update atom_style command documentation
This commit is contained in:
@ -49,9 +49,20 @@ Examples
|
||||
Description
|
||||
"""""""""""
|
||||
|
||||
Define what style of atoms to use in a simulation. This determines
|
||||
what attributes are associated with the atoms. This command must be
|
||||
used before a simulation is setup via a :doc:`read_data <read_data>`,
|
||||
The *atom_style* command selects which per-atom attributes are
|
||||
associated with atoms in a LAMMPS simulation and thus stored and
|
||||
communicated with those atoms and read from and stored in data and
|
||||
restart files. Different models (e.g. :doc:`pair styles <pair_style>`)
|
||||
require access to specific per-atom attributes and thus require a
|
||||
specific atom style (for instance, to compute Coulomb interactions, the
|
||||
atom must have a "charge" (aka "q") attribute.
|
||||
|
||||
A number of distinct atom styles exist that combine attributes. Some
|
||||
atom styles are supersets of others. Further attributes may be added to
|
||||
atoms either via using a hybrid style and thus providing a union of the
|
||||
attributes of the sub-styles, or via :doc:`fix property/atom
|
||||
<fix_property_atom>`. The *atom_style* command must be used before a
|
||||
simulation is setup via a :doc:`read_data <read_data>`,
|
||||
:doc:`read_restart <read_restart>`, or :doc:`create_box <create_box>`
|
||||
command.
|
||||
|
||||
@ -61,114 +72,198 @@ command.
|
||||
LAMMPS was built with a specific package, as listed below in the
|
||||
Restrictions section.
|
||||
|
||||
Once a style is assigned, it cannot be changed, so use a style general
|
||||
enough to encompass all attributes. E.g. with style *bond*, angular
|
||||
terms cannot be used or added later to the model. It is OK to use a
|
||||
style more general than needed, though it may be slightly inefficient.
|
||||
Once a style is selected and the simulation box defined, it cannot be
|
||||
changed but only augmented with the :doc:`fix property/atom
|
||||
<fix_property_atom>` command. So one should select an atom style
|
||||
general enough to encompass all attributes required. E.g. with atom
|
||||
style *bond*, it is not possible to define angles and use angle styles.
|
||||
|
||||
The choice of style affects what quantities are stored by each atom,
|
||||
what quantities are communicated between processors to enable forces
|
||||
to be computed, and what quantities are listed in the data file read
|
||||
by the :doc:`read_data <read_data>` command.
|
||||
It is OK to use a style more general than needed, though it may be
|
||||
slightly inefficient and allocate and communicate additional, otherwise
|
||||
unused data.
|
||||
|
||||
These are the additional attributes of each style and the typical
|
||||
kinds of physical systems they are used to model. All styles store
|
||||
coordinates, velocities, atom IDs and types. See the
|
||||
:doc:`read_data <read_data>`, :doc:`create_atoms <create_atoms>`, and
|
||||
:doc:`set <set>` commands for info on how to set these various
|
||||
quantities.
