3373
63 0.0091530442 0.0016693787 0.0049652227 0.0082075097 0.0091530442 0.51013743 0.51010775 1.7409027 0 -2213.3374 0.50022228 -2212.8272 1 -2213.3373

View File

@ -9,9 +9,9 @@ variable zblz equal 73
# Specify hybrid with SNAP, ZBL
pair_style hybrid/overlay &
zbl ${zblcutinner} ${zblcutouter} &
snap
pair_style hybrid/overlay snap &
zbl ${zblcutinner} ${zblcutouter}
pair_coeff 1 1 zbl ${zblz} ${zblz}
pair_coeff * * snap Ta06A.snapcoeff Ta Ta06A.snapparam Ta

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@ -28,6 +28,15 @@ import os
import select
import re
class MPIAbortException(Exception):
def __init__(self, message):
self.message = message
def __str__(self):
return repr(self.message)
class lammps(object):
# detect if Python is using version of mpi4py that can pass a communicator
@ -43,6 +52,7 @@ class lammps(object):
# create instance of LAMMPS
def __init__(self,name="",cmdargs=None,ptr=None,comm=None):
self.comm = comm
# determine module location
@ -150,10 +160,14 @@ class lammps(object):
if cmd: cmd = cmd.encode()
self.lib.lammps_command(self.lmp,cmd)
if self.lib.lammps_has_error(self.lmp):
if self.uses_exceptions and self.lib.lammps_has_error(self.lmp):
sb = create_string_buffer(100)
self.lib.lammps_get_last_error_message(self.lmp, sb, 100)
raise Exception(sb.value.decode().strip())
error_type = self.lib.lammps_get_last_error_message(self.lmp, sb, 100)
error_msg = sb.value.decode().strip()
if error_type == 2:
raise MPIAbortException(error_msg)
raise Exception(error_msg)
def extract_global(self,name,type):
if name: name = name.encode()
@ -286,6 +300,14 @@ class lammps(object):
if name: name = name.encode()
self.lib.lammps_scatter_atoms(self.lmp,name,type,count,data)
@property
def uses_exceptions(self):
try:
if self.lib.lammps_has_error:
return True
except(AttributeError):
return False
# -------------------------------------------------------------------------
# -------------------------------------------------------------------------
# -------------------------------------------------------------------------

View File

@ -33,6 +33,7 @@ public:
void init_style();
double single(int, int, int, int, double, double, double, double &);
double memory_usage();
void *extract(const char *, int &) { return NULL; }
int pack_forward_comm(int, int *, double *, int, int *);
void unpack_forward_comm(int, int, double *);

View File

@ -33,6 +33,7 @@ public:
void init_style();
double single(int, int, int, int, double, double, double, double &);
double memory_usage();
void *extract(const char *, int &) { return NULL; }
int pack_forward_comm(int, int *, double *, int, int *);
void unpack_forward_comm(int, int, double *);

View File

@ -34,6 +34,7 @@ class PairEAMGPU : public PairEAM {
void init_style();
double single(int, int, int, int, double, double, double, double &);
double memory_usage();
void *extract(const char *, int &) { return NULL; }
int pack_forward_comm(int, int *, double *, int, int *);
void unpack_forward_comm(int, int, double *);

View File

@ -61,6 +61,7 @@ class PairEAMAlloyKokkos : public PairEAM {
virtual ~PairEAMAlloyKokkos();
virtual void compute(int, int);
void init_style();
void *extract(const char *, int &) { return NULL; }
void coeff(int, char **);
KOKKOS_INLINE_FUNCTION

View File

@ -61,6 +61,7 @@ class PairEAMFSKokkos : public PairEAM {
virtual ~PairEAMFSKokkos();
virtual void compute(int, int);
void init_style();
void *extract(const char *, int &) { return NULL; }
void coeff(int, char **);
KOKKOS_INLINE_FUNCTION

