Added the GPU version of pair edpd and mdpd
This commit is contained in:
295
lib/gpu/lal_edpd.cpp
Normal file
295
lib/gpu/lal_edpd.cpp
Normal file
@ -0,0 +1,295 @@
|
||||
/***************************************************************************
|
||||
edpd.cpp
|
||||
-------------------
|
||||
Trung Dac Nguyen (U Chicago)
|
||||
|
||||
Class for acceleration of the edpd pair style.
|
||||
|
||||
__________________________________________________________________________
|
||||
This file is part of the LAMMPS Accelerator Library (LAMMPS_AL)
|
||||
__________________________________________________________________________
|
||||
|
||||
begin : September 2023
|
||||
email : ndactrung@gmail.com
|
||||
***************************************************************************/
|
||||
|
||||
#if defined(USE_OPENCL)
|
||||
#include "edpd_cl.h"
|
||||
#elif defined(USE_CUDART)
|
||||
const char *edpd=0;
|
||||
#else
|
||||
#include "edpd_cubin.h"
|
||||
#endif
|
||||
|
||||
#include "lal_edpd.h"
|
||||
#include <cassert>
|
||||
namespace LAMMPS_AL {
|
||||
#define EDPDT EDPD<numtyp, acctyp>
|
||||
|
||||
extern Device<PRECISION,ACC_PRECISION> device;
|
||||
|
||||
template <class numtyp, class acctyp>
|
||||
EDPDT::EDPD() : BaseDPD<numtyp,acctyp>(), _allocated(false) {
|
||||
_max_q_size = 0;
|
||||
}
|
||||
|
||||
template <class numtyp, class acctyp>
|
||||
EDPDT::~EDPD() {
|
||||
clear();
|
||||
}
|
||||
|
||||
template <class numtyp, class acctyp>
|
||||
int EDPDT::bytes_per_atom(const int max_nbors) const {
|
||||
return this->bytes_per_atom_atomic(max_nbors);
|
||||
}
|
||||
|
||||
template <class numtyp, class acctyp>
|
||||
int EDPDT::init(const int ntypes,
|
||||
double **host_cutsq, double **host_a0,
|
||||
double **host_gamma, double **host_cut,
|
||||
double **host_power, double **host_kappa,
|
||||
double **host_powerT, double **host_cutT,
|
||||
double ***host_sc, double ***host_kc, double *host_mass,
|
||||
double *host_special_lj,
|
||||
const int power_flag, const int kappa_flag,
|
||||
const int nlocal, const int nall,
|
||||
const int max_nbors, const int maxspecial,
|
||||
const double cell_size,
|
||||
const double gpu_split, FILE *_screen) {
|
||||
const int max_shared_types=this->device->max_shared_types();
|
||||
|
||||
int onetype=0;
|
||||
#ifdef USE_OPENCL
|
||||
if (maxspecial==0)
|
||||
for (int i=1; i<ntypes; i++)
|
||||
for (int j=i; j<ntypes; j++)
|
||||
if (host_cutsq[i][j]>0) {
|
||||
if (onetype>0)
|
||||
onetype=-1;
|
||||
else if (onetype==0)
|
||||
onetype=i*max_shared_types+j;
|
||||
}
|
||||
if (onetype<0) onetype=0;
|
||||
#endif
|
||||
|
||||
int success;
|
||||
int extra_fields = 4; // round up to accomodate quadruples of numtyp values
|
||||
// T and cv
|
||||
success=this->init_atomic(nlocal,nall,max_nbors,maxspecial,cell_size,
|
||||
gpu_split,_screen,edpd,"k_edpd",onetype,extra_fields);
|
||||
if (success!=0)
|
||||
return success;
|
||||
|
||||
// If atom type constants fit in shared memory use fast kernel
|
||||
int lj_types=ntypes;
|
||||
shared_types=false;
|
||||
if (lj_types<=max_shared_types && this->_block_size>=max_shared_types) {
|
||||
lj_types=max_shared_types;
|
||||
shared_types=true;
|
||||
}
|
||||
_lj_types=lj_types;
|
||||
|
||||
// Allocate a host write buffer for data initialization
|
||||
UCL_H_Vec<numtyp> host_write(lj_types*lj_types*32,*(this->ucl_device),
|
||||
UCL_WRITE_ONLY);
|
||||
|
||||
for (int i=0; i<lj_types*lj_types; i++)
|
||||
host_write[i]=0.0;
|
||||
|
||||
coeff.alloc(lj_types*lj_types,*(this->ucl_device),UCL_READ_ONLY);
|
||||
this->atom->type_pack4(ntypes,lj_types,coeff,host_write,host_a0,host_gamma,
|
||||
host_cut);
|
||||
|
||||
coeff2.alloc(lj_types*lj_types,*(this->ucl_device),UCL_READ_ONLY);
|
||||
this->atom->type_pack4(ntypes,lj_types,coeff2,host_write,host_power,host_kappa,
|
||||
host_powerT,host_cutT);
|
||||
|
||||
UCL_H_Vec<int> dview_mass(ntypes, *(this->ucl_device), UCL_WRITE_ONLY);
|
||||
for (int i = 0; i < ntypes; i++)
|
||||
dview_mass[i] = host_mass[i];
|
||||
mass.alloc(ntypes,*(this->ucl_device), UCL_READ_ONLY);
|
||||
ucl_copy(mass,dview_mass,false);
|
||||
|
||||
if (host_sc) {
|
||||
UCL_H_Vec<numtyp4> dview(lj_types*lj_types,*(this->ucl_device),UCL_WRITE_ONLY);;
|
||||
sc.alloc(lj_types*lj_types,*(this->ucl_device),UCL_READ_ONLY);
|
||||
int n = 0;
|
||||
for (int i = 1; i < ntypes; i++)
|
||||
for (int j = 1; j < ntypes; j++) {
|
||||
dview[n].x = host_sc[i][j][0];
|
||||
dview[n].y = host_sc[i][j][1];
|
||||
dview[n].z = host_sc[i][j][2];
|
||||
dview[n].w = host_sc[i][j][3];
|
||||
n++;
|
||||
}
|
||||
ucl_copy(sc,dview,false);
|
||||
}
|
||||
|
||||
if (host_kc) {
|
||||
UCL_H_Vec<numtyp4> dview(lj_types*lj_types,*(this->ucl_device),UCL_WRITE_ONLY);;
|
||||
kc.alloc(lj_types*lj_types,*(this->ucl_device),UCL_READ_ONLY);
|
||||
int n = 0;
|
||||
for (int i = 1; i < ntypes; i++)
|
||||
for (int j = 1; j < ntypes; j++) {
|
||||
dview[n].x = host_kc[i][j][0];
|
||||
dview[n].y = host_kc[i][j][1];
|
||||
dview[n].z = host_kc[i][j][2];
|
||||
dview[n].w = host_kc[i][j][3];
|
||||
n++;
|
||||
}
|
||||
ucl_copy(kc,dview,false);
|
||||
}
|
||||
|
||||
UCL_H_Vec<numtyp> host_rsq(lj_types*lj_types,*(this->ucl_device),
|
||||
UCL_WRITE_ONLY);
|
||||
cutsq.alloc(lj_types*lj_types,*(this->ucl_device),UCL_READ_ONLY);
|
||||
this->atom->type_pack1(ntypes,lj_types,cutsq,host_rsq,host_cutsq);
|
||||
|
||||
double special_sqrt[4];
|
||||
special_sqrt[0] = sqrt(host_special_lj[0]);
|
||||
special_sqrt[1] = sqrt(host_special_lj[1]);
|
||||
special_sqrt[2] = sqrt(host_special_lj[2]);
|
||||
special_sqrt[3] = sqrt(host_special_lj[3]);
|
||||
|
||||
UCL_H_Vec<double> dview;
|
||||
sp_lj.alloc(4,*(this->ucl_device),UCL_READ_ONLY);
|
||||
dview.view(host_special_lj,4,*(this->ucl_device));
|
||||
ucl_copy(sp_lj,dview,false);
|
||||
sp_sqrt.alloc(4,*(this->ucl_device),UCL_READ_ONLY);
|
||||
dview.view(special_sqrt,4,*(this->ucl_device));
|
||||
ucl_copy(sp_sqrt,dview,false);
|
||||
|
||||
_power_flag = power_flag;
|
||||
_kappa_flag = kappa_flag;
|
||||
|
||||
// allocate per-atom array Q
|
||||
|
||||
int ef_nall=nall;
|
||||
if (ef_nall==0)
|
||||
ef_nall=2000;
|
||||
|
||||
_max_q_size=static_cast<int>(static_cast<double>(ef_nall)*1.10);
|
||||
Q.alloc(_max_q_size,*(this->ucl_device),UCL_READ_WRITE,UCL_READ_WRITE);
|
||||
|
||||
_allocated=true;
|
||||
this->_max_bytes=coeff.row_bytes()+coeff2.row_bytes()+Q.row_bytes()+
|
||||
sc.row_bytes()+kc.row_bytes()+mass.row_bytes()+cutsq.row_bytes()+sp_lj.row_bytes()+sp_sqrt.row_bytes();
|
||||
return 0;
|
||||
}
|
||||
|
||||
template <class numtyp, class acctyp>
|
||||
void EDPDT::clear() {
|
||||
if (!_allocated)
|
||||
return;
|
||||
_allocated=false;
|
||||
|
||||
coeff.clear();
|
||||
coeff2.clear();
|
||||
sc.clear();
|
||||
kc.clear();
|
||||
Q.clear();
|
||||
mass.clear();
|
||||
cutsq.clear();
|
||||
sp_lj.clear();
|
||||
sp_sqrt.clear();
|
||||
this->clear_atomic();
|
||||
}
|
||||
|
||||
template <class numtyp, class acctyp>
|
||||
double EDPDT::host_memory_usage() const {
|
||||
return this->host_memory_usage_atomic()+sizeof(EDPD<numtyp,acctyp>);
|
||||
}
|
||||
|
||||
template <class numtyp, class acctyp>
|
||||
void EDPDT::update_flux(void **flux_ptr) {
|
||||
*flux_ptr=Q.host.begin();
|
||||
Q.update_host(_max_q_size,false);
|
||||
}
|
||||
|
||||
// ---------------------------------------------------------------------------
|
||||
// Calculate energies, forces, and torques
|
||||
// ---------------------------------------------------------------------------
|
||||
template <class numtyp, class acctyp>
|
||||
int EDPDT::loop(const int eflag, const int vflag) {
|
||||
|
||||
int nall = this->atom->nall();
|
||||
|
||||
// Resize Q array if necessary
|
||||
if (nall > _max_q_size) {
|
||||
_max_q_size=static_cast<int>(static_cast<double>(nall)*1.10);
|
||||
Q.resize(_max_q_size);
|
||||
}
|
||||
|
||||
// signal that we need to transfer extra data from the host
|
||||
|
||||
this->atom->extra_data_unavail();
|
||||
|
||||
numtyp4 *pextra=reinterpret_cast<numtyp4*>(&(this->atom->extra[0]));
|
||||
|
||||
int n = 0;
|
||||
int nstride = 1;
|
||||
for (int i = 0; i < nall; i++) {
|
||||
int idx = n+i*nstride;
|
||||
numtyp4 v;
|
||||
v.x = edpd_temp[i];
|
||||
v.y = edpd_cv[i];
|
||||
v.z = 0;
|
||||
v.w = 0;
|
||||
pextra[idx] = v;
|
||||
}
|
||||
this->atom->add_extra_data();
|
||||
|
||||
// Compute the block size and grid size to keep all cores busy
|
||||
const int BX=this->block_size();
|
||||
int GX=static_cast<int>(ceil(static_cast<double>(this->ans->inum())/
|
||||
(BX/this->_threads_per_atom)));
|
||||
|
||||
|
||||
int ainum=this->ans->inum();
|
||||
int nbor_pitch=this->nbor->nbor_pitch();
|
||||
this->time_pair.start();
|
||||
if (shared_types) {
|
||||
this->k_pair_sel->set_size(GX,BX);
|
||||
this->k_pair_sel->run(&this->atom->x, &this->atom->extra, &coeff, &coeff2, &mass,
|
||||
&sc, &kc, &sp_lj, &sp_sqrt, &this->nbor->dev_nbor, &this->_nbor_data->begin(),
|
||||
&this->ans->force, &this->ans->engv, &Q, &eflag, &vflag,
|
||||
&_power_flag, &_kappa_flag, &ainum, &nbor_pitch,
|
||||
&this->atom->v, &cutsq, &this->_dtinvsqrt, &this->_seed,
|
||||
&this->_timestep, &this->_threads_per_atom);
|
||||
} else {
|
||||
this->k_pair.set_size(GX,BX);
|
||||
this->k_pair.run(&this->atom->x, &this->atom->extra, &coeff, &coeff2, &mass,
|
||||
&sc, &kc, &_lj_types, &sp_lj, &sp_sqrt,
|
||||
&this->nbor->dev_nbor, &this->_nbor_data->begin(),
|
||||
&this->ans->force, &this->ans->engv, &Q, &eflag, &vflag,
|
||||
&_power_flag, &_kappa_flag, &ainum, &nbor_pitch,
|
||||
&this->atom->v, &cutsq, &this->_dtinvsqrt, &this->_seed,
|
||||
&this->_timestep, &this->_threads_per_atom);
|
||||
}
|
||||
|
||||
this->time_pair.stop();
|
||||
return GX;
|
||||
}
|
||||
|
||||
template <class numtyp, class acctyp>
|
||||
void EDPDT::update_coeff(int ntypes, double **host_a0, double **host_gamma,
|
||||
double **host_sigma, double **host_cut)
|
||||
{
|
||||
UCL_H_Vec<numtyp> host_write(_lj_types*_lj_types*32,*(this->ucl_device),
|
||||
UCL_WRITE_ONLY);
|
||||
this->atom->type_pack4(ntypes,_lj_types,coeff,host_write,host_a0,host_gamma,
|
||||
host_sigma,host_cut);
|
||||
}
|
||||
|
||||
// ---------------------------------------------------------------------------
|
||||
// Get the extra data pointers from host
|
||||
// ---------------------------------------------------------------------------
|
||||
|
||||
template <class numtyp, class acctyp>
|
||||
void EDPDT::get_extra_data(double *host_T, double *host_cv) {
|
||||
edpd_temp = host_T;
|
||||
edpd_cv = host_cv;
|
||||
}
|
||||
|
||||
template class EDPD<PRECISION,ACC_PRECISION>;
|
||||
}
|
||||
619
lib/gpu/lal_edpd.cu
Normal file
619
lib/gpu/lal_edpd.cu
Normal file
@ -0,0 +1,619 @@
|
||||
// **************************************************************************
|
||||
// edpd.cu
|
||||
// -------------------
|
||||
// Trung Dac Nguyen (U Chicago)
|
||||
//
|
||||
// Device code for acceleration of the edpd pair style
|
||||
//
|
||||
// __________________________________________________________________________
|
||||
// This file is part of the LAMMPS Accelerator Library (LAMMPS_AL)
|
||||
// __________________________________________________________________________
|
||||
//
|
||||
// begin : September 2023
|
||||
// email : ndactrung@gmail.com
|
||||
// ***************************************************************************
|
||||
|
||||
#if defined(NV_KERNEL) || defined(USE_HIP)
|
||||
#include "lal_aux_fun1.h"
|
||||
#ifndef _DOUBLE_DOUBLE
|
||||
_texture( pos_tex,float4);
|
||||
_texture( vel_tex,float4);
|
||||
#else
|
||||
_texture_2d( pos_tex,int4);
|
||||
_texture_2d( vel_tex,int4);
|
||||
#endif
|
||||
#else
|
||||
#define pos_tex x_
|
||||
#define vel_tex v_
|
||||
#endif
|
||||
|
||||
#define EPSILON (numtyp)1.0e-10
|
||||
|
||||
//#define _USE_UNIFORM_SARU_LCG
|
||||
//#define _USE_UNIFORM_SARU_TEA8
|
||||
//#define _USE_GAUSSIAN_SARU_LCG
|
||||
|
||||
#if !defined(_USE_UNIFORM_SARU_LCG) && !defined(_USE_UNIFORM_SARU_TEA8) && !defined(_USE_GAUSSIAN_SARU_LCG)
|
||||
#define _USE_UNIFORM_SARU_LCG
|
||||
#endif
|
||||
|
||||
// References:
|
||||
// 1. Y. Afshar, F. Schmid, A. Pishevar, S. Worley, Comput. Phys. Comm. 184 (2013), 1119–1128.