|
||||
Atom style attributes
|
||||
"""""""""""""""""""""
|
||||
|
||||
+--------------+-----------------------------------------------------+--------------------------------------+
|
||||
| *amoeba* | molecular + charge + 1/5 neighbors | AMOEBA/HIPPO polarized force fields |
|
||||
+--------------+-----------------------------------------------------+--------------------------------------+
|
||||
| *angle* | bonds and angles | bead-spring polymers with stiffness |
|
||||
+--------------+-----------------------------------------------------+--------------------------------------+
|
||||
| *atomic* | only the default values | coarse-grain liquids, solids, metals |
|
||||
+--------------+-----------------------------------------------------+--------------------------------------+
|
||||
| *body* | mass, inertia moments, quaternion, angular momentum | arbitrary bodies |
|
||||
+--------------+-----------------------------------------------------+--------------------------------------+
|
||||
| *bond* | bonds | bead-spring polymers |
|
||||
+--------------+-----------------------------------------------------+--------------------------------------+
|
||||
| *charge* | charge | atomic system with charges |
|
||||
+--------------+-----------------------------------------------------+--------------------------------------+
|
||||
| *dielectric* | normx normy normz area/patch ed em epsilon curv | system with surface polarization |
|
||||
+--------------+-----------------------------------------------------+--------------------------------------+
|
||||
| *dipole* | charge and dipole moment | system with dipolar particles |
|
||||
+--------------+-----------------------------------------------------+--------------------------------------+
|
||||
| *dpd* | internal temperature and internal energies | DPD particles |
|
||||
+--------------+-----------------------------------------------------+--------------------------------------+
|
||||
| *edpd* | temperature and heat capacity | eDPD particles |
|
||||
+--------------+-----------------------------------------------------+--------------------------------------+
|
||||
| *electron* | charge and spin and eradius | electronic force field |
|
||||
+--------------+-----------------------------------------------------+--------------------------------------+
|
||||
| *ellipsoid* | shape, quaternion, angular momentum | aspherical particles |
|
||||
+--------------+-----------------------------------------------------+--------------------------------------+
|
||||
| *full* | molecular + charge | bio-molecules |
|
||||
+--------------+-----------------------------------------------------+--------------------------------------+
|
||||
| *line* | end points, angular velocity | rigid bodies |
|
||||
+--------------+-----------------------------------------------------+--------------------------------------+
|
||||
| *mdpd* | density | mDPD particles |
|
||||
+--------------+-----------------------------------------------------+--------------------------------------+
|
||||
| *molecular* | bonds, angles, dihedrals, impropers | uncharged molecules |
|
||||
+--------------+-----------------------------------------------------+--------------------------------------+
|
||||
| *oxdna* | nucleotide polarity | coarse-grained DNA and RNA models |
|
||||
+--------------+-----------------------------------------------------+--------------------------------------+
|
||||
| *peri* | mass, volume | mesoscopic Peridynamic models |
|
||||
+--------------+-----------------------------------------------------+--------------------------------------+
|
||||
| *smd* | volume, kernel diameter, contact radius, mass | solid and fluid SPH particles |
|
||||
+--------------+-----------------------------------------------------+--------------------------------------+
|
||||
| *sph* | rho, esph, cv | SPH particles |
|
||||
+--------------+-----------------------------------------------------+--------------------------------------+
|
||||
| *sphere* | diameter, mass, angular velocity | granular models |
|
||||
+--------------+-----------------------------------------------------+--------------------------------------+
|
||||
| *bpm/sphere* | diameter, mass, angular velocity, quaternion | granular bonded particle models (BPM)|
|
||||
+--------------+-----------------------------------------------------+--------------------------------------+
|
||||
| *spin* | magnetic moment | system with magnetic particles |
|
||||
+--------------+-----------------------------------------------------+--------------------------------------+
|
||||
| *tdpd* | chemical concentration | tDPD particles |
|
||||
+--------------+-----------------------------------------------------+--------------------------------------+
|
||||
| *template* | template index, template atom | small molecules with fixed topology |
|
||||
+--------------+-----------------------------------------------------+--------------------------------------+
|
||||
| *tri* | corner points, angular momentum | rigid bodies |
|
||||
+--------------+-----------------------------------------------------+--------------------------------------+
|
||||
| *wavepacket* | charge, spin, eradius, etag, cs_re, cs_im | AWPMD |
|
||||
+--------------+-----------------------------------------------------+--------------------------------------+
|
||||
The atom style *atomic* has the minimum subset of per-atom attributes
|
||||
and is also the default setting. It encompasses the following per-atom
|
||||
attributes (name of the array in the :doc:`Atom class <Classes_atom>` is
|
||||
given in parenthesis): atom-ID (tag), type (type), position (x),
|
||||
velocities (v), forces (f), image flags (image), group membership
|
||||
(mask). Since all atom styles are supersets of *atomic* they all
|
||||
include these attributes.
|
||||
|
||||
.. note::
|
||||
|
||||
It is possible to add some attributes, such as a molecule ID, to
|
||||
atom styles that do not have them via the :doc:`fix property/atom
|
||||
<fix_property_atom>` command. This command also allows new custom
|
||||
attributes consisting of extra integer or floating-point values to
|
||||
be added to atoms. See the :doc:`fix property/atom
|
||||
<fix_property_atom>` page for examples of cases where this is
|
||||
useful and details on how to initialize, access, and output the
|
||||
custom values.