View File

@ -59,6 +59,7 @@ class PairEAMKokkos : public PairEAM {
virtual ~PairEAMKokkos();
virtual void compute(int, int);
void init_style();
void *extract(const char *, int &) { return NULL; }
KOKKOS_INLINE_FUNCTION
void operator()(TagPairEAMPackForwardComm, const int&) const;

View File

@ -54,6 +54,7 @@ PairEAM::PairEAM(LAMMPS *lmp) : Pair(lmp)
frho = NULL;
rhor = NULL;
z2r = NULL;
scale = NULL;
frho_spline = NULL;
rhor_spline = NULL;
@ -232,6 +233,7 @@ void PairEAM::compute(int eflag, int vflag)
if (eflag) {
phi = ((coeff[3]*p + coeff[4])*p + coeff[5])*p + coeff[6];
if (rho[i] > rhomax) phi += fp[i] * (rho[i]-rhomax);
phi *= scale[type[i]][type[i]];
if (eflag_global) eng_vdwl += phi;
if (eflag_atom) eatom[i] += phi;
}
@ -306,7 +308,7 @@ void PairEAM::compute(int eflag, int vflag)
f[j][2] -= delz*fpair;
}
if (eflag) evdwl = phi;
if (eflag) evdwl = scale[itype][jtype]*phi;
if (evflag) ev_tally(i,j,nlocal,newton_pair,
evdwl,0.0,fpair,delx,dely,delz);
}

View File

@ -54,7 +54,7 @@ class PairEAM : public Pair {
void init_style();
double init_one(int, int);
double single(int, int, int, int, double, double, double, double &);
void *extract(const char *, int &);
virtual void *extract(const char *, int &);
virtual int pack_forward_comm(int, int *, double *, int, int *);
virtual void unpack_forward_comm(int, int, double *);

1432
src/MOLECULE/fix_cmap.cpp Normal file

File diff suppressed because it is too large Load Diff

129
src/MOLECULE/fix_cmap.h Normal file
View File

@ -0,0 +1,129 @@
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
http://lammps.sandia.gov, Sandia National Laboratories
Steve Plimpton, sjplimp@sandia.gov
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#ifdef FIX_CLASS
FixStyle(cmap,FixCMAP)
#else
#ifndef LMP_FIX_CMAP_H
#define LMP_FIX_CMAP_H
#include "fix.h"
namespace LAMMPS_NS {
class FixCMAP : public Fix {
public:
FixCMAP(class LAMMPS *, int, char **);
~FixCMAP();
int setmask();
void init();
void setup(int);
void setup_pre_neighbor();
void min_setup(int);
void pre_neighbor();
void pre_reverse(int, int);
void post_force(int);
void post_force_respa(int, int, int);
void min_post_force(int);
double compute_scalar();
void read_data_header(char *);
void read_data_section(char *, int, char *, tagint);
bigint read_data_skip_lines(char *);
void write_data_header(FILE *, int);
void write_data_section_size(int, int &, int &);
void write_data_section_pack(int, double **);
void write_data_section_keyword(int, FILE *);
void write_data_section(int, FILE *, int, double **, int);
void write_restart(FILE *);
void restart(char *);
int pack_restart(int, double *);
void unpack_restart(int, int);
int size_restart(int);
int maxsize_restart();
void grow_arrays(int);
void copy_arrays(int, int, int);
void set_arrays(int);
int pack_exchange(int, double *);
int unpack_exchange(int, double *);
double memory_usage();
private:
int nprocs,me;
int newton_bond,eflag_caller;
int ctype,nlevels_respa;
int ncrosstermtypes,crossterm_per_atom,maxcrossterm;
int ncrosstermlist;
bigint ncmap;
int **crosstermlist;
int nmax_previous;
int *num_crossterm;
int **crossterm_type;
tagint **crossterm_atom1,**crossterm_atom2,**crossterm_atom3;
tagint **crossterm_atom4,**crossterm_atom5;
double E,dEdPhi,dEdPsi;
double ecmap;
double fcmap[4],cij[4][4];
double *g_axis;
// CMAP grid points obtained from external file
double ***cmapgrid;
// partial derivatives and cross-derivatives of the grid data
double ***d1cmapgrid,***d2cmapgrid,***d12cmapgrid;
// read map grid data
void read_grid_map(char *);
// read in CMAP cross terms from LAMMPS data file
void read_cmap_data(int, char *);
// pre-compute the partial and cross-derivatives of map grid points
void set_map_derivatives(double **, double **, double **, double **);
// cubic spline interpolation functions for derivatives of map grid points
void spline(double *, double *, int);
void spl_interpolate(double, double *, double *, double &, double &);
// calculate dihedral angles
double dihedral_angle_atan2(double, double, double, double, double, double,
double, double, double, double);
// calculate bicubic interpolation coefficient matrix c_ij
void bc_coeff(double *, double *, double *, double *);
// perform bicubic interpolation at point of interest
void bc_interpol(double, double, int, int, double *, double *, double *,
double *);
};
}
#endif
#endif

