update atom_style command documentation

This commit is contained in:
Axel Kohlmeyer
2024-01-24 16:11:29 -05:00
parent 300b75fbff
commit ebd493ea77

View File

@ -49,9 +49,20 @@ Examples
Description
"""""""""""
Define what style of atoms to use in a simulation. This determines
what attributes are associated with the atoms. This command must be
used before a simulation is setup via a :doc:`read_data <read_data>`,
The *atom_style* command selects which per-atom attributes are
associated with atoms in a LAMMPS simulation and thus stored and
communicated with those atoms and read from and stored in data and
restart files. Different models (e.g. :doc:`pair styles <pair_style>`)
require access to specific per-atom attributes and thus require a
specific atom style (for instance, to compute Coulomb interactions, the
atom must have a "charge" (aka "q") attribute.
A number of distinct atom styles exist that combine attributes. Some
atom styles are supersets of others. Further attributes may be added to
atoms either via using a hybrid style and thus providing a union of the
attributes of the sub-styles, or via :doc:`fix property/atom
<fix_property_atom>`. The *atom_style* command must be used before a
simulation is setup via a :doc:`read_data <read_data>`,
:doc:`read_restart <read_restart>`, or :doc:`create_box <create_box>`
command.
@ -61,114 +72,198 @@ command.
LAMMPS was built with a specific package, as listed below in the
Restrictions section.
Once a style is assigned, it cannot be changed, so use a style general
enough to encompass all attributes. E.g. with style *bond*, angular
terms cannot be used or added later to the model. It is OK to use a
style more general than needed, though it may be slightly inefficient.
Once a style is selected and the simulation box defined, it cannot be
changed but only augmented with the :doc:`fix property/atom
<fix_property_atom>` command. So one should select an atom style
general enough to encompass all attributes required. E.g. with atom
style *bond*, it is not possible to define angles and use angle styles.
The choice of style affects what quantities are stored by each atom,
what quantities are communicated between processors to enable forces
to be computed, and what quantities are listed in the data file read
by the :doc:`read_data <read_data>` command.
It is OK to use a style more general than needed, though it may be
slightly inefficient and allocate and communicate additional, otherwise
unused data.
These are the additional attributes of each style and the typical
kinds of physical systems they are used to model. All styles store
coordinates, velocities, atom IDs and types. See the
:doc:`read_data <read_data>`, :doc:`create_atoms <create_atoms>`, and
:doc:`set <set>` commands for info on how to set these various
quantities.
Atom style attributes
"""""""""""""""""""""
+--------------+-----------------------------------------------------+--------------------------------------+
| *amoeba* | molecular + charge + 1/5 neighbors | AMOEBA/HIPPO polarized force fields |
+--------------+-----------------------------------------------------+--------------------------------------+
| *angle* | bonds and angles | bead-spring polymers with stiffness |
+--------------+-----------------------------------------------------+--------------------------------------+
| *atomic* | only the default values | coarse-grain liquids, solids, metals |
+--------------+-----------------------------------------------------+--------------------------------------+
| *body* | mass, inertia moments, quaternion, angular momentum | arbitrary bodies |
+--------------+-----------------------------------------------------+--------------------------------------+
| *bond* | bonds | bead-spring polymers |
+--------------+-----------------------------------------------------+--------------------------------------+
| *charge* | charge | atomic system with charges |
+--------------+-----------------------------------------------------+--------------------------------------+
| *dielectric* | normx normy normz area/patch ed em epsilon curv | system with surface polarization |
+--------------+-----------------------------------------------------+--------------------------------------+
| *dipole* | charge and dipole moment | system with dipolar particles |
+--------------+-----------------------------------------------------+--------------------------------------+
| *dpd* | internal temperature and internal energies | DPD particles |
+--------------+-----------------------------------------------------+--------------------------------------+
| *edpd* | temperature and heat capacity | eDPD particles |
+--------------+-----------------------------------------------------+--------------------------------------+
