Files
lammps/src/compute_slice.cpp
2022-10-24 20:07:58 -04:00

300 lines
10 KiB
C++

/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
LAMMPS development team: developers@lammps.org
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#include "compute_slice.h"
#include "arg_info.h"
#include "error.h"
#include "fix.h"
#include "input.h"
#include "memory.h"
#include "modify.h"
#include "update.h"
#include "variable.h"
using namespace LAMMPS_NS;
/* ---------------------------------------------------------------------- */
ComputeSlice::ComputeSlice(LAMMPS *lmp, int narg, char **arg) : Compute(lmp, narg, arg)
{
if (narg < 7) utils::missing_cmd_args(FLERR, "compute slice", error);
nstart = utils::inumeric(FLERR, arg[3], false, lmp);
nstop = utils::inumeric(FLERR, arg[4], false, lmp);
nskip = utils::inumeric(FLERR, arg[5], false, lmp);
if (nstart < 1) error->all(FLERR, "Invalid compute slice nstart value {} < 1", nstart);
if (nstop < nstart) error->all(FLERR, "Invalid compute slice nstop value {} < {}", nstop, nstart);
if (nskip < 1) error->all(FLERR, "Invalid compute slice nskip value < 1: {}", nskip);
// parse values
values.clear();
for (int iarg = 6; iarg < narg; iarg++) {
ArgInfo argi(arg[iarg]);
value_t val;
val.which = argi.get_type();
val.argindex = argi.get_index1();
val.id = argi.get_name();
val.val.c = nullptr;
if ((val.which == ArgInfo::UNKNOWN) || (val.which == ArgInfo::NONE) || (argi.get_dim() > 1))
error->all(FLERR, "Illegal compute slice argument: {}", arg[iarg]);
values.push_back(val);
}
// setup and error check
for (auto &val : values) {
if (val.which == ArgInfo::COMPUTE) {
val.val.c = modify->get_compute_by_id(val.id);
if (!val.val.c) error->all(FLERR, "Compute ID {} for compute slice does not exist", val.id);
if (val.val.c->vector_flag) {
if (val.argindex)
error->all(FLERR, "Compute slice compute {} does not calculate a global array", val.id);
if (nstop > val.val.c->size_vector)
error->all(FLERR, "Compute slice compute {} vector is accessed out-of-range", val.id);
} else if (val.val.c->array_flag) {
if (val.argindex == 0)
error->all(FLERR, "Compute slice compute {} does not calculate a global vector", val.id);
if (val.argindex > val.val.c->size_array_cols)
error->all(FLERR, "Compute slice compute {} array is accessed out-of-range", val.id);
if (nstop > val.val.c->size_array_rows)
error->all(FLERR, "Compute slice compute {} array is accessed out-of-range", val.id);
} else {
error->all(FLERR, "Compute slice compute {} does not calculate global vector or array",
val.id);
}
} else if (val.which == ArgInfo::FIX) {
val.val.f = modify->get_fix_by_id(val.id);
if (!val.val.f) error->all(FLERR, "Fix ID {} for compute slice does not exist", val.id);
if (val.val.f->vector_flag) {
if (val.argindex)
error->all(FLERR, "Compute slice fix {} does not calculate a global array", val.id);
if (nstop > val.val.f->size_vector)
error->all(FLERR, "Compute slice fix {} vector is accessed out-of-range", val.id);
} else if (val.val.f->array_flag) {
if (val.argindex == 0)
error->all(FLERR, "Compute slice fix {} does not calculate a global vector", val.id);
if (val.argindex > val.val.f->size_array_cols)
error->all(FLERR, "Compute slice fix {} array is accessed out-of-range", val.id);
if (nstop > val.val.f->size_array_rows)
error->all(FLERR, "Compute slice fix {} array is accessed out-of-range", val.id);
} else {
error->all(FLERR, "Compute slice fix {} does not calculate global vector or array", val.id);
}
} else if (val.which == ArgInfo::VARIABLE) {
val.val.v = input->variable->find(val.id.c_str());
if (val.val.v < 0)
error->all(FLERR, "Variable name {} for compute slice does not exist", val.id);
if (val.argindex == 0 && input->variable->vectorstyle(val.val.v) == 0)
error->all(FLERR, "Compute slice variable {} is not vector-style variable", val.id);
if (val.argindex)
error->all(FLERR, "Compute slice vector variable {} cannot be indexed", val.id);
}
}
// this compute produces either a vector or array
// for vector, set intensive/extensive to mirror input values
// for array, set intensive if all input values are intensive, else extensive
if (values.size() == 1) {
auto &val = values[0];
vector_flag = 1;
size_vector = (nstop - nstart) / nskip;
memory->create(vector, size_vector, "slice:vector");
if (val.which == ArgInfo::COMPUTE) {
if (val.argindex == 0) {
extvector = val.val.c->extvector;
if (val.val.c->extvector == -1) {
extlist = new int[size_vector];
int j = 0;
for (int i = nstart; i < nstop; i += nskip) extlist[j++] = val.val.c->extlist[i - 1];
}
} else
extvector = val.val.c->extarray;