View File

@ -247,6 +247,7 @@ void PairEAMOpt::eval()
if (EFLAG) {
double phi = ((coeff[3]*p + coeff[4])*p + coeff[5])*p + coeff[6];
if (rho[i] > rhomax) phi += fp[i] * (rho[i]-rhomax);
phi *= scale[type[i]][type[i]];
if (eflag_global) eng_vdwl += phi;
if (eflag_atom) eatom[i] += phi;
}
@ -273,6 +274,7 @@ void PairEAMOpt::eval()
double tmpfz = 0.0;
fast_gamma_t* _noalias tabssi = &tabss[itype1*ntypes*nr];
double* _noalias scale_i = scale[itype1+1]+1;
for (jj = 0; jj < jnum; jj++) {
j = jlist[jj];
@ -316,12 +318,13 @@ void PairEAMOpt::eval()
// psip needs both fp[i] and fp[j] terms since r_ij appears in two
// terms of embed eng: Fi(sum rho_ij) and Fj(sum rho_ji)
// hence embed' = Fi(sum rho_ij) rhojp + Fj(sum rho_ji) rhoip
// scale factor can be applied by thermodynamic integration
double recip = 1.0/r;
double phi = z2*recip;
double phip = z2p*recip - phi*recip;
double psip = fp[i]*rhojp + fp[j]*rhoip + phip;
double fpair = -psip*recip;
double fpair = -scale_i[jtype]*psip*recip;
tmpfx += delx*fpair;
tmpfy += dely*fpair;
@ -332,7 +335,7 @@ void PairEAMOpt::eval()
ff[j].z -= delz*fpair;
}
if (EFLAG) evdwl = phi;
if (EFLAG) evdwl = scale_i[jtype]*phi;
if (EVFLAG) ev_tally(i,j,nlocal,NEWTON_PAIR,
evdwl,0.0,fpair,delx,dely,delz);