| *electron* | charge and spin and eradius | electronic force field |
+--------------+-----------------------------------------------------+--------------------------------------+
| *ellipsoid* | shape, quaternion, angular momentum | aspherical particles |
+--------------+-----------------------------------------------------+--------------------------------------+
| *full* | molecular + charge | bio-molecules |
+--------------+-----------------------------------------------------+--------------------------------------+
| *line* | end points, angular velocity | rigid bodies |
+--------------+-----------------------------------------------------+--------------------------------------+
| *mdpd* | density | mDPD particles |
+--------------+-----------------------------------------------------+--------------------------------------+
| *molecular* | bonds, angles, dihedrals, impropers | uncharged molecules |
+--------------+-----------------------------------------------------+--------------------------------------+
| *oxdna* | nucleotide polarity | coarse-grained DNA and RNA models |
+--------------+-----------------------------------------------------+--------------------------------------+
| *peri* | mass, volume | mesoscopic Peridynamic models |
+--------------+-----------------------------------------------------+--------------------------------------+
| *smd* | volume, kernel diameter, contact radius, mass | solid and fluid SPH particles |
+--------------+-----------------------------------------------------+--------------------------------------+
| *sph* | rho, esph, cv | SPH particles |
+--------------+-----------------------------------------------------+--------------------------------------+
| *sphere* | diameter, mass, angular velocity | granular models |
+--------------+-----------------------------------------------------+--------------------------------------+
| *bpm/sphere* | diameter, mass, angular velocity, quaternion | granular bonded particle models (BPM)|
+--------------+-----------------------------------------------------+--------------------------------------+
| *spin* | magnetic moment | system with magnetic particles |
+--------------+-----------------------------------------------------+--------------------------------------+
| *tdpd* | chemical concentration | tDPD particles |
+--------------+-----------------------------------------------------+--------------------------------------+
| *template* | template index, template atom | small molecules with fixed topology |
+--------------+-----------------------------------------------------+--------------------------------------+
| *tri* | corner points, angular momentum | rigid bodies |
+--------------+-----------------------------------------------------+--------------------------------------+
| *wavepacket* | charge, spin, eradius, etag, cs_re, cs_im | AWPMD |
+--------------+-----------------------------------------------------+--------------------------------------+
The atom style *atomic* has the minimum subset of per-atom attributes
and is also the default setting. It encompasses the following per-atom
attributes (name of the array in the :doc:`Atom class <Classes_atom>` is
given in parenthesis): atom-ID (tag), type (type), position (x),
velocities (v), forces (f), image flags (image), group membership
(mask). Since all atom styles are supersets of *atomic* they all
include these attributes.
.. note::
It is possible to add some attributes, such as a molecule ID, to
atom styles that do not have them via the :doc:`fix property/atom
<fix_property_atom>` command. This command also allows new custom
attributes consisting of extra integer or floating-point values to
be added to atoms. See the :doc:`fix property/atom
<fix_property_atom>` page for examples of cases where this is
useful and details on how to initialize, access, and output the
custom values.
The atomic mass (mass) is generally indexed with the atom *type* and
**not** the atom *index*. A per-atom mass attribute (rmass) is
available for select atom styles or can be added through using
:doc:`fix property/atom <fix_property_atom>`. If both are defined
the per-atom mass takes precedence.
All of the above styles define point particles, except the *sphere*,
*bpm/sphere*, *ellipsoid*, *electron*, *peri*, *wavepacket*, *line*,
*tri*, and *body* styles, which define finite-size particles. See the
Below is a table with additional atom styles, which attributes they
provide, which :doc:`package <Packages>` is required to use them, and
what typical applications are that use them. See the :doc:`read_data
<read_data>`, :doc:`create_atoms <create_atoms>`, and :doc:`set <set>`
commands for details on how to set these various quantities.