|
||||
// 2. C. L. Phillips, J. A. Anderson, S. C. Glotzer, Comput. Phys. Comm. 230 (2011), 7191-7201.
|
||||
// PRNG period = 3666320093*2^32 ~ 2^64 ~ 10^19
|
||||
|
||||
#define LCGA 0x4beb5d59 /* Full period 32 bit LCG */
|
||||
#define LCGC 0x2600e1f7
|
||||
#define oWeylPeriod 0xda879add /* Prime period 3666320093 */
|
||||
#define oWeylOffset 0x8009d14b
|
||||
#define TWO_N32 0.232830643653869628906250e-9f /* 2^-32 */
|
||||
|
||||
// specifically implemented for steps = 1; high = 1.0; low = -1.0
|
||||
// returns uniformly distributed random numbers u in [-1.0;1.0]
|
||||
// using the inherent LCG, then multiply u with sqrt(3) to "match"
|
||||
// with a normal random distribution.
|
||||
// Afshar et al. mutlplies u in [-0.5;0.5] with sqrt(12)
|
||||
// Curly brackets to make variables local to the scope.
|
||||
#ifdef _USE_UNIFORM_SARU_LCG
|
||||
#define SQRT3 (numtyp)1.7320508075688772935274463
|
||||
#define saru(seed1, seed2, seed, timestep, randnum) { \
|
||||
unsigned int seed3 = seed + timestep; \
|
||||
seed3^=(seed1<<7)^(seed2>>6); \
|
||||
seed2+=(seed1>>4)^(seed3>>15); \
|
||||
seed1^=(seed2<<9)+(seed3<<8); \
|
||||
seed3^=0xA5366B4D*((seed2>>11) ^ (seed1<<1)); \
|
||||
seed2+=0x72BE1579*((seed1<<4) ^ (seed3>>16)); \
|
||||
seed1^=0x3F38A6ED*((seed3>>5) ^ (((signed int)seed2)>>22)); \
|
||||
seed2+=seed1*seed3; \
|
||||
seed1+=seed3 ^ (seed2>>2); \
|
||||
seed2^=((signed int)seed2)>>17; \
|
||||
unsigned int state = 0x79dedea3*(seed1^(((signed int)seed1)>>14)); \
|
||||
unsigned int wstate = (state + seed2) ^ (((signed int)state)>>8); \
|
||||
state = state + (wstate*(wstate^0xdddf97f5)); \
|
||||
wstate = 0xABCB96F7 + (wstate>>1); \
|
||||
state = LCGA*state + LCGC; \
|
||||
wstate = wstate + oWeylOffset+((((signed int)wstate)>>31) & oWeylPeriod); \
|
||||
unsigned int v = (state ^ (state>>26)) + wstate; \
|
||||
unsigned int s = (signed int)((v^(v>>20))*0x6957f5a7); \
|
||||
randnum = SQRT3*(s*TWO_N32*(numtyp)2.0-(numtyp)1.0); \
|
||||
}
|
||||
#endif
|
||||
|
||||
// specifically implemented for steps = 1; high = 1.0; low = -1.0
|
||||
// returns uniformly distributed random numbers u in [-1.0;1.0] using TEA8
|
||||
// then multiply u with sqrt(3) to "match" with a normal random distribution
|
||||
// Afshar et al. mutlplies u in [-0.5;0.5] with sqrt(12)
|
||||
#ifdef _USE_UNIFORM_SARU_TEA8
|
||||
#define SQRT3 (numtyp)1.7320508075688772935274463
|
||||
#define k0 0xA341316C
|
||||
#define k1 0xC8013EA4
|
||||
#define k2 0xAD90777D
|
||||
#define k3 0x7E95761E
|
||||
#define delta 0x9e3779b9
|
||||
#define rounds 8
|
||||
#define saru(seed1, seed2, seed, timestep, randnum) { \
|
||||
unsigned int seed3 = seed + timestep; \
|
||||
seed3^=(seed1<<7)^(seed2>>6); \
|
||||
seed2+=(seed1>>4)^(seed3>>15); \
|
||||
seed1^=(seed2<<9)+(seed3<<8); \
|
||||
seed3^=0xA5366B4D*((seed2>>11) ^ (seed1<<1)); \
|
||||
seed2+=0x72BE1579*((seed1<<4) ^ (seed3>>16)); \
|
||||
seed1^=0x3F38A6ED*((seed3>>5) ^ (((signed int)seed2)>>22)); \
|
||||
seed2+=seed1*seed3; \
|
||||
seed1+=seed3 ^ (seed2>>2); \
|
||||
seed2^=((signed int)seed2)>>17; \
|
||||
unsigned int state = 0x79dedea3*(seed1^(((signed int)seed1)>>14)); \
|
||||
unsigned int wstate = (state + seed2) ^ (((signed int)state)>>8); \
|
||||
state = state + (wstate*(wstate^0xdddf97f5)); \
|
||||
wstate = 0xABCB96F7 + (wstate>>1); \
|
||||
unsigned int sum = 0; \
|
||||
for (int i=0; i < rounds; i++) { \
|
||||
sum += delta; \
|
||||
state += ((wstate<<4) + k0)^(wstate + sum)^((wstate>>5) + k1); \
|
||||
wstate += ((state<<4) + k2)^(state + sum)^((state>>5) + k3); \
|
||||
} \
|
||||
unsigned int v = (state ^ (state>>26)) + wstate; \
|
||||
unsigned int s = (signed int)((v^(v>>20))*0x6957f5a7); \
|
||||
randnum = SQRT3*(s*TWO_N32*(numtyp)2.0-(numtyp)1.0); \
|
||||
}
|
||||
#endif
|
||||
|
||||
// specifically implemented for steps = 1; high = 1.0; low = -1.0
|
||||
// returns two uniformly distributed random numbers r1 and r2 in [-1.0;1.0],
|
||||
// and uses the polar method (Marsaglia's) to transform to a normal random value
|
||||
// This is used to compared with CPU DPD using RandMars::gaussian()
|
||||
#ifdef _USE_GAUSSIAN_SARU_LCG
|
||||
#define saru(seed1, seed2, seed, timestep, randnum) { \
|
||||
unsigned int seed3 = seed + timestep; \
|
||||
seed3^=(seed1<<7)^(seed2>>6); \
|
||||
seed2+=(seed1>>4)^(seed3>>15); \
|
||||
seed1^=(seed2<<9)+(seed3<<8); \
|
||||
seed3^=0xA5366B4D*((seed2>>11) ^ (seed1<<1)); \
|
||||
seed2+=0x72BE1579*((seed1<<4) ^ (seed3>>16)); \
|
||||
seed1^=0x3F38A6ED*((seed3>>5) ^ (((signed int)seed2)>>22)); \
|
||||
seed2+=seed1*seed3; \
|
||||
seed1+=seed3 ^ (seed2>>2); \
|
||||
seed2^=((signed int)seed2)>>17; \
|
||||
unsigned int state=0x12345678; \
|
||||
unsigned int wstate=12345678; \
|
||||
state = 0x79dedea3*(seed1^(((signed int)seed1)>>14)); \
|
||||
wstate = (state + seed2) ^ (((signed int)state)>>8); \
|
||||
state = state + (wstate*(wstate^0xdddf97f5)); \
|
||||
wstate = 0xABCB96F7 + (wstate>>1); \
|
||||
unsigned int v, s; \
|
||||
numtyp r1, r2, rsq; \
|
||||
while (1) { \
|
||||
state = LCGA*state + LCGC; \
|
||||
wstate = wstate + oWeylOffset+((((signed int)wstate)>>31) & oWeylPeriod); \
|
||||
v = (state ^ (state>>26)) + wstate; \
|
||||
s = (signed int)((v^(v>>20))*0x6957f5a7); \
|
||||
r1 = s*TWO_N32*(numtyp)2.0-(numtyp)1.0; \
|
||||
state = LCGA*state + LCGC; \
|
||||
wstate = wstate + oWeylOffset+((((signed int)wstate)>>31) & oWeylPeriod); \
|
||||
v = (state ^ (state>>26)) + wstate; \
|
||||
s = (signed int)((v^(v>>20))*0x6957f5a7); \
|
||||
r2 = s*TWO_N32*(numtyp)2.0-(numtyp)1.0; \
|
||||
rsq = r1 * r1 + r2 * r2; \
|
||||
if (rsq < (numtyp)1.0) break; \
|
||||
} \
|
||||
numtyp fac = ucl_sqrt((numtyp)-2.0*log(rsq)/rsq); \
|
||||
randnum = r2*fac; \
|
||||
}
|
||||
#endif
|
||||
|
||||
#if (SHUFFLE_AVAIL == 0)
|
||||
|
||||
#define store_heatflux(Qi, ii, inum, tid, t_per_atom, offset, Q) \
|
||||
if (t_per_atom>1) { \
|
||||
simdsync(); \
|
||||
simd_reduce_add1(t_per_atom, red_acc, offset, tid, Qi); \
|
||||
} \
|
||||
if (offset==0 && ii<inum) { \
|
||||
Q[ii]=Qi; \
|
||||
}
|
||||
#else
|
||||
#define store_heatflux(Qi, ii, inum, tid, t_per_atom, offset, Q) \
|
||||
if (t_per_atom>1) { \
|
||||
simd_reduce_add1(t_per_atom,Qi); \
|
||||
} \
|
||||
if (offset==0 && ii<inum) { \
|
||||
Q[ii]=Qi; \
|
||||
}
|
||||
#endif
|
||||
|
||||
#define MIN(A,B) ((A) < (B) ? (A) : (B))
|
||||
#define MAX(A,B) ((A) < (B) ? (B) : (A))
|
||||
|
||||
// note the change in coeff: coeff.x = a0, coeff.y = gamma, coeff.z = cut (no sigma)
|
||||
|
||||
__kernel void k_edpd(const __global numtyp4 *restrict x_,
|
||||
const __global numtyp4 *restrict extra,
|
||||
const __global numtyp4 *restrict coeff,
|
||||
const __global numtyp4 *restrict coeff2,
|
||||
const __global numtyp *restrict mass,
|
||||
const __global numtyp4 *restrict sc,
|
||||
const __global numtyp4 *restrict kc,
|
||||
const int lj_types,
|
||||
const __global numtyp *restrict sp_lj,
|
||||
const __global numtyp *restrict sp_sqrt,
|
||||
const __global int * dev_nbor,
|
||||
const __global int * dev_packed,
|
||||
__global acctyp3 *restrict ans,
|
||||
__global acctyp *restrict engv,
|
||||
__global acctyp *restrict Q,
|
||||
const int eflag, const int vflag,
|
||||
const int power_flag, const int kappa_flag,
|
||||
const int inum, const int nbor_pitch,
|
||||
const __global numtyp4 *restrict v_,
|
||||
const __global numtyp *restrict cutsq,
|
||||
const numtyp dtinvsqrt, const int seed,
|
||||
const int timestep, const int t_per_atom) {
|
||||
int tid, ii, offset;
|
||||
atom_info(t_per_atom,ii,tid,offset);
|
||||
|
||||
int n_stride;
|
||||
local_allocate_store_pair();
|
||||
|
||||
acctyp3 f;
|
||||
f.x=(acctyp)0; f.y=(acctyp)0; f.z=(acctyp)0;
|
||||
acctyp energy, virial[6];
|
||||
if (EVFLAG) {
|
||||
energy=(acctyp)0;
|
||||
for (int i=0; i<6; i++) virial[i]=(acctyp)0;
|
||||
}
|
||||
acctyp Qi = (acctyp)0;
|
||||
|
||||
if (ii<inum) {
|
||||
int i, numj, nbor, nbor_end;
|
||||
nbor_info(dev_nbor,dev_packed,nbor_pitch,t_per_atom,ii,offset,i,numj,
|
||||
n_stride,nbor_end,nbor);
|
||||
|
||||
numtyp4 ix; fetch4(ix,i,pos_tex); //x_[i];
|
||||
int itype=ix.w;
|
||||
numtyp mass_itype = mass[itype];
|
||||
numtyp4 iv; fetch4(iv,i,vel_tex); //v_[i];
|
||||
int itag=iv.w;
|
||||
|
||||
const numtyp4 Tcvi = extra[i];
|
||||
numtyp Ti = Tcvi.x;
|
||||
numtyp cvi = Tcvi.y;
|
||||
|
||||
numtyp factor_dpd;
|
||||
for ( ; nbor<nbor_end; nbor+=n_stride) {
|
||||
ucl_prefetch(dev_packed+nbor+n_stride);
|
||||
|
||||
int j=dev_packed[nbor];
|
||||
factor_dpd = sp_lj[sbmask(j)];
|
||||
j &= NEIGHMASK;
|
||||
|
||||
numtyp4 jx; fetch4(jx,j,pos_tex); //x_[j];
|
||||
int jtype=jx.w;
|
||||
numtyp4 jv; fetch4(jv,j,vel_tex); //v_[j];
|
||||
int jtag=jv.w;
|
||||
|
||||
// Compute r12
|
||||
numtyp delx = ix.x-jx.x;
|
||||
numtyp dely = ix.y-jx.y;
|
||||
numtyp delz = ix.z-jx.z;
|
||||
numtyp rsq = delx*delx+dely*dely+delz*delz;
|
||||
|
||||
int mtype=itype*lj_types+jtype;
|
||||
if (rsq<cutsq[mtype]) {
|
||||
numtyp r=ucl_sqrt(rsq);
|
||||
if (r < EPSILON) continue;
|
||||
|
||||
numtyp rinv=ucl_recip(r);
|
||||
numtyp delvx = iv.x - jv.x;
|
||||
numtyp delvy = iv.y - jv.y;
|
||||
numtyp delvz = iv.z - jv.z;
|
||||
numtyp dot = delx*delvx + dely*delvy + delz*delvz;
|
||||
numtyp vijeij = dot*rinv;
|
||||
|
||||
const numtyp coeffx=coeff[mtype].x; // a0[itype][jtype]
|
||||
const numtyp coeffy=coeff[mtype].y; // gamma[itype][jtype]
|
||||
const numtyp coeffz=coeff[mtype].z; // cut[itype][jtype]
|
||||
|
||||
const numtyp4 Tcvj = extra[j];
|
||||
numtyp Tj = Tcvj.x;
|
||||
numtyp cvj = Tcvj.y;
|
||||
|
||||
unsigned int tag1=itag, tag2=jtag;
|
||||
if (tag1 > tag2) {
|
||||
tag1 = jtag; tag2 = itag;
|
||||
}
|
||||
|
||||
numtyp randnum = (numtyp)0.0;
|
||||
saru(tag1, tag2, seed, timestep, randnum);
|
||||
|
||||
numtyp T_ij=(numtyp)0.5*(Ti+Tj);
|
||||
numtyp4 T_pow;
|
||||
T_pow.x = T_ij - (numtyp)1.0;
|
||||
T_pow.y = T_pow.x*T_pow.x;
|
||||
T_pow.z = T_pow.x*T_pow.y;
|
||||
T_pow.w = T_pow.x*T_pow.z;
|
||||
|
||||
numtyp coeff2x = coeff2[mtype].x; //power[itype][jtype]
|
||||
numtyp coeff2y = coeff2[mtype].y; //kappa[itype][jtype]
|
||||
numtyp coeff2z = coeff2[mtype].z; //powerT[itype][jtype]
|
||||
numtyp coeff2w = coeff2[mtype].w; //cutT[itype][jtype]
|
||||
numtyp power_d = coeff2x;
|
||||
if (power_flag) {
|
||||
numtyp factor = (numtyp)1.0;
|
||||
factor += sc[mtype].x*T_pow.x + sc[mtype].y*T_pow.y +
|
||||
sc[mtype].z*T_pow.z + sc[mtype].w*T_pow.w;
|
||||
power_d *= factor;
|
||||
}
|
||||
|
||||
power_d = MAX((numtyp)0.01,power_d);
|
||||
numtyp wc = (numtyp)1.0 - r/coeffz; // cut[itype][jtype]
|
||||
wc = MAX((numtyp)0.0,MIN((numtyp)1.0,wc));
|
||||
numtyp wr = ucl_pow(wc, (numtyp)0.5*power_d);
|
||||
|
||||
numtyp kboltz = (numtyp)1.0;
|
||||
numtyp GammaIJ = coeffy; // gamma[itype][jtype]
|
||||
numtyp SigmaIJ = (numtyp)4.0*GammaIJ*kboltz*Ti*Tj/(Ti+Tj);
|
||||