View File

@ -18,10 +18,12 @@
#include "fix_neb.h"
#include "universe.h"
#include "update.h"
#include "atom.h"
#include "domain.h"
#include "comm.h"
#include "modify.h"
#include "compute.h"
#include "atom.h"
#include "group.h"
#include "memory.h"
#include "error.h"
#include "force.h"
@ -29,6 +31,8 @@
using namespace LAMMPS_NS;
using namespace FixConst;
enum{SINGLE_PROC_DIRECT,SINGLE_PROC_MAP,MULTI_PROC};
/* ---------------------------------------------------------------------- */
FixNEB::FixNEB(LAMMPS *lmp, int narg, char **arg) :
@ -41,8 +45,13 @@ FixNEB::FixNEB(LAMMPS *lmp, int narg, char **arg) :
// nreplica = number of partitions
// ireplica = which world I am in universe
// nprocs_universe = # of procs in all replicase
// procprev,procnext = root proc in adjacent replicas
me = comm->me;
nprocs = comm->nprocs;
nprocs_universe = universe->nprocs;
nreplica = universe->nworlds;
ireplica = universe->iworld;
@ -67,7 +76,17 @@ FixNEB::FixNEB(LAMMPS *lmp, int narg, char **arg) :
modify->add_compute(3,newarg);
delete [] newarg;
// initialize local storage
maxlocal = 0;
ntotal = 0;
xprev = xnext = tangent = NULL;
xsend = xrecv = NULL;
tagsend = tagrecv = NULL;
xsendall = xrecvall = NULL;
tagsendall = tagrecvall = NULL;
counts = displacements = NULL;
}
/* ---------------------------------------------------------------------- */
@ -80,6 +99,19 @@ FixNEB::~FixNEB()
memory->destroy(xprev);
memory->destroy(xnext);
memory->destroy(tangent);
memory->destroy(xsend);
memory->destroy(xrecv);
memory->destroy(tagsend);
memory->destroy(tagrecv);
memory->destroy(xsendall);
memory->destroy(xrecvall);
memory->destroy(tagsendall);
memory->destroy(tagrecvall);
memory->destroy(counts);
memory->destroy(displacements);
}
/* ---------------------------------------------------------------------- */
@ -104,15 +136,35 @@ void FixNEB::init()
rclimber = -1;
// setup xprev and xnext arrays
// nebatoms = # of atoms in fix group = atoms with inter-replica forces
memory->destroy(xprev);
memory->destroy(xnext);
memory->destroy(tangent);
nebatoms = atom->nlocal;
memory->create(xprev,nebatoms,3,"neb:xprev");
memory->create(xnext,nebatoms,3,"neb:xnext");
memory->create(tangent,nebatoms,3,"neb:tangent");
bigint count = group->count(igroup);
if (count > MAXSMALLINT) error->all(FLERR,"Too many active NEB atoms");
nebatoms = count;
// comm style for inter-replica exchange of coords
if (nreplica == nprocs_universe &&
nebatoms == atom->natoms && atom->sortfreq == 0)
cmode = SINGLE_PROC_DIRECT;
else if (nreplica == nprocs_universe) cmode = SINGLE_PROC_MAP;
else cmode = MULTI_PROC;
// ntotal = total # of atoms in system, NEB atoms or not
if (atom->natoms > MAXSMALLINT) error->all(FLERR,"Too many atoms for NEB");
ntotal = atom->natoms;
if (atom->nlocal > maxlocal) reallocate();
if (MULTI_PROC && counts == NULL) {
memory->create(xsendall,ntotal,3,"neb:xsendall");
memory->create(xrecvall,ntotal,3,"neb:xrecvall");
memory->create(tagsendall,ntotal,"neb:tagsendall");
memory->create(tagrecvall,ntotal,"neb:tagrecvall");
memory->create(counts,nprocs,"neb:counts");
memory->create(displacements,nprocs,"neb:displacements");
}
}
/* ---------------------------------------------------------------------- */
@ -133,40 +185,31 @@ void FixNEB::min_post_force(int vflag)