.. list-table::
:header-rows: 1
:widths: auto
* - Atom style
- Attributes
- Required package
- Applications
* - *amoeba*
- *full* + "1-5 special neighbor data"
- :ref:`AMOEBA <PKG-AMOEBA>`
- AMOEBA/HIPPO force fields
* - *angle*
- *bond* + "angle data"
- :ref:`MOLECULE <PKG-MOLECULE>`
- bead-spring polymers with stiffness
* - *atomic*
- tag, type, x, v, f, image, mask
-
- atomic liquids, solids, metals
* - *body*
- *atomic* + radius, rmass, angmom, torque, body
- :ref:`BODY <PKG-BODY>`
- arbitrary bodies, see :doc:`body howto <Howto_body>`
* - *bond*
- *atomic* + molecule, nspecial, special + "bond data"
- :ref:`MOLECULE <PKG-MOLECULE>`
- bead-spring polymers
* - *bpm/sphere*
- *bond* + radius, rmass, omega, torque, quat
- :ref:`BPM <PKG-BPM>`
- granular bonded particle models, see :doc:`BPM howto <Howto_bpm>`
* - *charge*
- *atomic* + q
-
- atomic systems with charges
* - *dielectric*
- *full* + mu, area, ed, em, epsilon, curvature, q_scaled
- :ref:`DIELECTRIC <PKG-DIELECTRIC>`
- systems with surface polarization
* - *dipole*
- *charge* + mu
- :ref:`DIPOLE <PKG-DIPOLE>`
- atomic systems with charges and point dipoles
* - *dpd*
- *atomic* + rho + "reactive DPD data"
- :ref:`DPD-REACT <PKG-DPD-REACT>`
- reactive DPD
* - *edpd*
- *atomic* + "eDPD data"
- :ref:`DPD-MESO <PKG-DPD-MESO>`
- Energy conservative DPD (eDPD)
* - *electron*
- *charge* + espin, eradius, ervel, erforce
- :ref:`EFF <PKG-EFF>`
- Electron force field systems
* - *ellipsoid*
- *atomic* + rmass, angmom, torque, ellipsoid
-
- aspherical particles
* - *full*
- *molecular* + q
- :ref:`MOLECULE <PKG-MOLECULE>`
- molecular force fields
* - *line*
- *atomic* + molecule, radius, rmass, omega, torque, line
-
- 2-d rigid body particles
* - *mdpd*
- *atomic* + rho, drho, vest
- :ref:`DPD-MESO <PKG-DPD-MESO>`
- Many-body DPD (mDPD)
* - *molecular*
- *angle* + "dihedral and improper data"
- :ref:`MOLECULE <PKG-MOLECULE>`
- apolar and uncharged molecules
* - *oxdna*
- *atomic* + id5p
- :ref:`CG-DNA <PKG-CG-DNA>`
- coarse-grained DNA and RNA models
* - *peri*
- *atomic* + rmass, vfrac, s0, x0
- :ref:`PERI <PKG-PERI>`
- mesoscopic Peridynamics models
* - *smd*
- *atomic* + molecule, radius, rmass + "smd data"
- :ref:`MACHDYN <PKG-MACHDYN>`
- Smooth Mach Dynamics models
* - *sph*
- *atomic* + "sph data"
- :ref:`SPH <PKG-SPH>`
- Smoothed particle hydrodynamics models
* - *sphere*
- *atomic* + radius, rmass, omega, torque
-
- finite size spherical particles, e.g. granular models
* - *spin*
- *atomic* + "magnetic moment data"
- :ref:`SPIN <PKG-SPIN>`
- magnetic particles
* - *tdpd*
- *atomic* + cc, cc_flux, vest
- :ref:`DPD-MESO <PKG-DPD-MESO>`
- Transport DPD (tDPD)
* - *template*
- *atomic* + molecule, molindex, molatom
- :ref:`MOLECULE <PKG-MOLECULE>`
- molecular systems where attributes are taken from :doc:`molecule files <molecule>`
* - *tri*
- *sphere* + molecule, angmom, tri
-
- 3-d triangulated rigid body LJ particles
* - *wavepacket*
- *charge* + "wavepacket data"
- :ref:`AWPMD <PKG-AWPMD>`
- Antisymmetrized wave packet MD
.. note::
It is possible to add some attributes, such as a molecule ID, to atom
styles that do not have them built in using the :doc:`fix
property/atom <fix_property_atom>` command. This command also allows
new custom attributes consisting of extra integer or floating-point
values or vectors to be added to atoms. See the :doc:`fix property/atom
<fix_property_atom>` page for examples of cases where this is useful
and details on how to initialize, access, and output these custom
values.