SigmaIJ = ucl_sqrt(SigmaIJ);
|
||||
|
||||
numtyp force = coeffx*T_ij*wc; // a0[itype][jtype]
|
||||
force -= GammaIJ *wr*wr *dot*rinv;
|
||||
force += SigmaIJ * wr *randnum * dtinvsqrt;
|
||||
force *= factor_dpd*rinv;
|
||||
|
||||
f.x+=delx*force;
|
||||
f.y+=dely*force;
|
||||
f.z+=delz*force;
|
||||
|
||||
// heat transfer
|
||||
|
||||
if (r < coeff2w) {
|
||||
numtyp wrT = (numtyp)1.0 - r/coeff2w;
|
||||
wrT = MAX((numtyp)0.0,MIN((numtyp)1.0,wrT));
|
||||
wrT = ucl_pow(wrT, (numtyp)0.5*coeff2z); // powerT[itype][jtype]
|
||||
numtyp randnumT = (numtyp)0;
|
||||
saru(tag1, tag2, seed+tag1+tag2, timestep, randnumT); // randomT->gaussian();
|
||||
randnumT = MAX((numtyp)-5.0,MIN(randnum,(numtyp)5.0));
|
||||
|
||||
numtyp kappaT = coeff2y; // kappa[itype][jtype]
|
||||
if (kappa_flag) {
|
||||
numtyp factor = (numtyp)1.0;
|
||||
factor += kc[mtype].x*T_pow.x + kc[mtype].y*T_pow.y +
|
||||
kc[mtype].z*T_pow.z + kc[mtype].w*T_pow.w;
|
||||
kappaT *= factor;
|
||||
}
|
||||
|
||||
numtyp kij = cvi*cvj*kappaT * T_ij*T_ij;
|
||||
numtyp alphaij = ucl_sqrt((numtyp)2.0*kboltz*kij);
|
||||
|
||||
numtyp dQc = kij * wrT*wrT * (Tj - Ti)/(Ti*Tj);
|
||||
numtyp dQd = wr*wr*( GammaIJ * vijeij*vijeij - SigmaIJ*SigmaIJ/mass_itype ) - SigmaIJ * wr *vijeij *randnum;
|
||||
dQd /= (cvi+cvj);
|
||||
numtyp dQr = alphaij * wrT * dtinvsqrt * randnumT;
|
||||
Qi += (dQc + dQd + dQr );
|
||||
}
|
||||
|
||||
if (EVFLAG && eflag) {
|
||||
numtyp e = (numtyp)0.5*coeffx*T_ij*coeffz * wc*wc;
|
||||
energy+=factor_dpd*e;
|
||||
}
|
||||
if (EVFLAG && vflag) {
|
||||
virial[0] += delx*delx*force;
|
||||
virial[1] += dely*dely*force;
|
||||
virial[2] += delz*delz*force;
|
||||
virial[3] += delx*dely*force;
|
||||
virial[4] += delx*delz*force;
|
||||
virial[5] += dely*delz*force;
|
||||
}
|
||||
}
|
||||
} // for nbor
|
||||
} // if ii
|
||||
store_answers(f,energy,virial,ii,inum,tid,t_per_atom,offset,eflag,vflag,
|
||||
ans,engv);
|
||||
store_heatflux(Qi,ii,inum,tid,t_per_atom,offset,Q);
|
||||
}
|
||||
|
||||
__kernel void k_edpd_fast(const __global numtyp4 *restrict x_,
|
||||
const __global numtyp4 *restrict extra,
|
||||
const __global numtyp4 *restrict coeff_in,
|
||||
const __global numtyp4 *restrict coeff2_in,
|
||||
const __global numtyp *restrict mass,
|
||||
const __global numtyp4 *restrict sc_in,
|
||||
const __global numtyp4 *restrict kc_in,
|
||||
const __global numtyp *restrict sp_lj_in,
|
||||
const __global numtyp *restrict sp_sqrt_in,
|
||||
const __global int * dev_nbor,
|
||||
const __global int * dev_packed,
|
||||
__global acctyp3 *restrict ans,
|
||||
__global acctyp *restrict engv,
|
||||
__global acctyp *restrict Q,
|
||||
const int eflag, const int vflag,
|
||||
const int power_flag, const int kappa_flag,
|
||||
const int inum, const int nbor_pitch,
|
||||
const __global numtyp4 *restrict v_,
|
||||
const __global numtyp *restrict cutsq,
|
||||
const numtyp dtinvsqrt, const int seed,
|
||||
const int timestep, const int t_per_atom) {
|
||||
int tid, ii, offset;
|
||||
atom_info(t_per_atom,ii,tid,offset);
|
||||
|
||||
#ifndef ONETYPE
|
||||
__local numtyp4 coeff[MAX_SHARED_TYPES*MAX_SHARED_TYPES];
|
||||
__local numtyp4 coeff2[MAX_SHARED_TYPES*MAX_SHARED_TYPES];
|
||||
__local numtyp4 sc[MAX_SHARED_TYPES*MAX_SHARED_TYPES];
|
||||
__local numtyp4 kc[MAX_SHARED_TYPES*MAX_SHARED_TYPES];
|
||||
__local numtyp sp_lj[4];
|
||||
__local numtyp sp_sqrt[4];
|
||||
if (tid<4) {
|
||||
sp_lj[tid]=sp_lj_in[tid];
|
||||
sp_sqrt[tid]=sp_sqrt_in[tid];
|
||||
}
|
||||
if (tid<MAX_SHARED_TYPES*MAX_SHARED_TYPES) {
|
||||
coeff[tid]=coeff_in[tid];
|
||||
coeff2[tid]=coeff2_in[tid];
|
||||
sc[tid]=sc_in[tid];
|
||||
kc[tid]=kc_in[tid];
|
||||
}
|
||||
__syncthreads();
|
||||
#else
|
||||
const numtyp coeffx=coeff_in[ONETYPE].x; // a0[itype][jtype]
|
||||
const numtyp coeffy=coeff_in[ONETYPE].y; // gamma[itype][jtype]
|
||||
const numtyp coeffz=coeff_in[ONETYPE].z; // cut[itype][jtype]
|
||||
const numtyp coeff2x=coeff2_in[ONETYPE].x; // power[itype][jtype]
|
||||
const numtyp coeff2y=coeff2_in[ONETYPE].y; // kappa[itype][jtype]
|
||||
const numtyp coeff2z=coeff2_in[ONETYPE].z; // powerT[itype][jtype]
|
||||
const numtyp coeff2w=coeff2_in[ONETYPE].w; // cutT[itype][jtype]
|
||||
const numtyp cutsq_p=cutsq[ONETYPE];
|
||||
const numtyp scx=sc_in[ONETYPE].x;
|
||||
const numtyp scy=sc_in[ONETYPE].y;
|
||||
const numtyp scz=sc_in[ONETYPE].z;
|
||||
const numtyp scw=sc_in[ONETYPE].w;
|
||||
const numtyp kcx=kc_in[ONETYPE].x;
|
||||
const numtyp kcy=kc_in[ONETYPE].y;
|
||||
const numtyp kcz=kc_in[ONETYPE].z;
|
||||
const numtyp kcw=kc_in[ONETYPE].w;
|
||||
#endif
|
||||
|
||||
int n_stride;
|
||||
local_allocate_store_pair();
|
||||
|
||||
acctyp3 f;
|
||||
f.x=(acctyp)0; f.y=(acctyp)0; f.z=(acctyp)0;
|
||||
acctyp energy, virial[6];
|
||||
if (EVFLAG) {
|
||||
energy=(acctyp)0;
|
||||
for (int i=0; i<6; i++) virial[i]=(acctyp)0;
|
||||
}
|
||||
acctyp Qi = (acctyp)0;
|
||||
|
||||
if (ii<inum) {
|
||||
int i, numj, nbor, nbor_end;
|
||||
nbor_info(dev_nbor,dev_packed,nbor_pitch,t_per_atom,ii,offset,i,numj,
|
||||
n_stride,nbor_end,nbor);
|
||||
|
||||
numtyp4 ix; fetch4(ix,i,pos_tex); //x_[i];
|
||||
int iw=ix.w;
|
||||
numtyp mass_itype = mass[iw];
|
||||
#ifndef ONETYPE
|
||||
int itype=fast_mul((int)MAX_SHARED_TYPES,iw);
|
||||
#endif
|
||||
numtyp4 iv; fetch4(iv,i,vel_tex); //v_[i];
|
||||
int itag=iv.w;
|
||||
|
||||
const numtyp4 Tcvi = extra[i];
|
||||
numtyp Ti = Tcvi.x;
|
||||
numtyp cvi = Tcvi.y;
|
||||
|
||||
#ifndef ONETYPE
|
||||
numtyp factor_dpd;
|
||||
#endif
|
||||
for ( ; nbor<nbor_end; nbor+=n_stride) {
|
||||
ucl_prefetch(dev_packed+nbor+n_stride);
|
||||
|
||||
int j=dev_packed[nbor];
|
||||
#ifndef ONETYPE
|
||||
factor_dpd = sp_lj[sbmask(j)];
|
||||
j &= NEIGHMASK;
|
||||
#endif
|
||||
|
||||
numtyp4 jx; fetch4(jx,j,pos_tex); //x_[j];
|
||||
#ifndef ONETYPE
|
||||
int mtype=itype+jx.w;
|
||||
const numtyp cutsq_p=cutsq[mtype];
|
||||
#endif
|
||||
numtyp4 jv; fetch4(jv,j,vel_tex); //v_[j];
|
||||
int jtag=jv.w;
|
||||
|
||||
// Compute r12
|
||||
numtyp delx = ix.x-jx.x;
|
||||
numtyp dely = ix.y-jx.y;
|
||||
numtyp delz = ix.z-jx.z;
|
||||
numtyp rsq = delx*delx+dely*dely+delz*delz;
|
||||
|
||||
if (rsq<cutsq_p) {
|
||||
numtyp r=ucl_sqrt(rsq);
|
||||
if (r < EPSILON) continue;
|
||||
|
||||
numtyp rinv=ucl_recip(r);
|
||||
numtyp delvx = iv.x - jv.x;
|
||||
numtyp delvy = iv.y - jv.y;
|
||||
numtyp delvz = iv.z - jv.z;
|
||||
numtyp dot = delx*delvx + dely*delvy + delz*delvz;
|
||||
numtyp vijeij = dot*rinv;
|
||||
|
||||
#ifndef ONETYPE
|
||||
const numtyp coeffx=coeff[mtype].x; // a0[itype][jtype]
|
||||
const numtyp coeffy=coeff[mtype].y; // gamma[itype][jtype]
|
||||
const numtyp coeffz=coeff[mtype].z; // cut[itype][jtype]
|
||||
const numtyp coeff2x=coeff2[mtype].x; // power[itype][jtype]
|
||||
const numtyp coeff2y=coeff2[mtype].y; // kappa[itype][jtype]
|
||||
const numtyp coeff2z=coeff2[mtype].z; // powerT[itype][jtype]
|
||||
const numtyp coeff2w=coeff2[mtype].w; // cutT[itype][jtype]
|
||||
const numtyp scx = sc[mtype].x;
|
||||
const numtyp scy = sc[mtype].y;
|
||||
const numtyp scz = sc[mtype].z;
|
||||
const numtyp scw = sc[mtype].w;
|
||||
const numtyp kcx = kc[mtype].x;
|
||||
const numtyp kcy = kc[mtype].y;
|
||||
const numtyp kcz = kc[mtype].z;
|
||||
const numtyp kcw = kc[mtype].w;
|
||||
#endif
|
||||
|
||||
const numtyp4 Tcvj = extra[j];
|
||||
numtyp Tj = Tcvj.x;
|
||||
numtyp cvj = Tcvj.y;
|
||||
|
||||
unsigned int tag1=itag, tag2=jtag;
|
||||
if (tag1 > tag2) {
|
||||
tag1 = jtag; tag2 = itag;
|
||||
}
|
||||
numtyp randnum = (numtyp)0.0;
|
||||
saru(tag1, tag2, seed, timestep, randnum);
|
||||
|
||||
numtyp T_ij=(numtyp)0.5*(Ti+Tj);
|
||||
numtyp4 T_pow;
|
||||
T_pow.x = T_ij - (numtyp)1.0;
|
||||
T_pow.y = T_pow.x*T_pow.x;
|
||||
T_pow.z = T_pow.x*T_pow.y;
|
||||
T_pow.w = T_pow.x*T_pow.z;
|
||||
|
||||
numtyp power_d = coeff2x; // power[itype][jtype]
|
||||
if (power_flag) {
|
||||
numtyp factor = (numtyp)1.0;
|
||||
factor += scx*T_pow.x + scy*T_pow.y + scz*T_pow.z + scw*T_pow.w;
|
||||
power_d *= factor;
|
||||
}
|
||||
|
||||
power_d = MAX((numtyp)0.01,power_d);
|
||||
numtyp wc = (numtyp)1.0 - r/coeffz; // cut[itype][jtype]
|
||||
wc = MAX((numtyp)0.0,MIN((numtyp)1.0,wc));
|
||||
numtyp wr = ucl_pow((numtyp)wc, (numtyp)0.5*power_d);
|
||||
|
||||
numtyp kboltz = (numtyp)1.0;
|
||||
numtyp GammaIJ = coeffy; // gamma[itype][jtype]
|
||||
numtyp SigmaIJ = (numtyp)4.0*GammaIJ*kboltz*Ti*Tj/(Ti+Tj);
|
||||
SigmaIJ = ucl_sqrt(SigmaIJ);
|
||||
|
||||
numtyp force = coeffx*T_ij*wc; // a0[itype][jtype]
|
||||
force -= GammaIJ *wr*wr *dot*rinv;
|
||||
force += SigmaIJ* wr *randnum * dtinvsqrt;
|
||||
#ifndef ONETYPE
|
||||
force *= factor_dpd*rinv;
|
||||
#else
|
||||
force *= rinv;
|
||||
#endif
|
||||
|
||||
f.x+=delx*force;
|
||||
f.y+=dely*force;
|
||||
f.z+=delz*force;
|
||||
|
||||
// heat transfer
|
||||
|
||||
if (r < coeff2w) {
|
||||
numtyp wrT = (numtyp)1.0 - r/coeff2w;
|
||||
wrT = MAX((numtyp)0.0,MIN((numtyp)1.0,wrT));
|
||||
wrT = ucl_pow(wrT, (numtyp)0.5*coeff2z); // powerT[itype][jtype]
|
||||
numtyp randnumT = (numtyp)0;
|
||||
saru(tag1, tag2, seed+tag1+tag2, timestep, randnumT); // randomT->gaussian();
|
||||
randnumT = MAX((numtyp)-5.0,MIN(randnum,(numtyp)5.0));
|
||||
|
||||
numtyp kappaT = coeff2y; // kappa[itype][jtype]
|
||||
if (kappa_flag) {
|
||||
numtyp factor = (numtyp)1.0;
|
||||
factor += kcx*T_pow.x + kcy*T_pow.y + kcz*T_pow.z + kcw*T_pow.w;
|
||||
kappaT *= factor;
|
||||
}
|
||||
|
||||
numtyp kij = cvi*cvj*kappaT * T_ij*T_ij;
|
||||
numtyp alphaij = ucl_sqrt((numtyp)2.0*kboltz*kij);
|
||||
|
||||
numtyp dQc = kij * wrT*wrT * (Tj - Ti )/(Ti*Tj);
|
||||
numtyp dQd = wr*wr*( GammaIJ * vijeij*vijeij - SigmaIJ*SigmaIJ/mass_itype ) - SigmaIJ * wr *vijeij *randnum;
|
||||
dQd /= (cvi+cvj);
|
||||
numtyp dQr = alphaij * wrT * dtinvsqrt * randnumT;
|
||||
Qi += (dQc + dQd + dQr );
|
||||
}
|
||||
|
||||
if (EVFLAG && eflag) {
|
||||
numtyp e = (numtyp)0.5*coeffx*T_ij*coeffz * wc*wc;
|
||||
#ifndef ONETYPE
|
||||
energy+=factor_dpd*e;
|
||||
#else
|
||||
energy+=e;
|
||||
#endif
|
||||
}
|
||||
if (EVFLAG && vflag) {
|
||||
virial[0] += delx*delx*force;
|
||||
virial[1] += dely*dely*force;
|
||||
virial[2] += delz*delz*force;
|
||||
virial[3] += delx*dely*force;
|
||||
virial[4] += delx*delz*force;
|
||||
virial[5] += dely*delz*force;
|
||||
}
|
||||
|
||||
}
|
||||
} // for nbor
|
||||
} // if ii
|
||||
|
||||
store_answers(f,energy,virial,ii,inum,tid,t_per_atom,offset,eflag,vflag, ans,engv);
|
||||
store_heatflux(Qi,ii,inum,tid,t_per_atom,offset,Q);
|
||||
}
|
||||
|
||||
106
lib/gpu/lal_edpd.h
Normal file
106
lib/gpu/lal_edpd.h
Normal file
@ -0,0 +1,106 @@
|
||||
/***************************************************************************
|
||||
edpd.h
|
||||
-------------------
|
||||
Trung Dac Nguyen (U Chicago)
|
||||
|
||||
Class for acceleration of the dpd pair style.