double vprev,vnext,vmax,vmin;
double delx,dely,delz;
double delta1[3],delta2[3];
MPI_Request request;
// veng = PE of this replica
// vprev,vnext = PEs of adjacent replicas
// only proc 0 in each replica communicates
vprev = vnext = veng = pe->compute_scalar();
if (ireplica < nreplica-1) MPI_Send(&veng,1,MPI_DOUBLE,procnext,0,uworld);
if (ireplica > 0) MPI_Recv(&vprev,1,MPI_DOUBLE,procprev,0,uworld,MPI_STATUS_IGNORE);
if (ireplica < nreplica-1 && me == 0)
MPI_Send(&veng,1,MPI_DOUBLE,procnext,0,uworld);
if (ireplica > 0 && me == 0)
MPI_Recv(&vprev,1,MPI_DOUBLE,procprev,0,uworld,MPI_STATUS_IGNORE);
if (ireplica > 0) MPI_Send(&veng,1,MPI_DOUBLE,procprev,0,uworld);
if (ireplica < nreplica-1)
if (ireplica > 0 && me == 0)
MPI_Send(&veng,1,MPI_DOUBLE,procprev,0,uworld);
if (ireplica < nreplica-1 && me == 0)
MPI_Recv(&vnext,1,MPI_DOUBLE,procnext,0,uworld,MPI_STATUS_IGNORE);
// xprev,xnext = atom coords of adjacent replicas
// assume order of atoms in all replicas is the same
// check that number of atoms hasn't changed
if (cmode == MULTI_PROC) {
MPI_Bcast(&vprev,1,MPI_DOUBLE,0,world);
MPI_Bcast(&vnext,1,MPI_DOUBLE,0,world);
}
double **x = atom->x;
int *mask = atom->mask;
int nlocal = atom->nlocal;
if (nlocal != nebatoms) error->one(FLERR,"Atom count changed in fix neb");
// communicate atoms to/from adjacent replicas to fill xprev,xnext
if (ireplica > 0)
MPI_Irecv(xprev[0],3*nlocal,MPI_DOUBLE,procprev,0,uworld,&request);
if (ireplica < nreplica-1)
MPI_Send(x[0],3*nlocal,MPI_DOUBLE,procnext,0,uworld);
if (ireplica > 0) MPI_Wait(&request,MPI_STATUS_IGNORE);
if (ireplica < nreplica-1)
MPI_Irecv(xnext[0],3*nlocal,MPI_DOUBLE,procnext,0,uworld,&request);
if (ireplica > 0)
MPI_Send(x[0],3*nlocal,MPI_DOUBLE,procprev,0,uworld);
if (ireplica < nreplica-1) MPI_Wait(&request,MPI_STATUS_IGNORE);
inter_replica_comm();
// trigger potential energy computation on next timestep
@ -175,11 +218,13 @@ void FixNEB::min_post_force(int vflag)
// compute norm of GradV for log output
double **f = atom->f;
int nlocal = atom->nlocal;
double fsq = 0.0;
for (int i = 0; i < nlocal; i++)
fsq += f[i][0]*f[i][0] + f[i][1]*f[i][1] + f[i][2]*f[i][2];
MPI_Allreduce(&fsq,&gradvnorm,1,MPI_DOUBLE,MPI_MAX,world);
MPI_Allreduce(&fsq,&gradvnorm,1,MPI_DOUBLE,MPI_SUM,world);
gradvnorm = sqrt(gradvnorm);
// first or last replica has no change to forces, just return
@ -195,6 +240,9 @@ void FixNEB::min_post_force(int vflag)
// depending on relative PEs of 3 replicas
// see Henkelman & Jonsson 2000 paper, eqs 8-11
double **x = atom->x;
int *mask = atom->mask;
if (vnext > veng && veng > vprev) {
for (int i = 0; i < nlocal; i++)
if (mask[i] & groupbit) {
@ -260,9 +308,15 @@ void FixNEB::min_post_force(int vflag)
nlen += delx*delx + dely*dely + delz*delz;
}
tlen = sqrt(tlen);
plen = sqrt(plen);
nlen = sqrt(nlen);
double lenall;
MPI_Allreduce(&tlen,&lenall,1,MPI_DOUBLE,MPI_SUM,world);
tlen = sqrt(lenall);
MPI_Allreduce(&plen,&lenall,1,MPI_DOUBLE,MPI_SUM,world);
plen = sqrt(lenall);
MPI_Allreduce(&nlen,&lenall,1,MPI_DOUBLE,MPI_SUM,world);
nlen = sqrt(lenall);
// normalize tangent vector
@ -295,9 +349,12 @@ void FixNEB::min_post_force(int vflag)
f[i][2]*tangent[i][2];
}
double dotall;
MPI_Allreduce(&dot,&dotall,1,MPI_DOUBLE,MPI_SUM,world);
double prefactor;