All of the above atyle styles define point particles unless that have
the *radius* property and then define finite-size particles. See the
:doc:`Howto spherical <Howto_spherical>` page for an overview of using
finite-size particle models with LAMMPS.
finite-size particle models with LAMMPS. The *radius* property may need
to be entered as *diameter* (e.g. in :doc:`molecule files <molecule>`
or :doc:`data files <read_data>`).
All of the point-particle styles assign mass to particles on a
per-type basis, using the :doc:`mass <mass>` command, The finite-size
particle styles assign mass to individual particles on a per-particle
basis.
Unless an atom style has the *rmass* attribute, the atomic masses are
defined on a per-type basis, using the :doc:`mass <mass>` command. Atom
styles that have a per-atom mass may define it indirectly through
setting particle diameter and density on a per-particle basis. If the
*rmass* attribute is added through :doc:`fix property/atom <fix_property_atom>`
it is usually needed to define both, per-type and per-atom masses, however
the per-atom mass will usually take precedence.
For the *sphere* and *bpm/sphere* styles, the particles are spheres
and each stores a per-particle diameter and mass. If the diameter >
0.0, the particle is a finite-size sphere. If the diameter = 0.0, it
is a point particle. Note that by use of the *disc* keyword with the
:doc:`fix nve/sphere <fix_nve_sphere>`, :doc:`fix nvt/sphere
<fix_nvt_sphere>`, :doc:`fix nph/sphere <fix_nph_sphere>`,
For the atom style *sphere* and *bpm/sphere* styles, the particles may
be either point particles or finite-size particles. If the *radius*
attribute is > 0.0, the particle is a finite-size sphere. If the
diameter = 0.0, it is a point particle. Note that by using the *disc*
keyword with the :doc:`fix nve/sphere <fix_nve_sphere>`, :doc:`fix
nvt/sphere <fix_nvt_sphere>`, :doc:`fix nph/sphere <fix_nph_sphere>`,
:doc:`fix npt/sphere <fix_npt_sphere>` commands for the *sphere* style,
spheres can be effectively treated as 2d discs for a 2d simulation if
desired. See also the :doc:`set density/disc <set>` command. These
styles take an optional 0 or 1 argument. A value of 0 means the
radius of each sphere is constant for the duration of the simulation.
A value of 1 means the radii may vary dynamically during the simulation,
e.g. due to use of the :doc:`fix adapt <fix_adapt>` command.
styles also take an optional 0 or 1 argument. A value of 0 means the
radius of each sphere is constant for the duration of the simulation
(this is the default). A value of 1 means the radii may vary
dynamically during the simulation, e.g. due to use of the :doc:`fix
adapt <fix_adapt>` command.
For the *ellipsoid* style, the particles are ellipsoids and each
stores a flag which indicates whether it is a finite-size ellipsoid or
@ -194,11 +289,14 @@ and interface particles is only meaningful when :doc:`fix polarize
style is part of the DIELECTRIC package.