|
||||
The atomic mass (mass) is generally indexed with the atom *type* and
|
||||
**not** the atom *index*. A per-atom mass attribute (rmass) is
|
||||
available for select atom styles or can be added through using
|
||||
:doc:`fix property/atom <fix_property_atom>`. If both are defined
|
||||
the per-atom mass takes precedence.
|
||||
|
||||
All of the above styles define point particles, except the *sphere*,
|
||||
*bpm/sphere*, *ellipsoid*, *electron*, *peri*, *wavepacket*, *line*,
|
||||
*tri*, and *body* styles, which define finite-size particles. See the
|
||||
Below is a table with additional atom styles, which attributes they
|
||||
provide, which :doc:`package <Packages>` is required to use them, and
|
||||
what typical applications are that use them. See the :doc:`read_data
|
||||
<read_data>`, :doc:`create_atoms <create_atoms>`, and :doc:`set <set>`
|
||||
commands for details on how to set these various quantities.
|
||||
|
||||
.. list-table::
|
||||
:header-rows: 1
|
||||
:widths: auto
|
||||
|
||||
* - Atom style
|
||||
- Attributes
|
||||
- Required package
|
||||
- Applications
|
||||
* - *amoeba*
|
||||
- *full* + "1-5 special neighbor data"
|
||||
- :ref:`AMOEBA <PKG-AMOEBA>`
|
||||
- AMOEBA/HIPPO force fields
|
||||
* - *angle*
|
||||
- *bond* + "angle data"
|
||||
- :ref:`MOLECULE <PKG-MOLECULE>`
|
||||
- bead-spring polymers with stiffness
|
||||
* - *atomic*
|
||||
- tag, type, x, v, f, image, mask
|
||||
-
|
||||
- atomic liquids, solids, metals
|
||||
* - *body*
|
||||
- *atomic* + radius, rmass, angmom, torque, body
|
||||
- :ref:`BODY <PKG-BODY>`
|
||||
- arbitrary bodies, see :doc:`body howto <Howto_body>`
|
||||
* - *bond*
|
||||
- *atomic* + molecule, nspecial, special + "bond data"
|
||||
- :ref:`MOLECULE <PKG-MOLECULE>`
|
||||
- bead-spring polymers
|
||||
* - *bpm/sphere*
|
||||
- *bond* + radius, rmass, omega, torque, quat
|
||||
- :ref:`BPM <PKG-BPM>`
|
||||
- granular bonded particle models, see :doc:`BPM howto <Howto_bpm>`
|
||||
* - *charge*
|
||||
- *atomic* + q
|
||||
-
|
||||
- atomic systems with charges
|
||||
* - *dielectric*
|
||||
- *full* + mu, area, ed, em, epsilon, curvature, q_scaled
|
||||
- :ref:`DIELECTRIC <PKG-DIELECTRIC>`
|
||||
- systems with surface polarization
|
||||
* - *dipole*
|
||||
- *charge* + mu
|
||||
- :ref:`DIPOLE <PKG-DIPOLE>`
|
||||
- atomic systems with charges and point dipoles
|
||||
* - *dpd*
|
||||
- *atomic* + rho + "reactive DPD data"
|
||||
- :ref:`DPD-REACT <PKG-DPD-REACT>`
|
||||
- reactive DPD
|
||||
* - *edpd*
|
||||
- *atomic* + "eDPD data"
|
||||
- :ref:`DPD-MESO <PKG-DPD-MESO>`
|
||||
- Energy conservative DPD (eDPD)
|
||||
* - *electron*
|
||||
- *charge* + espin, eradius, ervel, erforce
|
||||
- :ref:`EFF <PKG-EFF>`
|
||||
- Electron force field systems
|
||||
* - *ellipsoid*
|
||||
- *atomic* + rmass, angmom, torque, ellipsoid
|
||||
-
|
||||
- aspherical particles
|
||||
* - *full*
|
||||
- *molecular* + q
|
||||
- :ref:`MOLECULE <PKG-MOLECULE>`
|
||||
- molecular force fields
|
||||
* - *line*
|
||||
- *atomic* + molecule, radius, rmass, omega, torque, line
|
||||
-
|
||||
- 2-d rigid body particles
|
||||
* - *mdpd*
|
||||
- *atomic* + rho, drho, vest
|
||||
- :ref:`DPD-MESO <PKG-DPD-MESO>`
|
||||
- Many-body DPD (mDPD)
|
||||
* - *molecular*
|
||||