|
||||
|
||||
__________________________________________________________________________
|
||||
This file is part of the LAMMPS Accelerator Library (LAMMPS_AL)
|
||||
__________________________________________________________________________
|
||||
|
||||
begin : September 2023
|
||||
email : ndactrung@gmail.com
|
||||
***************************************************************************/
|
||||
|
||||
#ifndef LAL_DPD_H
|
||||
#define LAL_DPD_H
|
||||
|
||||
#include "lal_base_dpd.h"
|
||||
|
||||
namespace LAMMPS_AL {
|
||||
|
||||
template <class numtyp, class acctyp>
|
||||
class EDPD : public BaseDPD<numtyp, acctyp> {
|
||||
public:
|
||||
EDPD();
|
||||
~EDPD();
|
||||
|
||||
/// Clear any previous data and set up for a new LAMMPS run
|
||||
/** \param max_nbors initial number of rows in the neighbor matrix
|
||||
* \param cell_size cutoff + skin
|
||||
* \param gpu_split fraction of particles handled by device
|
||||
*
|
||||
* Returns:
|
||||
* - 0 if successful
|
||||
* - -1 if fix gpu not found
|
||||
* - -3 if there is an out of memory error
|
||||
* - -4 if the GPU library was not compiled for GPU
|
||||
* - -5 Double precision is not supported on card **/
|
||||
int init(const int ntypes, double **host_cutsq, double **host_a0,
|
||||
double **host_gamma, double **host_cut, double **host_power,
|
||||
double **host_kappa, double **host_powerT, double **host_cutT,
|
||||
double ***host_sc, double ***host_kc, double *host_mass,
|
||||
double *host_special_lj, const int power_flag, const int kappa_flag,
|
||||
const int nlocal, const int nall, const int max_nbors,
|
||||
const int maxspecial, const double cell_size, const double gpu_split,
|
||||
FILE *screen);
|
||||
|
||||
/// Clear all host and device data
|
||||
/** \note This is called at the beginning of the init() routine **/
|
||||
void clear();
|
||||
|
||||
/// Returns memory usage on device per atom
|
||||
int bytes_per_atom(const int max_nbors) const;
|
||||
|
||||
/// Total host memory used by library for pair style
|
||||
double host_memory_usage() const;
|
||||
|
||||
/// Update coeff if needed (tstat only)
|
||||
void update_coeff(int ntypes, double **host_a0, double **host_gamma,
|
||||
double **host_sigma, double **host_cut);
|
||||
|
||||
void get_extra_data(double *host_T, double *host_cv);
|
||||
|
||||
/// copy Q (flux) from device to host
|
||||
void update_flux(void **flux_ptr);
|
||||
|
||||
// --------------------------- TYPE DATA --------------------------
|
||||
|
||||
/// coeff.x = a0, coeff.y = gamma, coeff.z = cut
|
||||
UCL_D_Vec<numtyp4> coeff;
|
||||
/// coeff2.x = power, coeff2.y = kappa, coeff2.z = powerT, coeff2.w = cutT
|
||||
UCL_D_Vec<numtyp4> coeff2;
|
||||
|
||||
UCL_D_Vec<numtyp4> kc, sc;
|
||||
UCL_D_Vec<numtyp> cutsq;
|
||||
|
||||
/// per-type array
|
||||
UCL_D_Vec<numtyp> mass;
|
||||
|
||||
/// Special LJ values
|
||||
UCL_D_Vec<numtyp> sp_lj, sp_sqrt;
|
||||
|
||||
/// If atom type constants fit in shared memory, use fast kernels
|
||||
bool shared_types;
|
||||
|
||||
/// Number of atom types
|
||||
int _lj_types;
|
||||
|
||||
/// Per-atom arrays
|
||||
UCL_Vector<acctyp,acctyp> Q;
|
||||
int _max_q_size;
|
||||
|
||||
int _power_flag, _kappa_flag;
|
||||
|
||||
/// pointer to host data
|
||||
double *edpd_temp, *edpd_cv;
|
||||
|
||||
private:
|
||||
bool _allocated;
|
||||
int loop(const int eflag, const int vflag);
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
142
lib/gpu/lal_edpd_ext.cpp
Normal file
142
lib/gpu/lal_edpd_ext.cpp
Normal file
@ -0,0 +1,142 @@
|
||||
/***************************************************************************
|
||||
edpd_ext.cpp
|
||||
-------------------
|
||||
Trung Dac Nguyen (U Chicago)
|
||||
|
||||
Functions for LAMMPS access to edpd acceleration routines.
|
||||
|
||||
__________________________________________________________________________
|
||||
This file is part of the LAMMPS Accelerator Library (LAMMPS_AL)
|
||||
__________________________________________________________________________
|
||||
|
||||
begin : September 2023
|
||||
email : ndactrung@gmail.com
|
||||
***************************************************************************/
|
||||
|
||||
#include <iostream>
|
||||
#include <cassert>
|
||||
#include <cmath>
|
||||
|
||||
#include "lal_edpd.h"
|
||||
|
||||
using namespace std;
|
||||
using namespace LAMMPS_AL;
|
||||
|
||||
static EDPD<PRECISION,ACC_PRECISION> EDPDMF;
|
||||
|
||||
// ---------------------------------------------------------------------------
|
||||
// Allocate memory on host and device and copy constants to device
|
||||
// ---------------------------------------------------------------------------
|
||||
int edpd_gpu_init(const int ntypes, double **cutsq, double **host_a0,
|
||||
double **host_gamma, double **host_cut, double **host_power,
|
||||
double **host_kappa, double **host_powerT, double **host_cutT,
|
||||
double ***host_sc, double ***host_kc, double *host_mass,
|
||||
double *special_lj, const int power_flag, const int kappa_flag,
|
||||
const int inum, const int nall,
|
||||
const int max_nbors, const int maxspecial,
|
||||
const double cell_size, int &gpu_mode, FILE *screen) {
|
||||
EDPDMF.clear();
|
||||
gpu_mode=EDPDMF.device->gpu_mode();
|
||||
double gpu_split=EDPDMF.device->particle_split();
|
||||
int first_gpu=EDPDMF.device->first_device();
|
||||
int last_gpu=EDPDMF.device->last_device();
|
||||
int world_me=EDPDMF.device->world_me();
|
||||
int gpu_rank=EDPDMF.device->gpu_rank();
|
||||
int procs_per_gpu=EDPDMF.device->procs_per_gpu();
|
||||
|
||||
EDPDMF.device->init_message(screen,"edpd",first_gpu,last_gpu);
|
||||
|
||||
bool message=false;
|
||||
if (EDPDMF.device->replica_me()==0 && screen)
|
||||
message=true;
|
||||
|
||||
if (message) {
|
||||
fprintf(screen,"Initializing Device and compiling on process 0...");
|
||||
fflush(screen);
|
||||
}
|
||||
|
||||
int init_ok=0;
|
||||
if (world_me==0)
|
||||
init_ok=EDPDMF.init(ntypes, cutsq, host_a0, host_gamma, host_cut,
|
||||
host_power, host_kappa, host_powerT,
|
||||
host_cutT, host_sc, host_kc, host_mass,
|
||||
special_lj, power_flag, kappa_flag,
|
||||
inum, nall, max_nbors, maxspecial,
|
||||
cell_size, gpu_split, screen);
|
||||
|
||||
EDPDMF.device->world_barrier();
|
||||
if (message)
|
||||
fprintf(screen,"Done.\n");
|
||||
|
||||
for (int i=0; i<procs_per_gpu; i++) {
|
||||
if (message) {
|
||||
if (last_gpu-first_gpu==0)
|
||||
fprintf(screen,"Initializing Device %d on core %d...",first_gpu,i);
|
||||
else
|
||||
fprintf(screen,"Initializing Devices %d-%d on core %d...",first_gpu,
|
||||
last_gpu,i);
|
||||
fflush(screen);
|
||||
}
|
||||
if (gpu_rank==i && world_me!=0)
|
||||
init_ok=EDPDMF.init(ntypes, cutsq, host_a0, host_gamma, host_cut,
|
||||
host_power, host_kappa, host_powerT, host_cutT,
|
||||
host_sc, host_kc, host_mass,
|
||||
special_lj, power_flag, kappa_flag,
|
||||
inum, nall, max_nbors, maxspecial,
|
||||
cell_size, gpu_split, screen);
|
||||
|
||||
EDPDMF.device->serialize_init();
|
||||
if (message)
|
||||
fprintf(screen,"Done.\n");
|
||||
}
|
||||
if (message)
|
||||
fprintf(screen,"\n");
|
||||
|
||||
if (init_ok==0)
|
||||
EDPDMF.estimate_gpu_overhead();
|
||||
return init_ok;
|
||||
}
|
||||
|
||||
void edpd_gpu_clear() {
|
||||
EDPDMF.clear();
|
||||
}
|
||||
|
||||
int ** edpd_gpu_compute_n(const int ago, const int inum_full, const int nall,
|
||||
double **host_x, int *host_type, double *sublo,
|
||||
double *subhi, tagint *tag, int **nspecial,
|
||||
tagint **special, const bool eflag, const bool vflag,
|
||||
const bool eatom, const bool vatom, int &host_start,
|
||||
int **ilist, int **jnum, const double cpu_time, bool &success,
|
||||
double **host_v, const double dtinvsqrt,
|
||||
const int seed, const int timestep,
|
||||
double *boxlo, double *prd) {
|
||||
return EDPDMF.compute(ago, inum_full, nall, host_x, host_type, sublo,
|
||||
subhi, tag, nspecial, special, eflag, vflag, eatom,
|
||||
vatom, host_start, ilist, jnum, cpu_time, success,
|
||||
host_v, dtinvsqrt, seed, timestep, boxlo, prd);
|
||||
}
|
||||
|
||||
void edpd_gpu_compute(const int ago, const int inum_full, const int nall,
|
||||
double **host_x, int *host_type, int *ilist, int *numj,
|
||||
int **firstneigh, const bool eflag, const bool vflag,
|
||||
const bool eatom, const bool vatom, int &host_start,
|
||||
const double cpu_time, bool &success, tagint *tag,
|
||||
double **host_v, const double dtinvsqrt,
|
||||
const int seed, const int timestep,
|
||||
const int nlocal, double *boxlo, double *prd) {
|
||||
EDPDMF.compute(ago, inum_full, nall, host_x, host_type, ilist, numj,
|
||||
firstneigh, eflag, vflag, eatom, vatom, host_start, cpu_time, success,
|
||||
tag, host_v, dtinvsqrt, seed, timestep, nlocal, boxlo, prd);
|
||||
}
|
||||
|
||||
void edpd_gpu_get_extra_data(double *host_T, double *host_cv) {
|
||||
EDPDMF.get_extra_data(host_T, host_cv);
|
||||
}
|
||||
|
||||
void edpd_gpu_update_flux(void **flux_ptr) {
|
||||
EDPDMF.update_flux(flux_ptr);
|
||||
}
|
||||
|
||||
double edpd_gpu_bytes() {
|
||||
return EDPDMF.host_memory_usage();
|
||||
}
|
||||
218
lib/gpu/lal_mdpd.cpp
Normal file
218
lib/gpu/lal_mdpd.cpp
Normal file
@ -0,0 +1,218 @@
|
||||
/***************************************************************************
|
||||
mdpd.cpp
|
||||
-------------------
|
||||
Trung Dac Nguyen (U Chicago)
|
||||
|
||||
Class for acceleration of the mdpd pair style.