For the *dipole* style, a point dipole is defined for each point
particle. Note that if you wish the particles to be finite-size
spheres as in a Stockmayer potential for a dipolar fluid, so that the
particles can rotate due to dipole-dipole interactions, then you need
to use atom_style hybrid sphere dipole, which will assign both a
diameter and dipole moment to each particle.
particle. Note that if you wish the particles to be finite-size spheres
as in a Stockmayer potential for a dipolar fluid, so that the particles
can rotate due to dipole-dipole interactions, then you need to use the
command `atom_style hybrid sphere dipole`, which will assign both a
diameter and dipole moment to each particle. This also requires using
an integrator with a "/sphere" suffix like :doc:`fix nve/sphere
<fix_nve_sphere>` or :doc:`fix nvt/sphere <fix_nh_sphere>` and the
"update dipole" or "update dlm" parameters to the fix commands.
For the *electron* style, the particles representing electrons are 3d
Gaussians with a specified position and bandwidth or uncertainty in
@ -207,45 +305,42 @@ position, which is represented by the eradius = electron size.
For the *peri* style, the particles are spherical and each stores a
per-particle mass and volume.
The *bpm/sphere* style is part of the BPM package.
The *oxdna* style is for coarse-grained nucleotides and stores the
3'-to-5' polarity of the nucleotide strand, which is set through
the bond topology in the data file. The first (second) atom in a
bond definition is understood to point towards the 3'-end (5'-end)
of the strand. Note that this style is part of the CG-DNA package.
of the strand.
The *dpd* style is for dissipative particle dynamics (DPD) particles.
Note that it is part of the DPD-REACT package, and is not for use with
the :doc:`pair_style dpd or dpd/stat <pair_dpd>` commands, which can
simply use atom_style atomic. Atom_style dpd extends DPD particle
properties with internal temperature (dpdTheta), internal conductive
energy (uCond), internal mechanical energy (uMech), and internal
chemical energy (uChem).
The *dpd* style is for reactive dissipative particle dynamics (DPD)
particles. Note that it is part of the DPD-REACT package, and is not
required for use with the :doc:`pair_style dpd or dpd/stat <pair_dpd>`
commands, which only require the attributes from atom_style *atomic*.
Atom_style *dpd* extends DPD particle properties with internal
temperature (dpdTheta), internal conductive energy (uCond), internal
mechanical energy (uMech), and internal chemical energy (uChem).
The *edpd* style is for energy-conserving dissipative particle
dynamics (eDPD) particles which store a temperature (edpd_temp), and
heat capacity(edpd_cv).
The *mdpd* style is for many-body dissipative particle dynamics (mDPD)
particles which store a density (rho) for considering
density-dependent many-body interactions.
particles which store a density (rho) for considering density-dependent
many-body interactions.
The *tdpd* style is for transport dissipative particle dynamics (tDPD)
particles which store a set of chemical concentration. An integer
"cc_species" is required to specify the number of chemical species
involved in a tDPD system.
The *sph* style is for smoothed particle hydrodynamics (SPH)
particles which store a density (rho), energy (esph), and heat capacity
(cv).
The *sph* style is for smoothed particle hydrodynamics (SPH) particles
which store a density (rho), energy (esph), and heat capacity (cv).
The *smd* style is for a general formulation of Smooth Particle
Hydrodynamics. Both fluids and solids can be modeled. Particles
store the mass and volume of an integration point, a kernel diameter
used for calculating the field variables (e.g. stress and deformation)
and a contact radius for calculating repulsive forces which prevent
individual physical bodies from penetrating each other.
The *smd* style is for Smooth Particle Mach dynamics. Both fluids and
solids can be modeled. Particles store the mass and volume of an
integration point, a kernel diameter used for calculating the field
variables (e.g. stress and deformation) and a contact radius for
calculating repulsive forces which prevent individual physical bodies
from penetrating each other.
For the *spin* style, a magnetic spin is associated to each atom.
Those spins have a norm (their magnetic moment) and a direction.
@ -267,15 +362,15 @@ points of the triangle).