- *angle* + "dihedral and improper data"
|
||||
- :ref:`MOLECULE <PKG-MOLECULE>`
|
||||
- apolar and uncharged molecules
|
||||
* - *oxdna*
|
||||
- *atomic* + id5p
|
||||
- :ref:`CG-DNA <PKG-CG-DNA>`
|
||||
- coarse-grained DNA and RNA models
|
||||
* - *peri*
|
||||
- *atomic* + rmass, vfrac, s0, x0
|
||||
- :ref:`PERI <PKG-PERI>`
|
||||
- mesoscopic Peridynamics models
|
||||
* - *smd*
|
||||
- *atomic* + molecule, radius, rmass + "smd data"
|
||||
- :ref:`MACHDYN <PKG-MACHDYN>`
|
||||
- Smooth Mach Dynamics models
|
||||
* - *sph*
|
||||
- *atomic* + "sph data"
|
||||
- :ref:`SPH <PKG-SPH>`
|
||||
- Smoothed particle hydrodynamics models
|
||||
* - *sphere*
|
||||
- *atomic* + radius, rmass, omega, torque
|
||||
-
|
||||
- finite size spherical particles, e.g. granular models
|
||||
* - *spin*
|
||||
- *atomic* + "magnetic moment data"
|
||||
- :ref:`SPIN <PKG-SPIN>`
|
||||
- magnetic particles
|
||||
* - *tdpd*
|
||||
- *atomic* + cc, cc_flux, vest
|
||||
- :ref:`DPD-MESO <PKG-DPD-MESO>`
|
||||
- Transport DPD (tDPD)
|
||||
* - *template*
|
||||
- *atomic* + molecule, molindex, molatom
|
||||
- :ref:`MOLECULE <PKG-MOLECULE>`
|
||||
- molecular systems where attributes are taken from :doc:`molecule files <molecule>`
|
||||
* - *tri*
|
||||
- *sphere* + molecule, angmom, tri
|
||||
-
|
||||
- 3-d triangulated rigid body LJ particles
|
||||
* - *wavepacket*
|
||||
- *charge* + "wavepacket data"
|
||||
- :ref:`AWPMD <PKG-AWPMD>`
|
||||
- Antisymmetrized wave packet MD
|
||||
|
||||
.. note::
|
||||
|
||||
It is possible to add some attributes, such as a molecule ID, to atom
|
||||
styles that do not have them built in using the :doc:`fix
|
||||
property/atom <fix_property_atom>` command. This command also allows
|
||||
new custom attributes consisting of extra integer or floating-point
|
||||
values or vectors to be added to atoms. See the :doc:`fix property/atom
|
||||
<fix_property_atom>` page for examples of cases where this is useful
|
||||
and details on how to initialize, access, and output these custom
|
||||
values.
|
||||
|
||||
All of the above atyle styles define point particles unless that have
|
||||
the *radius* property and then define finite-size particles. See the
|
||||
:doc:`Howto spherical <Howto_spherical>` page for an overview of using
|
||||
finite-size particle models with LAMMPS.
|
||||
finite-size particle models with LAMMPS. The *radius* property may need
|
||||
to be entered as *diameter* (e.g. in :doc:`molecule files <molecule>`
|
||||
or :doc:`data files <read_data>`).
|
||||
|
||||
All of the point-particle styles assign mass to particles on a
|
||||
per-type basis, using the :doc:`mass <mass>` command, The finite-size
|
||||
particle styles assign mass to individual particles on a per-particle
|
||||
basis.
|
||||
Unless an atom style has the *rmass* attribute, the atomic masses are
|
||||
defined on a per-type basis, using the :doc:`mass <mass>` command. Atom
|
||||
styles that have a per-atom mass may define it indirectly through
|
||||
setting particle diameter and density on a per-particle basis. If the
|
||||
*rmass* attribute is added through :doc:`fix property/atom <fix_property_atom>`
|
||||
it is usually needed to define both, per-type and per-atom masses, however
|
||||
the per-atom mass will usually take precedence.