if (ireplica == rclimber) prefactor = -2.0*dot;
else prefactor = -dot + kspring*(nlen-plen);
if (ireplica == rclimber) prefactor = -2.0*dotall;
else prefactor = -dotall + kspring*(nlen-plen);
for (int i = 0; i < nlocal; i++)
if (mask[i] & groupbit) {
@ -306,3 +363,222 @@ void FixNEB::min_post_force(int vflag)
f[i][2] += prefactor*tangent[i][2];
}
}
/* ----------------------------------------------------------------------
send/recv NEB atoms to/from adjacent replicas
received atoms matching my local atoms are stored in xprev,xnext
replicas 0 and N-1 send but do not receive any atoms
------------------------------------------------------------------------- */
void FixNEB::inter_replica_comm()
{
int i,m;
MPI_Request request;
MPI_Request requests[2];
MPI_Status statuses[2];
// reallocate memory if necessary
if (atom->nlocal > maxlocal) reallocate();
double **x = atom->x;
tagint *tag = atom->tag;
int *mask = atom->mask;
int nlocal = atom->nlocal;
// -----------------------------------------------------
// 3 cases: two for single proc per replica
// one for multiple procs per replica
// -----------------------------------------------------
// single proc per replica
// all atoms are NEB atoms and no atom sorting is enabled
// direct comm of x -> xprev and x -> xnext
if (cmode == SINGLE_PROC_DIRECT) {
if (ireplica > 0)
MPI_Irecv(xprev[0],3*nlocal,MPI_DOUBLE,procprev,0,uworld,&request);
if (ireplica < nreplica-1)
MPI_Send(x[0],3*nlocal,MPI_DOUBLE,procnext,0,uworld);
if (ireplica > 0) MPI_Wait(&request,MPI_STATUS_IGNORE);
if (ireplica < nreplica-1)
MPI_Irecv(xnext[0],3*nlocal,MPI_DOUBLE,procnext,0,uworld,&request);
if (ireplica > 0)
MPI_Send(x[0],3*nlocal,MPI_DOUBLE,procprev,0,uworld);
if (ireplica < nreplica-1) MPI_Wait(&request,MPI_STATUS_IGNORE);
return;
}
// single proc per replica
// but only some atoms are NEB atoms or atom sorting is enabled
// send atom IDs and coords of only NEB atoms to prev/next proc
// recv proc uses atom->map() to match received coords to owned atoms
if (cmode == SINGLE_PROC_MAP) {
m = 0;
for (i = 0; i < nlocal; i++)
if (mask[i] & groupbit) {
tagsend[m] = tag[i];
xsend[m][0] = x[i][0];
xsend[m][1] = x[i][1];
xsend[m][2] = x[i][2];
m++;
}
if (ireplica > 0) {
MPI_Irecv(xrecv[0],3*nebatoms,MPI_DOUBLE,procprev,0,uworld,&requests[0]);
MPI_Irecv(tagrecv,nebatoms,MPI_LMP_TAGINT,procprev,0,uworld,&requests[1]);
}
if (ireplica < nreplica-1) {
MPI_Send(xsend[0],3*nebatoms,MPI_DOUBLE,procnext,0,uworld);
MPI_Send(tagsend,nebatoms,MPI_LMP_TAGINT,procnext,0,uworld);
}
if (ireplica > 0) {
MPI_Waitall(2,requests,statuses);
for (i = 0; i < nebatoms; i++) {
m = atom->map(tagrecv[i]);
xprev[m][0] = xrecv[i][0];
xprev[m][1] = xrecv[i][1];
xprev[m][2] = xrecv[i][2];
}
}
if (ireplica < nreplica-1) {
MPI_Irecv(xrecv[0],3*nebatoms,MPI_DOUBLE,procnext,0,uworld,&requests[0]);
MPI_Irecv(tagrecv,nebatoms,MPI_LMP_TAGINT,procnext,0,uworld,&requests[1]);
}
if (ireplica > 0) {
MPI_Send(xsend[0],3*nebatoms,MPI_DOUBLE,procprev,0,uworld);
MPI_Send(tagsend,nebatoms,MPI_LMP_TAGINT,procprev,0,uworld);
}
if (ireplica < nreplica-1) {
MPI_Waitall(2,requests,statuses);
for (i = 0; i < nebatoms; i++) {
m = atom->map(tagrecv[i]);
xnext[m][0] = xrecv[i][0];
xnext[m][1] = xrecv[i][1];
xnext[m][2] = xrecv[i][2];
}
}
return;
}
// multiple procs per replica