The *template* style allows molecular topology (bonds,angles,etc) to be
defined via a molecule template using the :doc:`molecule <molecule>`
command. The template stores one or more molecules with a single copy
of the topology info (bonds,angles,etc) of each. Individual atoms
only store a template index and template atom to identify which
molecule and which atom-within-the-molecule they represent. Using the
*template* style instead of the *bond*, *angle*, *molecular* styles
can save memory for systems comprised of a large number of small
molecules, all of a single type (or small number of types). See the
paper by Grime and Voth, in :ref:`(Grime) <Grime>`, for examples of how this
can be advantageous for large-scale coarse-grained systems.
The ``examples/template`` directory has a few demo inputs and examples
of the topology info (bonds,angles,etc) of each. Individual atoms only
store a template index and template atom to identify which molecule and
which atom-within-the-molecule they represent. Using the *template*
style instead of the *bond*, *angle*, *molecular* styles can save memory
for systems comprised of a large number of small molecules, all of a
single type (or small number of types). See the paper by Grime and
Voth, in :ref:`(Grime) <Grime>`, for examples of how this can be
advantageous for large-scale coarse-grained systems. The
``examples/template`` directory has a few demo inputs and examples
showing the use of the *template* atom style versus *molecular*.
.. note::
@ -326,11 +421,12 @@ dipole". When a hybrid style is used, atoms store and communicate the
union of all quantities implied by the individual styles.
When using the *hybrid* style, you cannot combine the *template* style
with another molecular style that stores bond,angle,etc info on a
with another molecular style that stores bond, angle, etc info on a
per-atom basis.
LAMMPS can be extended with new atom styles as well as new body
styles; see the :doc:`Modify <Modify>` doc page.
LAMMPS can be extended with new atom styles as well as new body styles;
see the corresponding manual page on :doc:`modifying & extending LAMMPS
<Modify_atom>`.
----------
@ -346,53 +442,19 @@ This command cannot be used after the simulation box is defined by a
Many of the styles listed above are only enabled if LAMMPS was built
with a specific package, as listed below. See the :doc:`Build package
<Build_package>` page for more info.
The *amoeba* style is part of the AMOEBA package.
The *angle*, *bond*, *full*, *molecular*, and *template* styles are
part of the MOLECULE package.
The *line* and *tri* styles are part of the ASPHERE package.
The *body* style is part of the BODY package.
The *dipole* style is part of the DIPOLE package.
The *peri* style is part of the PERI package for Peridynamics.
The *oxdna* style is part of the CG-DNA package for coarse-grained
simulation of DNA and RNA.
The *electron* style is part of the EFF package for :doc:`electronic
force fields <pair_eff>`.
The *dpd* style is part of the DPD-REACT package for dissipative
particle dynamics (DPD).
The *edpd*, *mdpd*, and *tdpd* styles are part of the DPD-MESO package
for energy-conserving dissipative particle dynamics (eDPD), many-body
dissipative particle dynamics (mDPD), and transport dissipative particle
dynamics (tDPD), respectively.
The *sph* style is part of the SPH package for smoothed particle
hydrodynamics (SPH). See `this PDF guide
<PDF/SPH_LAMMPS_userguide.pdf>`_ to using SPH in LAMMPS.
The *spin* style is part of the SPIN package.
The *wavepacket* style is part of the AWPMD package for the
:doc:`antisymmetrized wave packet MD method <pair_awpmd>`.
<Build_package>` page for more info. The table above lists which package
is required for individual atom styles.
Related commands
""""""""""""""""
:doc:`read_data <read_data>`, :doc:`pair_style <pair_style>`
:doc:`read_data <read_data>`, :doc:`pair_style <pair_style>`,
:doc:`fix property/atom <fix_property_atom>`, :doc:`set <set>`
Default
"""""""
The default atom style is atomic. If atom_style sphere is used its
The default atom style is *atomic*. If atom_style *sphere* is used, its
default argument is 0.
----------