|
||||
|
||||
For the *sphere* and *bpm/sphere* styles, the particles are spheres
|
||||
and each stores a per-particle diameter and mass. If the diameter >
|
||||
0.0, the particle is a finite-size sphere. If the diameter = 0.0, it
|
||||
is a point particle. Note that by use of the *disc* keyword with the
|
||||
:doc:`fix nve/sphere <fix_nve_sphere>`, :doc:`fix nvt/sphere
|
||||
<fix_nvt_sphere>`, :doc:`fix nph/sphere <fix_nph_sphere>`,
|
||||
For the atom style *sphere* and *bpm/sphere* styles, the particles may
|
||||
be either point particles or finite-size particles. If the *radius*
|
||||
attribute is > 0.0, the particle is a finite-size sphere. If the
|
||||
diameter = 0.0, it is a point particle. Note that by using the *disc*
|
||||
keyword with the :doc:`fix nve/sphere <fix_nve_sphere>`, :doc:`fix
|
||||
nvt/sphere <fix_nvt_sphere>`, :doc:`fix nph/sphere <fix_nph_sphere>`,
|
||||
:doc:`fix npt/sphere <fix_npt_sphere>` commands for the *sphere* style,
|
||||
spheres can be effectively treated as 2d discs for a 2d simulation if
|
||||
desired. See also the :doc:`set density/disc <set>` command. These
|
||||
styles take an optional 0 or 1 argument. A value of 0 means the
|
||||
radius of each sphere is constant for the duration of the simulation.
|
||||
A value of 1 means the radii may vary dynamically during the simulation,
|
||||
e.g. due to use of the :doc:`fix adapt <fix_adapt>` command.
|
||||
styles also take an optional 0 or 1 argument. A value of 0 means the
|
||||
radius of each sphere is constant for the duration of the simulation
|
||||
(this is the default). A value of 1 means the radii may vary
|
||||
dynamically during the simulation, e.g. due to use of the :doc:`fix
|
||||
adapt <fix_adapt>` command.
|
||||
|
||||
For the *ellipsoid* style, the particles are ellipsoids and each
|
||||
stores a flag which indicates whether it is a finite-size ellipsoid or
|
||||
@ -194,11 +289,14 @@ and interface particles is only meaningful when :doc:`fix polarize
|
||||
style is part of the DIELECTRIC package.
|
||||
|
||||
For the *dipole* style, a point dipole is defined for each point
|
||||
particle. Note that if you wish the particles to be finite-size
|
||||
spheres as in a Stockmayer potential for a dipolar fluid, so that the
|
||||
particles can rotate due to dipole-dipole interactions, then you need
|
||||
to use atom_style hybrid sphere dipole, which will assign both a
|
||||
diameter and dipole moment to each particle.
|
||||
particle. Note that if you wish the particles to be finite-size spheres
|
||||
as in a Stockmayer potential for a dipolar fluid, so that the particles
|
||||
can rotate due to dipole-dipole interactions, then you need to use the
|
||||
command `atom_style hybrid sphere dipole`, which will assign both a
|
||||
diameter and dipole moment to each particle. This also requires using
|
||||
an integrator with a "/sphere" suffix like :doc:`fix nve/sphere
|
||||
<fix_nve_sphere>` or :doc:`fix nvt/sphere <fix_nh_sphere>` and the
|
||||
"update dipole" or "update dlm" parameters to the fix commands.
|
||||
|
||||
For the *electron* style, the particles representing electrons are 3d
|
||||
Gaussians with a specified position and bandwidth or uncertainty in
|
||||
@ -207,45 +305,42 @@ position, which is represented by the eradius = electron size.
|
||||
For the *peri* style, the particles are spherical and each stores a
|
||||
per-particle mass and volume.
|
||||
|
||||
The *bpm/sphere* style is part of the BPM package.
|
||||
|
||||
The *oxdna* style is for coarse-grained nucleotides and stores the
|
||||
3'-to-5' polarity of the nucleotide strand, which is set through
|
||||
the bond topology in the data file. The first (second) atom in a
|
||||
bond definition is understood to point towards the 3'-end (5'-end)
|
||||
of the strand. Note that this style is part of the CG-DNA package.
|
||||
of the strand.