// MPI_Gather all coords and atom IDs to root proc of each replica
// send to root of adjacent replicas
// bcast within each replica
// each proc extracts info for atoms it owns via atom->map()
m = 0;
for (i = 0; i < nlocal; i++)
if (mask[i] & groupbit) {
tagsend[m] = tag[i];
xsend[m][0] = x[i][0];
xsend[m][1] = x[i][1];
xsend[m][2] = x[i][2];
m++;
}
MPI_Gather(&m,1,MPI_INT,counts,1,MPI_INT,0,world);
displacements[0] = 0;
for (i = 0; i < nprocs-1; i++)
displacements[i+1] = displacements[i] + counts[i];
MPI_Gatherv(tagsend,m,MPI_LMP_TAGINT,
tagsendall,counts,displacements,MPI_LMP_TAGINT,0,world);
for (i = 0; i < nprocs; i++) counts[i] *= 3;
for (i = 0; i < nprocs-1; i++)
displacements[i+1] = displacements[i] + counts[i];
if (xsend)
MPI_Gatherv(xsend[0],3*m,MPI_DOUBLE,
xsendall[0],counts,displacements,MPI_DOUBLE,0,world);
else
MPI_Gatherv(NULL,3*m,MPI_DOUBLE,
xsendall[0],counts,displacements,MPI_DOUBLE,0,world);
if (ireplica > 0 && me == 0) {
MPI_Irecv(xrecvall[0],3*nebatoms,MPI_DOUBLE,procprev,0,uworld,&requests[0]);
MPI_Irecv(tagrecvall,nebatoms,MPI_LMP_TAGINT,procprev,0,uworld,
&requests[1]);
}
if (ireplica < nreplica-1 && me == 0) {
MPI_Send(xsendall[0],3*nebatoms,MPI_DOUBLE,procnext,0,uworld);
MPI_Send(tagsendall,nebatoms,MPI_LMP_TAGINT,procnext,0,uworld);
}
if (ireplica > 0) {
if (me == 0) MPI_Waitall(2,requests,statuses);
MPI_Bcast(tagrecvall,nebatoms,MPI_INT,0,world);
MPI_Bcast(xrecvall[0],3*nebatoms,MPI_DOUBLE,0,world);
for (i = 0; i < nebatoms; i++) {
m = atom->map(tagrecvall[i]);
if (m < 0 || m >= nlocal) continue;
xprev[m][0] = xrecvall[i][0];
xprev[m][1] = xrecvall[i][1];
xprev[m][2] = xrecvall[i][2];
}
}
if (ireplica < nreplica-1 && me == 0) {
MPI_Irecv(xrecvall[0],3*nebatoms,MPI_DOUBLE,procnext,0,uworld,&requests[0]);
MPI_Irecv(tagrecvall,nebatoms,MPI_LMP_TAGINT,procnext,0,uworld,
&requests[1]);
}
if (ireplica > 0 && me == 0) {
MPI_Send(xsendall[0],3*nebatoms,MPI_DOUBLE,procprev,0,uworld);
MPI_Send(tagsendall,nebatoms,MPI_LMP_TAGINT,procprev,0,uworld);
}
if (ireplica < nreplica-1) {
if (me == 0) MPI_Waitall(2,requests,statuses);
MPI_Bcast(tagrecvall,nebatoms,MPI_INT,0,world);
MPI_Bcast(xrecvall[0],3*nebatoms,MPI_DOUBLE,0,world);
for (i = 0; i < nebatoms; i++) {
m = atom->map(tagrecvall[i]);
if (m < 0 || m >= nlocal) continue;
xnext[m][0] = xrecvall[i][0];
xnext[m][1] = xrecvall[i][1];
xnext[m][2] = xrecvall[i][2];
}
}
}
/* ----------------------------------------------------------------------
reallocate xprev,xnext,tangent arrays if necessary
reallocate communication arrays if necessary
------------------------------------------------------------------------- */
void FixNEB::reallocate()
{
memory->destroy(xprev);
memory->destroy(xnext);
memory->destroy(tangent);
if (cmode != SINGLE_PROC_DIRECT) {
memory->destroy(xsend);
memory->destroy(xrecv);
memory->destroy(tagsend);
memory->destroy(tagrecv);
}
maxlocal = atom->nmax;
memory->create(xprev,maxlocal,3,"neb:xprev");
memory->create(xnext,maxlocal,3,"neb:xnext");
memory->create(tangent,maxlocal,3,"neb:tangent");
if (cmode != SINGLE_PROC_DIRECT) {
memory->create(xsend,maxlocal,3,"neb:xsend");
memory->create(xrecv,maxlocal,3,"neb:xrecv");
memory->create(tagsend,maxlocal,"neb:tagsend");
memory->create(tagrecv,maxlocal,"neb:tagrecv");
}
}