|
||||
|
||||
__________________________________________________________________________
|
||||
This file is part of the LAMMPS Accelerator Library (LAMMPS_AL)
|
||||
__________________________________________________________________________
|
||||
|
||||
begin : September 2023
|
||||
email : ndactrung@gmail.com
|
||||
***************************************************************************/
|
||||
|
||||
#if defined(USE_OPENCL)
|
||||
#include "mdpd_cl.h"
|
||||
#elif defined(USE_CUDART)
|
||||
const char *mdpd=0;
|
||||
#else
|
||||
#include "mdpd_cubin.h"
|
||||
#endif
|
||||
|
||||
#include "lal_mdpd.h"
|
||||
#include <cassert>
|
||||
namespace LAMMPS_AL {
|
||||
#define MDPDT MDPD<numtyp, acctyp>
|
||||
|
||||
extern Device<PRECISION,ACC_PRECISION> device;
|
||||
|
||||
template <class numtyp, class acctyp>
|
||||
MDPDT::MDPD() : BaseDPD<numtyp,acctyp>(), _allocated(false) {
|
||||
}
|
||||
|
||||
template <class numtyp, class acctyp>
|
||||
MDPDT::~MDPD() {
|
||||
clear();
|
||||
}
|
||||
|
||||
template <class numtyp, class acctyp>
|
||||
int MDPDT::bytes_per_atom(const int max_nbors) const {
|
||||
return this->bytes_per_atom_atomic(max_nbors);
|
||||
}
|
||||
|
||||
template <class numtyp, class acctyp>
|
||||
int MDPDT::init(const int ntypes,
|
||||
double **host_cutsq, double **host_A_att, double **host_B_rep,
|
||||
double **host_gamma, double **host_sigma,
|
||||
double **host_cut, double **host_cut_r,
|
||||
double *host_special_lj, const int nlocal, const int nall,
|
||||
const int max_nbors, const int maxspecial,
|
||||
const double cell_size,
|
||||
const double gpu_split, FILE *_screen) {
|
||||
const int max_shared_types=this->device->max_shared_types();
|
||||
|
||||
int onetype=0;
|
||||
#ifdef USE_OPENCL
|
||||
if (maxspecial==0)
|
||||
for (int i=1; i<ntypes; i++)
|
||||
for (int j=i; j<ntypes; j++)
|
||||
if (host_cutsq[i][j]>0) {
|
||||
if (onetype>0)
|
||||
onetype=-1;
|
||||
else if (onetype==0)
|
||||
onetype=i*max_shared_types+j;
|
||||
}
|
||||
if (onetype<0) onetype=0;
|
||||
#endif
|
||||
|
||||
int success;
|
||||
int extra_fields = 4; // round up to accomodate quadruples of numtyp values
|
||||
// rho
|
||||
success=this->init_atomic(nlocal,nall,max_nbors,maxspecial,cell_size,
|
||||
gpu_split,_screen,mdpd,"k_mdpd",onetype,extra_fields);
|
||||
if (success!=0)
|
||||
return success;
|
||||
|
||||
// If atom type constants fit in shared memory use fast kernel
|
||||
int lj_types=ntypes;
|
||||
shared_types=false;
|
||||
if (lj_types<=max_shared_types && this->_block_size>=max_shared_types) {
|
||||
lj_types=max_shared_types;
|
||||
shared_types=true;
|
||||
}
|
||||
_lj_types=lj_types;
|
||||
|
||||
// Allocate a host write buffer for data initialization
|
||||
UCL_H_Vec<numtyp> host_write(lj_types*lj_types*32,*(this->ucl_device),
|
||||
UCL_WRITE_ONLY);
|
||||
|
||||
for (int i=0; i<lj_types*lj_types; i++)
|
||||
host_write[i]=0.0;
|
||||
|
||||
coeff.alloc(lj_types*lj_types,*(this->ucl_device),UCL_READ_ONLY);
|
||||
this->atom->type_pack4(ntypes,lj_types,coeff,host_write,host_A_att,host_B_rep,
|
||||
host_gamma,host_sigma);
|
||||
|
||||
coeff2.alloc(lj_types*lj_types,*(this->ucl_device),UCL_READ_ONLY);
|
||||
this->atom->type_pack4(ntypes,lj_types,coeff2,host_write,host_cut,host_cut_r,
|
||||
host_cutsq);
|
||||
|
||||
UCL_H_Vec<numtyp> host_rsq(lj_types*lj_types,*(this->ucl_device),
|
||||
UCL_WRITE_ONLY);
|
||||
cutsq.alloc(lj_types*lj_types,*(this->ucl_device),UCL_READ_ONLY);
|
||||
this->atom->type_pack1(ntypes,lj_types,cutsq,host_rsq,host_cutsq);
|
||||
|
||||
double special_sqrt[4];
|
||||
special_sqrt[0] = sqrt(host_special_lj[0]);
|
||||
special_sqrt[1] = sqrt(host_special_lj[1]);
|
||||
special_sqrt[2] = sqrt(host_special_lj[2]);
|
||||
special_sqrt[3] = sqrt(host_special_lj[3]);
|
||||
|
||||
UCL_H_Vec<double> dview;
|
||||
sp_lj.alloc(4,*(this->ucl_device),UCL_READ_ONLY);
|
||||
dview.view(host_special_lj,4,*(this->ucl_device));
|
||||
ucl_copy(sp_lj,dview,false);
|
||||
sp_sqrt.alloc(4,*(this->ucl_device),UCL_READ_ONLY);
|
||||
dview.view(special_sqrt,4,*(this->ucl_device));
|
||||
ucl_copy(sp_sqrt,dview,false);
|
||||
|
||||
// allocate per-atom array Q
|
||||
|
||||
int ef_nall=nall;
|
||||
if (ef_nall==0)
|
||||
ef_nall=2000;
|
||||
|
||||
_allocated=true;
|
||||
this->_max_bytes=coeff.row_bytes()+coeff2.row_bytes()+cutsq.row_bytes()+
|
||||
sp_lj.row_bytes()+sp_sqrt.row_bytes();
|
||||
return 0;
|
||||
}
|
||||
|
||||
template <class numtyp, class acctyp>
|
||||
void MDPDT::clear() {
|
||||
if (!_allocated)
|
||||
return;
|
||||
_allocated=false;
|
||||
|
||||
coeff.clear();
|
||||
coeff2.clear();
|
||||
cutsq.clear();
|
||||
sp_lj.clear();
|
||||
sp_sqrt.clear();
|
||||
this->clear_atomic();
|
||||
}
|
||||
|
||||
template <class numtyp, class acctyp>
|
||||
double MDPDT::host_memory_usage() const {
|
||||
return this->host_memory_usage_atomic()+sizeof(MDPD<numtyp,acctyp>);
|
||||
}
|
||||
|
||||
// ---------------------------------------------------------------------------
|
||||
// Calculate energies, forces, and torques
|
||||
// ---------------------------------------------------------------------------
|
||||
template <class numtyp, class acctyp>
|
||||
int MDPDT::loop(const int eflag, const int vflag) {
|
||||
|
||||
int nall = this->atom->nall();
|
||||
|
||||
// signal that we need to transfer extra data from the host
|
||||
|
||||
this->atom->extra_data_unavail();
|
||||
|
||||
numtyp4 *pextra=reinterpret_cast<numtyp4*>(&(this->atom->extra[0]));
|
||||
|
||||
int n = 0;
|
||||
int nstride = 1;
|
||||
for (int i = 0; i < nall; i++) {
|
||||
int idx = n+i*nstride;
|
||||
numtyp4 v;
|
||||
v.x = mdpd_rho[i];
|
||||
v.y = 0;
|
||||
v.z = 0;
|
||||
v.w = 0;
|
||||
pextra[idx] = v;
|
||||
}
|
||||
this->atom->add_extra_data();
|
||||
|
||||
// Compute the block size and grid size to keep all cores busy
|
||||
const int BX=this->block_size();
|
||||
int GX=static_cast<int>(ceil(static_cast<double>(this->ans->inum())/
|
||||
(BX/this->_threads_per_atom)));
|
||||
|
||||
|
||||
int ainum=this->ans->inum();
|
||||
int nbor_pitch=this->nbor->nbor_pitch();
|
||||
this->time_pair.start();
|
||||
if (shared_types) {
|
||||
this->k_pair_sel->set_size(GX,BX);
|
||||
this->k_pair_sel->run(&this->atom->x, &this->atom->extra, &coeff, &coeff2,
|
||||
&sp_lj, &sp_sqrt, &this->nbor->dev_nbor, &this->_nbor_data->begin(),
|
||||
&this->ans->force, &this->ans->engv, &eflag, &vflag,
|
||||
&ainum, &nbor_pitch, &this->atom->v, &cutsq, &this->_dtinvsqrt, &this->_seed,
|
||||
&this->_timestep, &this->_threads_per_atom);
|
||||
} else {
|
||||
this->k_pair.set_size(GX,BX);
|
||||
this->k_pair.run(&this->atom->x, &this->atom->extra, &coeff, &coeff2,
|
||||
&_lj_types, &sp_lj, &sp_sqrt, &this->nbor->dev_nbor, &this->_nbor_data->begin(),
|
||||
&this->ans->force, &this->ans->engv, &eflag, &vflag,
|
||||
&ainum, &nbor_pitch, &this->atom->v, &cutsq, &this->_dtinvsqrt, &this->_seed,
|
||||
&this->_timestep, &this->_threads_per_atom);
|
||||
}
|
||||
|
||||
this->time_pair.stop();
|
||||
return GX;
|
||||
}
|
||||
|
||||
// ---------------------------------------------------------------------------
|
||||
// Get the extra data pointers from host
|
||||
// ---------------------------------------------------------------------------
|
||||
|
||||
template <class numtyp, class acctyp>
|
||||
void MDPDT::get_extra_data(double *host_rho) {
|
||||
mdpd_rho = host_rho;
|
||||
}
|
||||
|
||||
template class MDPD<PRECISION,ACC_PRECISION>;
|
||||
}
|
||||
475
lib/gpu/lal_mdpd.cu
Normal file
475
lib/gpu/lal_mdpd.cu
Normal file
@ -0,0 +1,475 @@
|
||||
// **************************************************************************
|
||||
// mdpd.cu
|
||||
// -------------------
|
||||
// Trung Dac Nguyen (ORNL)
|
||||
//
|
||||
// Device code for acceleration of the mdpd pair style
|
||||
//
|
||||
// __________________________________________________________________________
|
||||
// This file is part of the LAMMPS Accelerator Library (LAMMPS_AL)
|
||||
// __________________________________________________________________________
|
||||
//
|
||||
// begin : December 2023
|
||||
// email : ndactrung@gmail.com
|
||||
// ***************************************************************************
|
||||
|
||||
#if defined(NV_KERNEL) || defined(USE_HIP)
|
||||
#include "lal_aux_fun1.h"
|
||||
#ifndef _DOUBLE_DOUBLE
|
||||
_texture( pos_tex,float4);
|
||||
_texture( vel_tex,float4);
|
||||
#else
|
||||
_texture_2d( pos_tex,int4);
|
||||
_texture_2d( vel_tex,int4);
|
||||
#endif
|
||||
#else
|
||||
#define pos_tex x_
|
||||
#define vel_tex v_
|
||||
#endif
|
||||
|
||||
#define EPSILON (numtyp)1.0e-10
|
||||
|
||||
//#define _USE_UNIFORM_SARU_LCG
|
||||
//#define _USE_UNIFORM_SARU_TEA8
|
||||
//#define _USE_GAUSSIAN_SARU_LCG
|
||||
|
||||
#if !defined(_USE_UNIFORM_SARU_LCG) && !defined(_USE_UNIFORM_SARU_TEA8) && !defined(_USE_GAUSSIAN_SARU_LCG)
|
||||
#define _USE_UNIFORM_SARU_LCG
|
||||
#endif
|
||||
|
||||
// References:
|
||||
// 1. Y. Afshar, F. Schmid, A. Pishevar, S. Worley, Comput. Phys. Comm. 184 (2013), 1119–1128.
|
||||
// 2. C. L. Phillips, J. A. Anderson, S. C. Glotzer, Comput. Phys. Comm. 230 (2011), 7191-7201.
|
||||
// PRNG period = 3666320093*2^32 ~ 2^64 ~ 10^19
|
||||
|
||||
#define LCGA 0x4beb5d59 /* Full period 32 bit LCG */
|
||||
#define LCGC 0x2600e1f7
|
||||
#define oWeylPeriod 0xda879add /* Prime period 3666320093 */
|
||||
#define oWeylOffset 0x8009d14b
|
||||
#define TWO_N32 0.232830643653869628906250e-9f /* 2^-32 */
|
||||
|
||||
// specifically implemented for steps = 1; high = 1.0; low = -1.0
|
||||
// returns uniformly distributed random numbers u in [-1.0;1.0]
|
||||
// using the inherent LCG, then multiply u with sqrt(3) to "match"
|
||||
// with a normal random distribution.
|
||||
// Afshar et al. mutlplies u in [-0.5;0.5] with sqrt(12)
|
||||
// Curly brackets to make variables local to the scope.
|
||||
#ifdef _USE_UNIFORM_SARU_LCG
|
||||
#define SQRT3 (numtyp)1.7320508075688772935274463
|
||||
#define saru(seed1, seed2, seed, timestep, randnum) { \
|
||||
unsigned int seed3 = seed + timestep; \
|
||||
seed3^=(seed1<<7)^(seed2>>6); \
|
||||
seed2+=(seed1>>4)^(seed3>>15); \
|
||||
seed1^=(seed2<<9)+(seed3<<8); \
|
||||
seed3^=0xA5366B4D*((seed2>>11) ^ (seed1<<1)); \
|
||||
seed2+=0x72BE1579*((seed1<<4) ^ (seed3>>16)); \
|
||||
seed1^=0x3F38A6ED*((seed3>>5) ^ (((signed int)seed2)>>22)); \
|
||||
seed2+=seed1*seed3; \
|
||||
seed1+=seed3 ^ (seed2>>2); \
|
||||
seed2^=((signed int)seed2)>>17; \
|
||||
unsigned int state = 0x79dedea3*(seed1^(((signed int)seed1)>>14)); \
|
||||
unsigned int wstate = (state + seed2) ^ (((signed int)state)>>8); \
|
||||
state = state + (wstate*(wstate^0xdddf97f5)); \
|
||||
wstate = 0xABCB96F7 + (wstate>>1); \
|
||||
state = LCGA*state + LCGC; \
|
||||
wstate = wstate + oWeylOffset+((((signed int)wstate)>>31) & oWeylPeriod); \
|
||||
unsigned int v = (state ^ (state>>26)) + wstate; \
|
||||
unsigned int s = (signed int)((v^(v>>20))*0x6957f5a7); \
|
||||
randnum = SQRT3*(s*TWO_N32*(numtyp)2.0-(numtyp)1.0); \
|
||||
}
|
||||
#endif
|
||||
|
||||
// specifically implemented for steps = 1; high = 1.0; low = -1.0
|
||||
// returns uniformly distributed random numbers u in [-1.0;1.0] using TEA8
|
||||
// then multiply u with sqrt(3) to "match" with a normal random distribution
|
||||
// Afshar et al. mutlplies u in [-0.5;0.5] with sqrt(12)
|
||||
#ifdef _USE_UNIFORM_SARU_TEA8
|
||||
#define SQRT3 (numtyp)1.7320508075688772935274463
|
||||
#define k0 0xA341316C
|
||||
#define k1 0xC8013EA4
|
||||
#define k2 0xAD90777D
|
||||
#define k3 0x7E95761E
|
||||
#define delta 0x9e3779b9
|
||||
#define rounds 8
|
||||
#define saru(seed1, seed2, seed, timestep, randnum) { \
|
||||
unsigned int seed3 = seed + timestep; \
|
||||
seed3^=(seed1<<7)^(seed2>>6); \
|
||||
seed2+=(seed1>>4)^(seed3>>15); \
|
||||
seed1^=(seed2<<9)+(seed3<<8); \
|
||||
seed3^=0xA5366B4D*((seed2>>11) ^ (seed1<<1)); \
|
||||
seed2+=0x72BE1579*((seed1<<4) ^ (seed3>>16)); \
|
||||
seed1^=0x3F38A6ED*((seed3>>5) ^ (((signed int)seed2)>>22)); \
|
||||
seed2+=seed1*seed3; \
|
||||
seed1+=seed3 ^ (seed2>>2); \
|
||||
seed2^=((signed int)seed2)>>17; \
|
||||
unsigned int state = 0x79dedea3*(seed1^(((signed int)seed1)>>14)); \
|
||||
unsigned int wstate = (state + seed2) ^ (((signed int)state)>>8); \
|
||||
state = state + (wstate*(wstate^0xdddf97f5)); \
|
||||
wstate = 0xABCB96F7 + (wstate>>1); \
|
||||
unsigned int sum = 0; \
|
||||
for (int i=0; i < rounds; i++) { \
|
||||
sum += delta; \
|
||||
state += ((wstate<<4) + k0)^(wstate + sum)^((wstate>>5) + k1); \
|
||||