|
||||
|
||||
The *dpd* style is for dissipative particle dynamics (DPD) particles.
|
||||
Note that it is part of the DPD-REACT package, and is not for use with
|
||||
the :doc:`pair_style dpd or dpd/stat <pair_dpd>` commands, which can
|
||||
simply use atom_style atomic. Atom_style dpd extends DPD particle
|
||||
properties with internal temperature (dpdTheta), internal conductive
|
||||
energy (uCond), internal mechanical energy (uMech), and internal
|
||||
chemical energy (uChem).
|
||||
The *dpd* style is for reactive dissipative particle dynamics (DPD)
|
||||
particles. Note that it is part of the DPD-REACT package, and is not
|
||||
required for use with the :doc:`pair_style dpd or dpd/stat <pair_dpd>`
|
||||
commands, which only require the attributes from atom_style *atomic*.
|
||||
Atom_style *dpd* extends DPD particle properties with internal
|
||||
temperature (dpdTheta), internal conductive energy (uCond), internal
|
||||
mechanical energy (uMech), and internal chemical energy (uChem).
|
||||
|
||||
The *edpd* style is for energy-conserving dissipative particle
|
||||
dynamics (eDPD) particles which store a temperature (edpd_temp), and
|
||||
heat capacity(edpd_cv).
|
||||
|
||||
The *mdpd* style is for many-body dissipative particle dynamics (mDPD)
|
||||
particles which store a density (rho) for considering
|
||||
density-dependent many-body interactions.
|
||||
particles which store a density (rho) for considering density-dependent
|
||||
many-body interactions.
|
||||
|
||||
The *tdpd* style is for transport dissipative particle dynamics (tDPD)
|
||||
particles which store a set of chemical concentration. An integer
|
||||
"cc_species" is required to specify the number of chemical species
|
||||
involved in a tDPD system.
|
||||
|
||||
The *sph* style is for smoothed particle hydrodynamics (SPH)
|
||||
particles which store a density (rho), energy (esph), and heat capacity
|
||||
(cv).
|
||||
The *sph* style is for smoothed particle hydrodynamics (SPH) particles
|
||||
which store a density (rho), energy (esph), and heat capacity (cv).
|
||||
|
||||
The *smd* style is for a general formulation of Smooth Particle
|
||||
Hydrodynamics. Both fluids and solids can be modeled. Particles
|
||||
store the mass and volume of an integration point, a kernel diameter
|
||||
used for calculating the field variables (e.g. stress and deformation)
|
||||
and a contact radius for calculating repulsive forces which prevent
|
||||
individual physical bodies from penetrating each other.
|
||||
The *smd* style is for Smooth Particle Mach dynamics. Both fluids and
|
||||
solids can be modeled. Particles store the mass and volume of an
|
||||
integration point, a kernel diameter used for calculating the field
|
||||
variables (e.g. stress and deformation) and a contact radius for
|
||||
calculating repulsive forces which prevent individual physical bodies
|
||||
from penetrating each other.
|
||||
|
||||
For the *spin* style, a magnetic spin is associated to each atom.
|
||||
Those spins have a norm (their magnetic moment) and a direction.
|
||||
@ -267,15 +362,15 @@ points of the triangle).
|
||||
The *template* style allows molecular topology (bonds,angles,etc) to be
|
||||
defined via a molecule template using the :doc:`molecule <molecule>`
|
||||
command. The template stores one or more molecules with a single copy
|
||||
of the topology info (bonds,angles,etc) of each. Individual atoms
|
||||
only store a template index and template atom to identify which
|
||||
molecule and which atom-within-the-molecule they represent. Using the
|
||||
*template* style instead of the *bond*, *angle*, *molecular* styles
|
||||
can save memory for systems comprised of a large number of small
|
||||
molecules, all of a single type (or small number of types). See the
|
||||
paper by Grime and Voth, in :ref:`(Grime) <Grime>`, for examples of how this
|
||||
can be advantageous for large-scale coarse-grained systems.