View File

@ -38,17 +38,34 @@ class FixNEB : public Fix {
void min_post_force(int);
private:
int me,nprocs,nprocs_universe;
double kspring;
int ireplica,nreplica;
int procnext,procprev;
int cmode;
MPI_Comm uworld;
char *id_pe;
class Compute *pe;
int nebatoms;
double **xprev,**xnext;
double **tangent;
int nebatoms; // # of active NEB atoms
int ntotal; // total # of atoms, NEB or not
int maxlocal; // size of xprev,xnext,tangent arrays
double **xprev,**xnext; // coords of my owned atoms in neighbor replicas
double **tangent; // work vector for inter-replica forces
double **xsend,**xrecv; // coords to send/recv to/from other replica
tagint *tagsend,*tagrecv; // ditto for atom IDs
// info gathered from all procs in my replica
double **xsendall,**xrecvall; // coords to send/recv to/from other replica
tagint *tagsendall,*tagrecvall; // ditto for atom IDs
int *counts,*displacements; // used for MPI_Gather
void inter_replica_comm();
void reallocate();
};
}

View File

@ -137,10 +137,6 @@ void NEB::command(int narg, char **arg)
// error checks
if (nreplica == 1) error->all(FLERR,"Cannot use NEB with a single replica");
if (nreplica != universe->nprocs)
error->all(FLERR,"Can only use NEB with 1-processor replicas");
if (atom->sortfreq > 0)
error->all(FLERR,"Cannot use NEB with atom_modify sort enabled");
if (atom->map_style == 0)
error->all(FLERR,"Cannot use NEB unless atom map exists");
@ -228,7 +224,7 @@ void NEB::run()
// perform regular NEB for n1steps or until replicas converge
// retrieve PE values from fix NEB and print every nevery iterations
// break induced if converged
// break out of while loop early if converged
// damped dynamic min styles insure all replicas converge together
timer->init();
@ -531,7 +527,7 @@ void NEB::open(char *file)
/* ----------------------------------------------------------------------
query fix NEB for info on each replica
proc 0 prints current NEB status
universe proc 0 prints current NEB status
------------------------------------------------------------------------- */
void NEB::print_status()
@ -552,6 +548,7 @@ void NEB::print_status()
if (output->thermo->normflag) one[0] /= atom->natoms;
if (me == 0)
MPI_Allgather(one,nall,MPI_DOUBLE,&all[0][0],nall,MPI_DOUBLE,roots);
MPI_Bcast(&all[0][0],nall*nreplica,MPI_DOUBLE,0,world);
rdist[0] = 0.0;
for (int i = 1; i < nreplica; i++)

View File

@ -765,10 +765,10 @@ void PRD::log_event()
/* ----------------------------------------------------------------------
communicate atom coords and image flags in ireplica to all other replicas
one proc per replica:
if one proc per replica:
direct overwrite via bcast
else atoms could be stored in different order or on different procs:
collect to root proc of event replica
else atoms could be stored in different order on a proc or on different procs:
gather to root proc of event replica
bcast to roots of other replicas
bcast within each replica
each proc extracts info for atoms it owns using atom IDs

Some files were not shown because too many files have changed in this diff Show More