wstate += ((state<<4) + k2)^(state + sum)^((state>>5) + k3); \
|
||||
} \
|
||||
unsigned int v = (state ^ (state>>26)) + wstate; \
|
||||
unsigned int s = (signed int)((v^(v>>20))*0x6957f5a7); \
|
||||
randnum = SQRT3*(s*TWO_N32*(numtyp)2.0-(numtyp)1.0); \
|
||||
}
|
||||
#endif
|
||||
|
||||
// specifically implemented for steps = 1; high = 1.0; low = -1.0
|
||||
// returns two uniformly distributed random numbers r1 and r2 in [-1.0;1.0],
|
||||
// and uses the polar method (Marsaglia's) to transform to a normal random value
|
||||
// This is used to compared with CPU DPD using RandMars::gaussian()
|
||||
#ifdef _USE_GAUSSIAN_SARU_LCG
|
||||
#define saru(seed1, seed2, seed, timestep, randnum) { \
|
||||
unsigned int seed3 = seed + timestep; \
|
||||
seed3^=(seed1<<7)^(seed2>>6); \
|
||||
seed2+=(seed1>>4)^(seed3>>15); \
|
||||
seed1^=(seed2<<9)+(seed3<<8); \
|
||||
seed3^=0xA5366B4D*((seed2>>11) ^ (seed1<<1)); \
|
||||
seed2+=0x72BE1579*((seed1<<4) ^ (seed3>>16)); \
|
||||
seed1^=0x3F38A6ED*((seed3>>5) ^ (((signed int)seed2)>>22)); \
|
||||
seed2+=seed1*seed3; \
|
||||
seed1+=seed3 ^ (seed2>>2); \
|
||||
seed2^=((signed int)seed2)>>17; \
|
||||
unsigned int state=0x12345678; \
|
||||
unsigned int wstate=12345678; \
|
||||
state = 0x79dedea3*(seed1^(((signed int)seed1)>>14)); \
|
||||
wstate = (state + seed2) ^ (((signed int)state)>>8); \
|
||||
state = state + (wstate*(wstate^0xdddf97f5)); \
|
||||
wstate = 0xABCB96F7 + (wstate>>1); \
|
||||
unsigned int v, s; \
|
||||
numtyp r1, r2, rsq; \
|
||||
while (1) { \
|
||||
state = LCGA*state + LCGC; \
|
||||
wstate = wstate + oWeylOffset+((((signed int)wstate)>>31) & oWeylPeriod); \
|
||||
v = (state ^ (state>>26)) + wstate; \
|
||||
s = (signed int)((v^(v>>20))*0x6957f5a7); \
|
||||
r1 = s*TWO_N32*(numtyp)2.0-(numtyp)1.0; \
|
||||
state = LCGA*state + LCGC; \
|
||||
wstate = wstate + oWeylOffset+((((signed int)wstate)>>31) & oWeylPeriod); \
|
||||
v = (state ^ (state>>26)) + wstate; \
|
||||
s = (signed int)((v^(v>>20))*0x6957f5a7); \
|
||||
r2 = s*TWO_N32*(numtyp)2.0-(numtyp)1.0; \
|
||||
rsq = r1 * r1 + r2 * r2; \
|
||||
if (rsq < (numtyp)1.0) break; \
|
||||
} \
|
||||
numtyp fac = ucl_sqrt((numtyp)-2.0*log(rsq)/rsq); \
|
||||
randnum = r2*fac; \
|
||||
}
|
||||
#endif
|
||||
|
||||
#define MIN(A,B) ((A) < (B) ? (A) : (B))
|
||||
#define MAX(A,B) ((A) < (B) ? (B) : (A))
|
||||
|
||||
// coeff.x = A_att, coeff.y = B_rep, coeff.z = gamma, coeff.w = sigma
|
||||
// coeff2.x = cut, coeff2.y = cut_r, coeff2.z = cutsq
|
||||
|
||||
__kernel void k_mdpd(const __global numtyp4 *restrict x_,
|
||||
const __global numtyp4 *restrict extra,
|
||||
const __global numtyp4 *restrict coeff,
|
||||
const __global numtyp4 *restrict coeff2,
|
||||
const int lj_types,
|
||||
const __global numtyp *restrict sp_lj,
|
||||
const __global numtyp *restrict sp_sqrt,
|
||||
const __global int * dev_nbor,
|
||||
const __global int * dev_packed,
|
||||
__global acctyp3 *restrict ans,
|
||||
__global acctyp *restrict engv,
|
||||
const int eflag, const int vflag, const int inum,
|
||||
const int nbor_pitch,
|
||||
const __global numtyp4 *restrict v_,
|
||||
const __global numtyp *restrict cutsq,
|
||||
const numtyp dtinvsqrt, const int seed,
|
||||
const int timestep, const int t_per_atom) {
|
||||
int tid, ii, offset;
|
||||
atom_info(t_per_atom,ii,tid,offset);
|
||||
|
||||
int n_stride;
|
||||
local_allocate_store_pair();
|
||||
|
||||
acctyp3 f;
|
||||
f.x=(acctyp)0; f.y=(acctyp)0; f.z=(acctyp)0;
|
||||
acctyp energy, virial[6];
|
||||
if (EVFLAG) {
|
||||
energy=(acctyp)0;
|
||||
for (int i=0; i<6; i++) virial[i]=(acctyp)0;
|
||||
}
|
||||
|
||||
if (ii<inum) {
|
||||
int i, numj, nbor, nbor_end;
|
||||
nbor_info(dev_nbor,dev_packed,nbor_pitch,t_per_atom,ii,offset,i,numj,
|
||||
n_stride,nbor_end,nbor);
|
||||
|
||||
numtyp4 ix; fetch4(ix,i,pos_tex); //x_[i];
|
||||
int itype=ix.w;
|
||||
numtyp4 iv; fetch4(iv,i,vel_tex); //v_[i];
|
||||
int itag=iv.w;
|
||||
|
||||
const numtyp rhoi = extra[i].x;
|
||||
|
||||
numtyp factor_dpd, factor_sqrt;
|
||||
for ( ; nbor<nbor_end; nbor+=n_stride) {
|
||||
ucl_prefetch(dev_packed+nbor+n_stride);
|
||||
|
||||
int j=dev_packed[nbor];
|
||||
factor_dpd = sp_lj[sbmask(j)];
|
||||
factor_sqrt = sp_sqrt[sbmask(j)];
|
||||
j &= NEIGHMASK;
|
||||
|
||||
numtyp4 jx; fetch4(jx,j,pos_tex); //x_[j];
|
||||
int jtype=jx.w;
|
||||
numtyp4 jv; fetch4(jv,j,vel_tex); //v_[j];
|
||||
int jtag=jv.w;
|
||||
|
||||
// Compute r12
|
||||
numtyp delx = ix.x-jx.x;
|
||||
numtyp dely = ix.y-jx.y;
|
||||
numtyp delz = ix.z-jx.z;
|
||||
numtyp rsq = delx*delx+dely*dely+delz*delz;
|
||||
|
||||
int mtype=itype*lj_types+jtype;
|
||||
if (rsq<coeff2[mtype].z) { // cutsq[itype][jtype]
|
||||
numtyp r=ucl_sqrt(rsq);
|
||||
if (r < EPSILON) continue;
|
||||
|
||||
numtyp rinv=ucl_recip(r);
|
||||
numtyp delvx = iv.x - jv.x;
|
||||
numtyp delvy = iv.y - jv.y;
|
||||
numtyp delvz = iv.z - jv.z;
|
||||
numtyp dot = delx*delvx + dely*delvy + delz*delvz;
|
||||
|
||||
numtyp A_attij = coeff[mtype].x;
|
||||
numtyp B_repij = coeff[mtype].y;
|
||||
numtyp gammaij = coeff[mtype].z;
|
||||
numtyp sigmaij = coeff[mtype].w;
|
||||
numtyp cutij = coeff2[mtype].x;
|
||||
numtyp cut_rij = coeff2[mtype].y;
|
||||
numtyp cutsqij = coeff2[mtype].z;
|
||||
|
||||
numtyp wc = (numtyp)1.0 - r/cutij;
|
||||
numtyp wc_r = (numtyp)1.0 - r/cut_rij;
|
||||
wc_r = MAX(wc_r,(numtyp)0.0);
|
||||
numtyp wr = wc;
|
||||
|
||||
const numtyp rhoj = extra[j].x;
|
||||
|
||||
unsigned int tag1=itag, tag2=jtag;
|
||||
if (tag1 > tag2) {
|
||||
tag1 = jtag; tag2 = itag;
|
||||
}
|
||||
|
||||
numtyp randnum = (numtyp)0.0;
|
||||
saru(tag1, tag2, seed, timestep, randnum);
|
||||
|
||||
// conservative force = A_att * wc + B_rep*(rhoi+rhoj)*wc_r
|
||||
// drag force = -gamma * wr^2 * (delx dot delv) / r
|
||||
// random force = sigma * wr * rnd * dtinvsqrt;
|
||||
|
||||
numtyp force = A_attij*wc + B_repij*(rhoi+rhoj)*wc_r;
|
||||
force -= gammaij*wr*wr*dot*rinv;
|
||||
force += sigmaij*wr*randnum*dtinvsqrt;
|
||||
force *= factor_dpd*rinv;
|
||||
|
||||
f.x+=delx*force;
|
||||
f.y+=dely*force;
|
||||
f.z+=delz*force;
|
||||
|
||||
if (EVFLAG && eflag) {
|
||||
// unshifted eng of conservative term:
|
||||
// eng shifted to 0.0 at cutoff
|
||||
numtyp e = (numtyp)0.5*A_attij*cutij * wr*wr + (numtyp)0.5*B_repij*cut_rij*(rhoi+rhoj)*wc_r*wc_r;
|
||||
energy+=factor_dpd*e;
|
||||
}
|
||||
if (EVFLAG && vflag) {
|
||||
virial[0] += delx*delx*force;
|
||||
virial[1] += dely*dely*force;
|
||||
virial[2] += delz*delz*force;
|
||||
virial[3] += delx*dely*force;
|
||||
virial[4] += delx*delz*force;
|
||||
virial[5] += dely*delz*force;
|
||||
}
|
||||
}
|
||||
|
||||
} // for nbor
|
||||
} // if ii
|
||||
store_answers(f,energy,virial,ii,inum,tid,t_per_atom,offset,eflag,vflag,
|
||||
ans,engv);
|
||||
}
|
||||
|
||||
__kernel void k_mdpd_fast(const __global numtyp4 *restrict x_,
|
||||
const __global numtyp4 *restrict extra,
|
||||
const __global numtyp4 *restrict coeff_in,
|
||||
const __global numtyp4 *restrict coeff2_in,
|
||||
const __global numtyp *restrict sp_lj_in,
|
||||
const __global numtyp *restrict sp_sqrt_in,
|
||||
const __global int * dev_nbor,
|
||||
const __global int * dev_packed,
|
||||
__global acctyp3 *restrict ans,
|
||||
__global acctyp *restrict engv,
|
||||
const int eflag, const int vflag, const int inum,
|
||||
const int nbor_pitch,
|
||||
const __global numtyp4 *restrict v_,
|
||||
const __global numtyp *restrict cutsq,
|
||||
const numtyp dtinvsqrt, const int seed,
|
||||
const int timestep, const int t_per_atom) {
|
||||
int tid, ii, offset;
|
||||
atom_info(t_per_atom,ii,tid,offset);
|
||||
|
||||
#ifndef ONETYPE
|
||||
__local numtyp4 coeff[MAX_SHARED_TYPES*MAX_SHARED_TYPES];
|
||||
__local numtyp4 coeff2[MAX_SHARED_TYPES*MAX_SHARED_TYPES];
|
||||
__local numtyp sp_lj[4];
|
||||
__local numtyp sp_sqrt[4];
|
||||
if (tid<4) {
|
||||
sp_lj[tid]=sp_lj_in[tid];
|
||||
sp_sqrt[tid]=sp_sqrt_in[tid];
|
||||
}
|
||||
if (tid<MAX_SHARED_TYPES*MAX_SHARED_TYPES) {
|
||||
coeff[tid]=coeff_in[tid];
|
||||
coeff2[tid]=coeff2_in[tid];
|
||||
}
|
||||
__syncthreads();
|
||||
#else
|
||||
const numtyp A_attij=coeff_in[ONETYPE].x;
|
||||
const numtyp B_repij=coeff_in[ONETYPE].y;
|
||||
const numtyp gammaij=coeff_in[ONETYPE].z;
|
||||
const numtyp sigmaij=coeff_in[ONETYPE].w;
|
||||
const numtyp cutij=coeff2_in[ONETYPE].x;
|
||||
const numtyp cut_rij=coeff2_in[ONETYPE].y;
|
||||
const numtyp cutsqij=coeff2_in[ONETYPE].z;
|
||||
const numtyp cutsq_p=cutsq[ONETYPE];
|
||||
#endif
|
||||
|
||||
int n_stride;
|
||||
local_allocate_store_pair();
|
||||
|
||||
acctyp3 f;
|
||||
f.x=(acctyp)0; f.y=(acctyp)0; f.z=(acctyp)0;
|
||||
acctyp energy, virial[6];
|
||||
if (EVFLAG) {
|
||||
energy=(acctyp)0;
|
||||
for (int i=0; i<6; i++) virial[i]=(acctyp)0;
|
||||
}
|
||||
|
||||
if (ii<inum) {
|
||||
int i, numj, nbor, nbor_end;
|
||||
nbor_info(dev_nbor,dev_packed,nbor_pitch,t_per_atom,ii,offset,i,numj,
|
||||
n_stride,nbor_end,nbor);
|
||||
|
||||
numtyp4 ix; fetch4(ix,i,pos_tex); //x_[i];
|
||||
#ifndef ONETYPE
|
||||
int iw=ix.w;
|
||||
int itype=fast_mul((int)MAX_SHARED_TYPES,iw);
|
||||
#endif
|
||||
numtyp4 iv; fetch4(iv,i,vel_tex); //v_[i];
|
||||
int itag=iv.w;
|
||||
|
||||
const numtyp rhoi = extra[i].x;
|
||||
|
||||
#ifndef ONETYPE
|
||||
numtyp factor_dpd;
|
||||
#endif
|
||||
for ( ; nbor<nbor_end; nbor+=n_stride) {
|
||||
ucl_prefetch(dev_packed+nbor+n_stride);
|
||||
|
||||
int j=dev_packed[nbor];
|
||||
#ifndef ONETYPE
|
||||
factor_dpd = sp_lj[sbmask(j)];
|
||||
j &= NEIGHMASK;
|
||||
#endif
|
||||
|
||||
numtyp4 jx; fetch4(jx,j,pos_tex); //x_[j];
|
||||
#ifndef ONETYPE
|
||||
int mtype=itype+jx.w;
|
||||
const numtyp cutsq_p=cutsq[mtype];
|
||||
#endif
|
||||
numtyp4 jv; fetch4(jv,j,vel_tex); //v_[j];
|
||||
int jtag=jv.w;
|
||||
|
||||
// Compute r12
|
||||
numtyp delx = ix.x-jx.x;
|
||||
numtyp dely = ix.y-jx.y;
|
||||
numtyp delz = ix.z-jx.z;
|
||||
numtyp rsq = delx*delx+dely*dely+delz*delz;
|
||||
|
||||
if (rsq<cutsq_p) {
|
||||
numtyp r=ucl_sqrt(rsq);
|
||||
if (r < EPSILON) continue;
|
||||
|
||||
numtyp rinv=ucl_recip(r);
|
||||
numtyp delvx = iv.x - jv.x;
|
||||
numtyp delvy = iv.y - jv.y;
|
||||
numtyp delvz = iv.z - jv.z;
|
||||
numtyp dot = delx*delvx + dely*delvy + delz*delvz;
|
||||
|
||||
#ifndef ONETYPE
|
||||
numtyp A_attij = coeff[mtype].x;
|
||||
numtyp B_repij = coeff[mtype].y;
|
||||
numtyp gammaij = coeff[mtype].z;
|
||||
numtyp sigmaij = coeff[mtype].w;
|
||||
numtyp cutij = coeff2[mtype].x;
|
||||
numtyp cut_rij = coeff2[mtype].y;
|
||||
numtyp cutsqij = coeff2[mtype].z;
|
||||
#endif
|
||||
|
||||
numtyp wc = (numtyp)1.0 - r/cutij;
|
||||
numtyp wc_r = (numtyp)1.0 - r/cut_rij;
|
||||
wc_r = MAX(wc_r,(numtyp)0.0);
|
||||
numtyp wr = wc;
|
||||
|
||||
const numtyp rhoj = extra[j].x;
|
||||
|
||||
unsigned int tag1=itag, tag2=jtag;
|
||||
if (tag1 > tag2) {
|
||||
tag1 = jtag; tag2 = itag;
|
||||
}
|
||||
|
||||
numtyp randnum = (numtyp)0.0;
|
||||
saru(tag1, tag2, seed, timestep, randnum);
|
||||
|
||||
// conservative force = A_att * wc + B_rep*(rhoi+rhoj)*wc_r
|
||||
// drag force = -gamma * wr^2 * (delx dot delv) / r
|
||||
// random force = sigma * wr * rnd * dtinvsqrt;
|
||||
|
||||
numtyp force = A_attij*wc + B_repij*(rhoi+rhoj)*wc_r;
|
||||
force -= gammaij*wr*wr*dot*rinv;
|
||||
force += sigmaij*wr*randnum*dtinvsqrt;
|
||||
#ifndef ONETYPE
|
||||
force *= factor_dpd*rinv;
|
||||
#else
|
||||
force*=rinv;
|
||||
#endif
|
||||
|
||||
f.x+=delx*force;
|
||||
f.y+=dely*force;
|
||||
f.z+=delz*force;
|
||||
|
||||
if (EVFLAG && eflag) {
|
||||
// unshifted eng of conservative term:
|
||||
// eng shifted to 0.0 at cutoff
|
||||
numtyp e = (numtyp)0.5*A_attij*cutij * wr*wr + (numtyp)0.5*B_repij*cut_rij*(rhoi+rhoj)*wc_r*wc_r;
|
||||
#ifndef ONETYPE
|
||||
energy+=factor_dpd*e;
|
||||
#else
|
||||
energy+=e;
|
||||
#endif
|
||||
}
|
||||
if (EVFLAG && vflag) {
|
||||
virial[0] += delx*delx*force;
|
||||
virial[1] += dely*dely*force;
|
||||
virial[2] += delz*delz*force;
|
||||
virial[3] += delx*dely*force;
|
||||
virial[4] += delx*delz*force;
|
||||
virial[5] += dely*delz*force;
|
||||
}
|
||||
}
|
||||
|
||||
} // for nbor
|
||||
} // if ii
|
||||
store_answers(f,energy,virial,ii,inum,tid,t_per_atom,offset,eflag,vflag,
|
||||
ans,engv);
|
||||
}
|
||||
|
||||
88
lib/gpu/lal_mdpd.h
Normal file
88
lib/gpu/lal_mdpd.h
Normal file
@ -0,0 +1,88 @@
|
||||
/***************************************************************************
|
||||
mdpd.h
|
||||
-------------------
|
||||
Trung Dac Nguyen (U Chicago)
|
||||
|
||||
Class for acceleration of the mdpd pair style.