|
||||
The ``examples/template`` directory has a few demo inputs and examples
|
||||
of the topology info (bonds,angles,etc) of each. Individual atoms only
|
||||
store a template index and template atom to identify which molecule and
|
||||
which atom-within-the-molecule they represent. Using the *template*
|
||||
style instead of the *bond*, *angle*, *molecular* styles can save memory
|
||||
for systems comprised of a large number of small molecules, all of a
|
||||
single type (or small number of types). See the paper by Grime and
|
||||
Voth, in :ref:`(Grime) <Grime>`, for examples of how this can be
|
||||
advantageous for large-scale coarse-grained systems. The
|
||||
``examples/template`` directory has a few demo inputs and examples
|
||||
showing the use of the *template* atom style versus *molecular*.
|
||||
|
||||
.. note::
|
||||
@ -326,11 +421,12 @@ dipole". When a hybrid style is used, atoms store and communicate the
|
||||
union of all quantities implied by the individual styles.
|
||||
|
||||
When using the *hybrid* style, you cannot combine the *template* style
|
||||
with another molecular style that stores bond,angle,etc info on a
|
||||
with another molecular style that stores bond, angle, etc info on a
|
||||
per-atom basis.
|
||||
|
||||
LAMMPS can be extended with new atom styles as well as new body
|
||||
styles; see the :doc:`Modify <Modify>` doc page.
|
||||
LAMMPS can be extended with new atom styles as well as new body styles;
|
||||
see the corresponding manual page on :doc:`modifying & extending LAMMPS
|
||||
<Modify_atom>`.
|
||||
|
||||
----------
|
||||
|
||||
@ -346,53 +442,19 @@ This command cannot be used after the simulation box is defined by a
|
||||
|
||||
Many of the styles listed above are only enabled if LAMMPS was built
|
||||
with a specific package, as listed below. See the :doc:`Build package
|
||||
<Build_package>` page for more info.
|
||||
|
||||
The *amoeba* style is part of the AMOEBA package.
|
||||
|
||||
The *angle*, *bond*, *full*, *molecular*, and *template* styles are
|
||||
part of the MOLECULE package.
|
||||
|
||||
The *line* and *tri* styles are part of the ASPHERE package.
|
||||
|
||||
The *body* style is part of the BODY package.
|
||||
|
||||
The *dipole* style is part of the DIPOLE package.
|
||||
|
||||
The *peri* style is part of the PERI package for Peridynamics.
|
||||
|
||||
The *oxdna* style is part of the CG-DNA package for coarse-grained
|
||||
simulation of DNA and RNA.
|
||||
|
||||
The *electron* style is part of the EFF package for :doc:`electronic
|
||||
force fields <pair_eff>`.
|
||||
|
||||
The *dpd* style is part of the DPD-REACT package for dissipative
|
||||
particle dynamics (DPD).
|
||||
|
||||
The *edpd*, *mdpd*, and *tdpd* styles are part of the DPD-MESO package
|
||||
for energy-conserving dissipative particle dynamics (eDPD), many-body
|
||||
dissipative particle dynamics (mDPD), and transport dissipative particle
|
||||
dynamics (tDPD), respectively.
|
||||
|
||||
The *sph* style is part of the SPH package for smoothed particle
|
||||
hydrodynamics (SPH). See `this PDF guide
|
||||
<PDF/SPH_LAMMPS_userguide.pdf>`_ to using SPH in LAMMPS.
|
||||
|
||||
The *spin* style is part of the SPIN package.
|
||||
|
||||
The *wavepacket* style is part of the AWPMD package for the
|
||||
:doc:`antisymmetrized wave packet MD method <pair_awpmd>`.
|
||||
<Build_package>` page for more info. The table above lists which package
|
||||
is required for individual atom styles.
|
||||
|
||||
Related commands
|
||||
""""""""""""""""
|
||||
|
||||
:doc:`read_data <read_data>`, :doc:`pair_style <pair_style>`
|
||||
:doc:`read_data <read_data>`, :doc:`pair_style <pair_style>`,
|
||||
:doc:`fix property/atom <fix_property_atom>`, :doc:`set <set>`
|
||||
|
||||
Default
|
||||
"""""""
|
||||
|
||||
The default atom style is atomic. If atom_style sphere is used its
|
||||
The default atom style is *atomic*. If atom_style *sphere* is used, its
|
||||
default argument is 0.
|
||||
|
||||
----------
|
||||
|
||||
Reference in New Issue
Block a user