} else if (val.which == ArgInfo::FIX) {
if (val.argindex == 0) {
extvector = val.val.f->extvector;
if (val.val.f->extvector == -1) {
extlist = new int[size_vector];
int j = 0;
for (int i = nstart; i < nstop; i += nskip) extlist[j++] = val.val.f->extlist[i - 1];
}
} else
extvector = val.val.f->extarray;
} else if (val.which == ArgInfo::VARIABLE) {
extvector = 0;
}
} else {
array_flag = 1;
size_array_rows = (nstop - nstart) / nskip;
size_array_cols = values.size();
memory->create(array, size_array_rows, size_array_cols, "slice:array");
extarray = 0;
for (auto &val : values) {
if (val.which == ArgInfo::COMPUTE) {
if (val.argindex == 0) {
if (val.val.c->extvector == 1) extarray = 1;
if (val.val.c->extvector == -1) {
for (int j = 0; j < val.val.c->size_vector; j++)
if (val.val.c->extlist[j]) extarray = 1;
}
} else {
if (val.val.c->extarray) extarray = 1;
}
} else if (val.which == ArgInfo::FIX) {
if (val.argindex == 0) {
if (val.val.f->extvector == 1) extarray = 1;
if (val.val.f->extvector == -1) {
for (int j = 0; j < val.val.f->size_vector; j++)
if (val.val.f->extlist[j]) extarray = 1;
}
} else {
if (val.val.f->extarray) extarray = 1;
}
} else if (val.which == ArgInfo::VARIABLE) {
// variable is always intensive, does not change extarray
}
}
}
}
/* ---------------------------------------------------------------------- */
ComputeSlice::~ComputeSlice()
{
delete[] extlist;
memory->destroy(vector);
memory->destroy(array);
}
/* ---------------------------------------------------------------------- */
void ComputeSlice::init()
{
// set indices and check validity of all computes,fixes
for (auto &val : values) {
if (val.which == ArgInfo::COMPUTE) {
val.val.c = modify->get_compute_by_id(val.id);
if (!val.val.c) error->all(FLERR, "Compute ID {} for compute slice does not exist", val.id);
} else if (val.which == ArgInfo::FIX) {
val.val.f = modify->get_fix_by_id(val.id);
if (!val.val.f) error->all(FLERR, "Fix ID {} for compute slice does not exist", val.id);
} else if (val.which == ArgInfo::VARIABLE) {
val.val.v = input->variable->find(val.id.c_str());
if (val.val.v < 0)
error->all(FLERR, "Variable name {} for compute slice does not exist", val.id);
}
}
}
/* ---------------------------------------------------------------------- */
void ComputeSlice::compute_vector()
{
invoked_vector = update->ntimestep;
extract_one(0, vector, 1);
}
/* ---------------------------------------------------------------------- */
void ComputeSlice::compute_array()
{
invoked_array = update->ntimestep;
for (std::size_t m = 0; m < values.size(); m++) extract_one(0, &array[m][0], values.size());
}
/* ----------------------------------------------------------------------
calculate sliced value for one input M and return it in vec
vec may be array so that returned values are with stride
------------------------------------------------------------------------- */
void ComputeSlice::extract_one(int m, double *vec, int stride)
{
auto &val = values[m];
// invoke the appropriate compute if needed
if (val.which == ArgInfo::COMPUTE) {
if (val.argindex == 0) {
if (!(val.val.c->invoked_flag & Compute::INVOKED_VECTOR)) {
val.val.c->compute_vector();
val.val.c->invoked_flag |= Compute::INVOKED_VECTOR;
}
double *cvector = val.val.c->vector;
int j = 0;
for (int i = nstart; i < nstop; i += nskip) {
vec[j] = cvector[i - 1];
j += stride;
}
} else {
if (!(val.val.c->invoked_flag & Compute::INVOKED_ARRAY)) {
val.val.c->compute_array();
val.val.c->invoked_flag |= Compute::INVOKED_ARRAY;
}
double **carray = val.val.c->array;
int icol = val.argindex - 1;
int j = 0;
for (int i = nstart; i < nstop; i += nskip) {
vec[j] = carray[i - 1][icol];
j += stride;
}
}
// access fix fields, check if fix frequency is a match
} else if (val.which == ArgInfo::FIX) {
if (update->ntimestep % val.val.f->global_freq)
error->all(FLERR, "Fix {} used in compute slice not computed at compatible time", val.id);
if (val.argindex == 0) {
int j = 0;
for (int i = nstart; i < nstop; i += nskip) {
vec[j] = val.val.f->compute_vector(i - 1);
j += stride;
}
} else {
int icol = val.argindex - 1;
int j = 0;
for (int i = nstart; i < nstop; i += nskip) {
vec[j] = val.val.f->compute_array(i - 1, icol);
j += stride;
}
}
// invoke vector-style variable
} else if (val.which == ArgInfo::VARIABLE) {
double *varvec;
int nvec = input->variable->compute_vector(val.val.v, &varvec);
if (nvec < nstop) error->all(FLERR, "Compute slice variable {} is not long enough", val.id);
int j = 0;
for (int i = nstart; i < nstop; i += nskip) {
vec[j] = varvec[i - 1];
j += stride;
}
}
}