|
||||
|
||||
__________________________________________________________________________
|
||||
This file is part of the LAMMPS Accelerator Library (LAMMPS_AL)
|
||||
__________________________________________________________________________
|
||||
|
||||
begin : December 2023
|
||||
email : ndactrung@gmail.com
|
||||
***************************************************************************/
|
||||
|
||||
#ifndef LAL_DPD_H
|
||||
#define LAL_DPD_H
|
||||
|
||||
#include "lal_base_dpd.h"
|
||||
|
||||
namespace LAMMPS_AL {
|
||||
|
||||
template <class numtyp, class acctyp>
|
||||
class MDPD : public BaseDPD<numtyp, acctyp> {
|
||||
public:
|
||||
MDPD();
|
||||
~MDPD();
|
||||
|
||||
/// Clear any previous data and set up for a new LAMMPS run
|
||||
/** \param max_nbors initial number of rows in the neighbor matrix
|
||||
* \param cell_size cutoff + skin
|
||||
* \param gpu_split fraction of particles handled by device
|
||||
*
|
||||
* Returns:
|
||||
* - 0 if successful
|
||||
* - -1 if fix gpu not found
|
||||
* - -3 if there is an out of memory error
|
||||
* - -4 if the GPU library was not compiled for GPU
|
||||
* - -5 Double precision is not supported on card **/
|
||||
int init(const int ntypes, double **host_cutsq,
|
||||
double **host_A_att, double **host_B_rep,
|
||||
double **host_gamma, double **host_sigma,
|
||||
double **host_cut, double **host_cut_r, double *host_special_lj,
|
||||
const int nlocal, const int nall, const int max_nbors,
|
||||
const int maxspecial, const double cell_size, const double gpu_split,
|
||||
FILE *screen);
|
||||
|
||||
/// Clear all host and device data
|
||||
/** \note This is called at the beginning of the init() routine **/
|
||||
void clear();
|
||||
|
||||
/// Returns memory usage on device per atom
|
||||
int bytes_per_atom(const int max_nbors) const;
|
||||
|
||||
/// Total host memory used by library for pair style
|
||||
double host_memory_usage() const;
|
||||
|
||||
void get_extra_data(double *host_rho);
|
||||
|
||||
// --------------------------- TYPE DATA --------------------------
|
||||
|
||||
/// coeff.x = A_att, coeff.x = B_rep, coeff.z = gamma, coeff.w = sigma
|
||||
UCL_D_Vec<numtyp4> coeff;
|
||||
/// coeff2.x = cut, coeff2.y = cut_r, coeff2.z = cutsq
|
||||
UCL_D_Vec<numtyp4> coeff2;
|
||||
|
||||
UCL_D_Vec<numtyp> cutsq;
|
||||
|
||||
/// Special LJ values
|
||||
UCL_D_Vec<numtyp> sp_lj, sp_sqrt;
|
||||
|
||||
/// If atom type constants fit in shared memory, use fast kernels
|
||||
bool shared_types;
|
||||
|
||||
/// Number of atom types
|
||||
int _lj_types;
|
||||
|
||||
/// pointer to host data
|
||||
double *mdpd_rho;
|
||||
|
||||
private:
|
||||
bool _allocated;
|
||||
int loop(const int eflag, const int vflag);
|
||||
};
|
||||
|
||||
}
|
||||
|
||||
#endif
|
||||
133
lib/gpu/lal_mdpd_ext.cpp
Normal file
133
lib/gpu/lal_mdpd_ext.cpp
Normal file
@ -0,0 +1,133 @@
|
||||
/***************************************************************************
|
||||
mdpd_ext.cpp
|
||||
-------------------
|
||||
Trung Dac Nguyen (U Chicago)
|
||||
|
||||
Functions for LAMMPS access to mdpd acceleration routines.
|
||||
|
||||
__________________________________________________________________________
|
||||
This file is part of the LAMMPS Accelerator Library (LAMMPS_AL)
|
||||
__________________________________________________________________________
|
||||
|
||||
begin : December 2023
|
||||
email : ndactrung@gmail.com
|
||||
***************************************************************************/
|
||||
|
||||
#include <iostream>
|
||||
#include <cassert>
|
||||
#include <cmath>
|
||||
|
||||
#include "lal_mdpd.h"
|
||||
|
||||
using namespace std;
|
||||
using namespace LAMMPS_AL;
|
||||
|
||||
static MDPD<PRECISION,ACC_PRECISION> MDPDMF;
|
||||
|
||||
// ---------------------------------------------------------------------------
|
||||
// Allocate memory on host and device and copy constants to device
|
||||
// ---------------------------------------------------------------------------
|
||||
int mdpd_gpu_init(const int ntypes, double **cutsq,
|
||||
double **host_A_att, double **host_B_rep,
|
||||
double **host_gamma, double **host_sigma,
|
||||
double **host_cut, double **host_cut_r,
|
||||
double *special_lj, const int inum,
|
||||
const int nall, const int max_nbors, const int maxspecial,
|
||||
const double cell_size, int &gpu_mode, FILE *screen) {
|
||||
MDPDMF.clear();
|
||||
gpu_mode=MDPDMF.device->gpu_mode();
|
||||
double gpu_split=MDPDMF.device->particle_split();
|
||||
int first_gpu=MDPDMF.device->first_device();
|
||||
int last_gpu=MDPDMF.device->last_device();
|
||||
int world_me=MDPDMF.device->world_me();
|
||||
int gpu_rank=MDPDMF.device->gpu_rank();
|
||||
int procs_per_gpu=MDPDMF.device->procs_per_gpu();
|
||||
|
||||
MDPDMF.device->init_message(screen,"mdpd",first_gpu,last_gpu);
|
||||
|
||||
bool message=false;
|
||||
if (MDPDMF.device->replica_me()==0 && screen)
|
||||
message=true;
|
||||
|
||||
if (message) {
|
||||
fprintf(screen,"Initializing Device and compiling on process 0...");
|
||||
fflush(screen);
|
||||
}
|
||||
|
||||
int init_ok=0;
|
||||
if (world_me==0)
|
||||
init_ok=MDPDMF.init(ntypes, cutsq, host_A_att, host_B_rep, host_gamma, host_sigma,
|
||||
host_cut, host_cut_r, special_lj, inum, nall, max_nbors,
|
||||
maxspecial, cell_size, gpu_split, screen);
|
||||
|
||||
MDPDMF.device->world_barrier();
|
||||
if (message)
|
||||
fprintf(screen,"Done.\n");
|
||||
|
||||
for (int i=0; i<procs_per_gpu; i++) {
|
||||
if (message) {
|
||||
if (last_gpu-first_gpu==0)
|
||||
fprintf(screen,"Initializing Device %d on core %d...",first_gpu,i);
|
||||
else
|
||||
fprintf(screen,"Initializing Devices %d-%d on core %d...",first_gpu,
|
||||
last_gpu,i);
|
||||
fflush(screen);
|
||||
}
|
||||
if (gpu_rank==i && world_me!=0)
|
||||
init_ok=MDPDMF.init(ntypes, cutsq, host_A_att, host_B_rep, host_gamma, host_sigma,
|
||||
host_cut, host_cut_r, special_lj, inum, nall, max_nbors,
|
||||
maxspecial, cell_size, gpu_split, screen);
|
||||
|
||||
MDPDMF.device->serialize_init();
|
||||
if (message)
|
||||
fprintf(screen,"Done.\n");
|
||||
}
|
||||
if (message)
|
||||
fprintf(screen,"\n");
|
||||
|
||||
if (init_ok==0)
|
||||
MDPDMF.estimate_gpu_overhead();
|
||||
return init_ok;
|
||||
}
|
||||
|
||||
void mdpd_gpu_clear() {
|
||||
MDPDMF.clear();
|
||||
}
|
||||
|
||||
int ** mdpd_gpu_compute_n(const int ago, const int inum_full, const int nall,
|
||||
double **host_x, int *host_type, double *sublo,
|
||||
double *subhi, tagint *tag, int **nspecial,
|
||||
tagint **special, const bool eflag, const bool vflag,
|
||||
const bool eatom, const bool vatom, int &host_start,
|
||||
int **ilist, int **jnum, const double cpu_time, bool &success,
|
||||
double **host_v, const double dtinvsqrt,
|
||||
const int seed, const int timestep,
|
||||
double *boxlo, double *prd) {
|
||||
return MDPDMF.compute(ago, inum_full, nall, host_x, host_type, sublo,
|
||||
subhi, tag, nspecial, special, eflag, vflag, eatom,
|
||||
vatom, host_start, ilist, jnum, cpu_time, success,
|
||||
host_v, dtinvsqrt, seed, timestep, boxlo, prd);
|
||||
}
|
||||
|
||||
void mdpd_gpu_compute(const int ago, const int inum_full, const int nall,
|
||||
double **host_x, int *host_type, int *ilist, int *numj,
|
||||
int **firstneigh, const bool eflag, const bool vflag,
|
||||
const bool eatom, const bool vatom, int &host_start,
|
||||
const double cpu_time, bool &success, tagint *tag,
|
||||
double **host_v, const double dtinvsqrt,
|
||||
const int seed, const int timestep,
|
||||
const int nlocal, double *boxlo, double *prd) {
|
||||
MDPDMF.compute(ago, inum_full, nall, host_x, host_type, ilist, numj,
|
||||
firstneigh, eflag, vflag, eatom, vatom, host_start, cpu_time, success,
|
||||
tag, host_v, dtinvsqrt, seed, timestep, nlocal, boxlo, prd);
|
||||
}
|
||||
|
||||
void mdpd_gpu_get_extra_data(double *host_rho) {
|
||||
MDPDMF.get_extra_data(host_rho);
|
||||
}
|
||||
|
||||
double mdpd_gpu_bytes() {
|
||||
return MDPDMF.host_memory_usage();
|
||||
}
|
||||
|
||||
|
||||
195
src/GPU/pair_edpd_gpu.cpp
Normal file
195
src/GPU/pair_edpd_gpu.cpp
Normal file
@ -0,0 +1,195 @@
|
||||
/* ----------------------------------------------------------------------
|
||||
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
||||
https://www.lammps.org/, Sandia National Laboratories
|
||||
LAMMPS development team: developers@lammps.org
|
||||
|
||||
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
||||
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
||||
certain rights in this software. This software is distributed under
|
||||
the GNU General Public License.
|
||||
|
||||
See the README file in the top-level LAMMPS directory.
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
Contributing author: Trung Dac Nguyen (U Chicago)
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
#include "pair_edpd_gpu.h"
|
||||
|
||||
#include "atom.h"
|
||||
#include "domain.h"
|
||||
#include "error.h"
|
||||
#include "force.h"
|
||||
#include "gpu_extra.h"
|
||||
#include "info.h"
|
||||
#include "neigh_list.h"
|
||||
#include "neighbor.h"
|
||||
#include "suffix.h"
|
||||
#include "update.h"
|
||||
|
||||
#include <cmath>
|
||||
|
||||
using namespace LAMMPS_NS;
|
||||
|
||||
// External functions from cuda library for atom decomposition
|
||||
|
||||
int edpd_gpu_init(const int ntypes, double **cutsq, double **host_a0, double **host_gamma,
|
||||
double **host_cut, double **host_power, double **host_kappa,
|
||||
double **host_powerT, double** host_cutT, double*** host_sc, double ***host_kc,
|
||||
double *host_mass, double *special_lj, const int power_flag, const int kappa_flag,
|
||||
const int inum, const int nall, const int max_nbors,
|
||||
const int maxspecial, const double cell_size, int &gpu_mode, FILE *screen);
|
||||
void edpd_gpu_clear();
|
||||
int **edpd_gpu_compute_n(const int ago, const int inum_full, const int nall, double **host_x,
|
||||
int *host_type, double *sublo, double *subhi, tagint *tag, int **nspecial,
|
||||
tagint **special, const bool eflag, const bool vflag, const bool eatom,
|
||||
const bool vatom, int &host_start, int **ilist, int **jnum,
|
||||
const double cpu_time, bool &success, double **host_v,
|
||||
const double dtinvsqrt, const int seed, const int timestep, double *boxlo,
|
||||
double *prd);
|
||||
void edpd_gpu_compute(const int ago, const int inum_full, const int nall, double **host_x,
|
||||
int *host_type, int *ilist, int *numj, int **firstneigh, const bool eflag,
|
||||
const bool vflag, const bool eatom, const bool vatom, int &host_start,
|
||||
const double cpu_time, bool &success, tagint *tag, double **host_v,
|
||||
const double dtinvsqrt, const int seed, const int timestep, const int nlocal,
|
||||
double *boxlo, double *prd);
|
||||
void edpd_gpu_get_extra_data(double *host_T, double *host_cv);
|
||||
void edpd_gpu_update_flux(void **flux_ptr);
|
||||
double edpd_gpu_bytes();
|
||||
|
||||
#define EPSILON 1.0e-10
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
PairEDPDGPU::PairEDPDGPU(LAMMPS *lmp) : PairEDPD(lmp), gpu_mode(GPU_FORCE)
|
||||
{
|
||||
flux_pinned = nullptr;
|
||||
respa_enable = 0;
|
||||
reinitflag = 0;
|
||||
cpu_time = 0.0;
|
||||
suffix_flag |= Suffix::GPU;
|
||||
GPU_EXTRA::gpu_ready(lmp->modify, lmp->error);
|
||||
}
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
free all arrays
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
PairEDPDGPU::~PairEDPDGPU()
|
||||
{
|
||||
edpd_gpu_clear();
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
void PairEDPDGPU::compute(int eflag, int vflag)
|
||||
{
|
||||
ev_init(eflag, vflag);
|
||||
|
||||
int nall = atom->nlocal + atom->nghost;
|
||||
int inum, host_start;
|
||||
|
||||
double dtinvsqrt = 1.0 / sqrt(update->dt);
|
||||
|
||||
bool success = true;
|
||||
int *ilist, *numneigh, **firstneigh;
|
||||
|
||||
double *T = atom->edpd_temp;
|
||||
double *cv = atom->edpd_cv;
|
||||
edpd_gpu_get_extra_data(T, cv);
|
||||
|
||||
if (gpu_mode != GPU_FORCE) {
|
||||
double sublo[3], subhi[3];
|
||||
if (domain->triclinic == 0) {
|
||||
sublo[0] = domain->sublo[0];
|
||||
sublo[1] = domain->sublo[1];
|
||||
sublo[2] = domain->sublo[2];
|
||||
subhi[0] = domain->subhi[0];
|
||||
subhi[1] = domain->subhi[1];
|
||||
subhi[2] = domain->subhi[2];
|
||||
} else {
|
||||
domain->bbox(domain->sublo_lamda, domain->subhi_lamda, sublo, subhi);
|
||||
}
|
||||
inum = atom->nlocal;
|
||||
firstneigh = edpd_gpu_compute_n(
|
||||
neighbor->ago, inum, nall, atom->x, atom->type, sublo, subhi, atom->tag, atom->nspecial,
|
||||
atom->special, eflag, vflag, eflag_atom, vflag_atom, host_start, &ilist, &numneigh,
|
||||
cpu_time, success, atom->v, dtinvsqrt, seed, update->ntimestep, domain->boxlo, domain->prd);
|
||||
} else {
|
||||
inum = list->inum;
|
||||
ilist = list->ilist;
|
||||
numneigh = list->numneigh;
|
||||
firstneigh = list->firstneigh;
|
||||
edpd_gpu_compute(neighbor->ago, inum, nall, atom->x, atom->type, ilist, numneigh, firstneigh,
|
||||
eflag, vflag, eflag_atom, vflag_atom, host_start, cpu_time, success, atom->tag,
|
||||
atom->v, dtinvsqrt, seed, update->ntimestep, atom->nlocal, domain->boxlo, domain->prd);
|
||||
}
|
||||
if (!success) error->one(FLERR, "Insufficient memory on accelerator");
|
||||
|
||||
// get the heat flux from device
|
||||
|
||||
double *Q = atom->edpd_flux;
|
||||
edpd_gpu_update_flux(&flux_pinned);
|
||||
|
||||
int nlocal = atom->nlocal;
|
||||
if (acc_float) {
|
||||
auto flux_ptr = (float *)flux_pinned;
|
||||
for (int i = 0; i < nlocal; i++)
|
||||
Q[i] = flux_ptr[i];
|
||||
|
||||
} else {
|
||||
auto flux_ptr = (double *)flux_pinned;
|
||||
for (int i = 0; i < nlocal; i++)
|
||||
Q[i] = flux_ptr[i];
|
||||
}
|
||||
|
||||
if (atom->molecular != Atom::ATOMIC && neighbor->ago == 0)
|
||||
neighbor->build_topology();
|
||||
}
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
init specific to this pair style
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
void PairEDPDGPU::init_style()
|
||||
{
|
||||
|
||||
// Repeat cutsq calculation because done after call to init_style
|
||||
double maxcut = -1.0;
|
||||
double mcut;
|
||||
for (int i = 1; i <= atom->ntypes; i++) {
|
||||
for (int j = i; j <= atom->ntypes; j++) {
|
||||
if (setflag[i][j] != 0 || (setflag[i][i] != 0 && setflag[j][j] != 0)) {
|
||||
mcut = init_one(i, j);
|
||||
mcut *= mcut;
|
||||
if (mcut > maxcut) maxcut = mcut;
|
||||
cutsq[i][j] = cutsq[j][i] = mcut;
|
||||
} else
|
||||
cutsq[i][j] = cutsq[j][i] = 0.0;
|
||||
}
|
||||
}
|
||||
double cell_size = sqrt(maxcut) + neighbor->skin;
|
||||
|
||||
int maxspecial = 0;
|
||||
if (atom->molecular != Atom::ATOMIC) maxspecial = atom->maxspecial;
|
||||
int mnf = 5e-2 * neighbor->oneatom;
|
||||
int success =
|
||||
edpd_gpu_init(atom->ntypes + 1, cutsq, a0, gamma, cut, power, kappa,
|
||||
powerT, cutT, sc, kc, atom->mass, force->special_lj,
|
||||
power_flag, kappa_flag, atom->nlocal, atom->nlocal + atom->nghost,
|
||||
mnf, maxspecial, cell_size, gpu_mode, screen);
|
||||
GPU_EXTRA::check_flag(success, error, world);
|
||||
|
||||
acc_float = Info::has_accelerator_feature("GPU", "precision", "single");
|
||||
|
||||
if (gpu_mode == GPU_FORCE) neighbor->add_request(this, NeighConst::REQ_FULL);
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
double PairEDPDGPU::memory_usage()
|
||||
{
|
||||
double bytes = Pair::memory_usage();
|
||||
return bytes + edpd_gpu_bytes();
|
||||
}
|
||||
48
src/GPU/pair_edpd_gpu.h
Normal file
48
src/GPU/pair_edpd_gpu.h
Normal file
@ -0,0 +1,48 @@
|
||||
/* -*- c++ -*- ----------------------------------------------------------
|
||||
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
||||
https://www.lammps.org/, Sandia National Laboratories
|
||||
LAMMPS development team: developers@lammps.org
|
||||
|
||||
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
||||
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
||||
certain rights in this software. This software is distributed under
|
||||
the GNU General Public License.
|
||||
|
||||
See the README file in the top-level LAMMPS directory.
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
#ifdef PAIR_CLASS
|
||||
// clang-format off
|
||||
PairStyle(edpd/gpu,PairEDPDGPU);
|
||||
// clang-format on
|
||||
#else
|
||||
|
||||
#ifndef LMP_PAIR_EDPD_GPU_H
|
||||
#define LMP_PAIR_EDPD_GPU_H
|
||||
|
||||
#include "pair_edpd.h"
|
||||
|
||||
namespace LAMMPS_NS {
|
||||
|
||||
class PairEDPDGPU : public PairEDPD {
|
||||
public:
|
||||
PairEDPDGPU(LAMMPS *lmp);
|
||||
~PairEDPDGPU() override;
|
||||
void cpu_compute(int, int, int, int, int *, int *, int **);
|
||||
void compute(int, int) override;
|
||||
void init_style() override;
|
||||
double memory_usage() override;
|
||||
|
||||
enum { GPU_FORCE, GPU_NEIGH, GPU_HYB_NEIGH };
|
||||
|
||||
void *flux_pinned;
|
||||
bool acc_float;
|
||||
|
||||
private:
|
||||
int gpu_mode;
|
||||
double cpu_time;
|
||||
};
|
||||
|
||||
} // namespace LAMMPS_NS
|
||||
#endif
|
||||
#endif
|
||||
171
src/GPU/pair_mdpd_gpu.cpp
Normal file
171
src/GPU/pair_mdpd_gpu.cpp
Normal file
@ -0,0 +1,171 @@
|
||||
/* ----------------------------------------------------------------------
|
||||
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
||||
https://www.lammps.org/, Sandia National Laboratories
|
||||
LAMMPS development team: developers@lammps.org
|
||||
|
||||
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
||||
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
||||
certain rights in this software. This software is distributed under
|
||||
the GNU General Public License.
|
||||
|
||||
See the README file in the top-level LAMMPS directory.
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
Contributing author: Trung Dac Nguyen (U Chicago)
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
#include "pair_mdpd_gpu.h"
|
||||
|
||||
#include "atom.h"
|
||||
#include "domain.h"
|
||||
#include "error.h"
|
||||
#include "force.h"
|
||||
#include "gpu_extra.h"
|
||||
#include "info.h"
|
||||
#include "neigh_list.h"
|
||||
#include "neighbor.h"
|
||||
#include "suffix.h"
|
||||
#include "update.h"
|
||||
|
||||
#include <cmath>
|
||||
|
||||
using namespace LAMMPS_NS;
|
||||
|
||||
// External functions from cuda library for atom decomposition
|
||||
|
||||
int mdpd_gpu_init(const int ntypes, double **cutsq, double **host_A_att, double **host_B_rep,
|
||||
double **host_gamma, double **host_sigma, double **host_cut, double **host_cut_r,
|
||||
double *special_lj, const int inum, const int nall, const int max_nbors,
|
||||
const int maxspecial, const double cell_size, int &gpu_mode, FILE *screen);
|
||||
void mdpd_gpu_clear();
|
||||
int **mdpd_gpu_compute_n(const int ago, const int inum_full, const int nall, double **host_x,
|
||||
int *host_type, double *sublo, double *subhi, tagint *tag, int **nspecial,
|
||||
tagint **special, const bool eflag, const bool vflag, const bool eatom,
|
||||
const bool vatom, int &host_start, int **ilist, int **jnum,
|
||||
const double cpu_time, bool &success, double **host_v,
|
||||
const double dtinvsqrt, const int seed, const int timestep, double *boxlo,
|
||||
double *prd);
|
||||
void mdpd_gpu_compute(const int ago, const int inum_full, const int nall, double **host_x,
|
||||
int *host_type, int *ilist, int *numj, int **firstneigh, const bool eflag,
|
||||
const bool vflag, const bool eatom, const bool vatom, int &host_start,
|
||||
const double cpu_time, bool &success, tagint *tag, double **host_v,
|
||||
const double dtinvsqrt, const int seed, const int timestep, const int nlocal,
|
||||
double *boxlo, double *prd);
|
||||
void mdpd_gpu_get_extra_data(double *host_rho);
|
||||
double mdpd_gpu_bytes();
|
||||
|
||||
#define EPSILON 1.0e-10
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
PairMDPDGPU::PairMDPDGPU(LAMMPS *lmp) : PairMDPD(lmp), gpu_mode(GPU_FORCE)
|
||||
{
|
||||
respa_enable = 0;
|
||||
reinitflag = 0;
|
||||
cpu_time = 0.0;
|
||||
suffix_flag |= Suffix::GPU;
|
||||
GPU_EXTRA::gpu_ready(lmp->modify, lmp->error);
|
||||
}
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
free all arrays
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
PairMDPDGPU::~PairMDPDGPU()
|
||||
{
|
||||
mdpd_gpu_clear();
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
void PairMDPDGPU::compute(int eflag, int vflag)
|
||||
{
|
||||
ev_init(eflag, vflag);
|
||||
|
||||
int nall = atom->nlocal + atom->nghost;
|
||||
int inum, host_start;
|
||||
|
||||
double dtinvsqrt = 1.0 / sqrt(update->dt);
|
||||
|
||||
bool success = true;
|
||||
int *ilist, *numneigh, **firstneigh;
|
||||
|
||||
double *rho = atom->rho;
|
||||
mdpd_gpu_get_extra_data(rho);
|
||||
|
||||
if (gpu_mode != GPU_FORCE) {
|
||||
double sublo[3], subhi[3];
|
||||
if (domain->triclinic == 0) {
|
||||
sublo[0] = domain->sublo[0];
|
||||
sublo[1] = domain->sublo[1];
|
||||
sublo[2] = domain->sublo[2];
|
||||
subhi[0] = domain->subhi[0];
|
||||
subhi[1] = domain->subhi[1];
|
||||
subhi[2] = domain->subhi[2];
|
||||
} else {
|
||||
domain->bbox(domain->sublo_lamda, domain->subhi_lamda, sublo, subhi);
|
||||
}
|
||||
inum = atom->nlocal;
|
||||
firstneigh = mdpd_gpu_compute_n(
|
||||
neighbor->ago, inum, nall, atom->x, atom->type, sublo, subhi, atom->tag, atom->nspecial,
|
||||
atom->special, eflag, vflag, eflag_atom, vflag_atom, host_start, &ilist, &numneigh,
|
||||
cpu_time, success, atom->v, dtinvsqrt, seed, update->ntimestep, domain->boxlo, domain->prd);
|
||||
} else {
|
||||
inum = list->inum;
|
||||
ilist = list->ilist;
|
||||
numneigh = list->numneigh;
|
||||
firstneigh = list->firstneigh;
|
||||
mdpd_gpu_compute(neighbor->ago, inum, nall, atom->x, atom->type, ilist, numneigh, firstneigh,
|
||||
eflag, vflag, eflag_atom, vflag_atom, host_start, cpu_time, success, atom->tag,
|
||||
atom->v, dtinvsqrt, seed, update->ntimestep, atom->nlocal, domain->boxlo, domain->prd);
|
||||
}
|
||||
if (!success) error->one(FLERR, "Insufficient memory on accelerator");
|
||||
|
||||
if (atom->molecular != Atom::ATOMIC && neighbor->ago == 0)
|
||||
neighbor->build_topology();
|
||||
}
|
||||
|
||||
/* ----------------------------------------------------------------------
|
||||
init specific to this pair style
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
void PairMDPDGPU::init_style()
|
||||
{
|
||||
|
||||
// Repeat cutsq calculation because done after call to init_style
|
||||
double maxcut = -1.0;
|
||||
double mcut;
|
||||
for (int i = 1; i <= atom->ntypes; i++) {
|
||||
for (int j = i; j <= atom->ntypes; j++) {
|
||||
if (setflag[i][j] != 0 || (setflag[i][i] != 0 && setflag[j][j] != 0)) {
|
||||
mcut = init_one(i, j);
|
||||
mcut *= mcut;
|
||||
if (mcut > maxcut) maxcut = mcut;
|
||||
cutsq[i][j] = cutsq[j][i] = mcut;
|
||||
} else
|
||||
cutsq[i][j] = cutsq[j][i] = 0.0;
|
||||
}
|
||||
}
|
||||
double cell_size = sqrt(maxcut) + neighbor->skin;
|
||||
|
||||
int maxspecial = 0;
|
||||
if (atom->molecular != Atom::ATOMIC) maxspecial = atom->maxspecial;
|
||||
int mnf = 5e-2 * neighbor->oneatom;
|
||||
int success =
|
||||
mdpd_gpu_init(atom->ntypes + 1, cutsq, A_att, B_rep, gamma, sigma,
|
||||
cut, cut_r, force->special_lj,
|
||||
atom->nlocal, atom->nlocal + atom->nghost,
|
||||
mnf, maxspecial, cell_size, gpu_mode, screen);
|
||||
GPU_EXTRA::check_flag(success, error, world);
|
||||
|
||||
if (gpu_mode == GPU_FORCE) neighbor->add_request(this, NeighConst::REQ_FULL);
|
||||
}
|
||||
|
||||
/* ---------------------------------------------------------------------- */
|
||||
|
||||
double PairMDPDGPU::memory_usage()
|
||||
{
|
||||
double bytes = Pair::memory_usage();
|
||||
return bytes + mdpd_gpu_bytes();
|
||||
}
|
||||
45
src/GPU/pair_mdpd_gpu.h
Normal file
45
src/GPU/pair_mdpd_gpu.h
Normal file
@ -0,0 +1,45 @@
|
||||
/* -*- c++ -*- ----------------------------------------------------------
|
||||
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
|
||||
https://www.lammps.org/, Sandia National Laboratories
|
||||
LAMMPS development team: developers@lammps.org
|
||||
|
||||
Copyright (2003) Sandia Corporation. Under the terms of Contract
|
||||
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
|
||||
certain rights in this software. This software is distributed under
|
||||
the GNU General Public License.
|
||||
|
||||
See the README file in the top-level LAMMPS directory.
|
||||
------------------------------------------------------------------------- */
|
||||
|
||||
#ifdef PAIR_CLASS
|
||||
// clang-format off
|
||||
PairStyle(mdpd/gpu,PairMDPDGPU);
|
||||
// clang-format on
|
||||
#else
|
||||
|
||||
#ifndef LMP_PAIR_MDPD_GPU_H
|
||||
#define LMP_PAIR_MDPD_GPU_H
|
||||
|
||||
#include "pair_mdpd.h"
|
||||
|
||||
namespace LAMMPS_NS {
|
||||
|
||||
class PairMDPDGPU : public PairMDPD {
|
||||
public:
|
||||
PairMDPDGPU(LAMMPS *lmp);
|
||||
~PairMDPDGPU() override;
|
||||
void cpu_compute(int, int, int, int, int *, int *, int **);
|
||||
void compute(int, int) override;
|
||||
void init_style() override;
|
||||
double memory_usage() override;
|
||||
|
||||
enum { GPU_FORCE, GPU_NEIGH, GPU_HYB_NEIGH };
|
||||
|
||||
private:
|
||||
int gpu_mode;
|
||||
double cpu_time;
|
||||
};
|
||||
|
||||
} // namespace LAMMPS_NS
|
||||
#endif
|
||||
#endif
|
||||
Reference in New Issue
Block a user