Files
lammps/src/compute_global_atom.cpp
2023-08-09 00:41:39 -04:00

457 lines
16 KiB
C++

// clang-format off
/* ----------------------------------------------------------------------
LAMMPS - Large-scale Atomic/Molecular Massively Parallel Simulator
https://www.lammps.org/, Sandia National Laboratories
LAMMPS development team: developers@lammps.org
Copyright (2003) Sandia Corporation. Under the terms of Contract
DE-AC04-94AL85000 with Sandia Corporation, the U.S. Government retains
certain rights in this software. This software is distributed under
the GNU General Public License.
See the README file in the top-level LAMMPS directory.
------------------------------------------------------------------------- */
#include "compute_global_atom.h"
#include "arg_info.h"
#include "atom.h"
#include "error.h"
#include "fix.h"
#include "input.h"
#include "memory.h"
#include "modify.h"
#include "update.h"
#include "variable.h"
using namespace LAMMPS_NS;
/* ---------------------------------------------------------------------- */
ComputeGlobalAtom::ComputeGlobalAtom(LAMMPS *lmp, int narg, char **arg) :
Compute(lmp, narg, arg), indices(nullptr), varatom(nullptr), vecglobal(nullptr)
{
if (narg < 5) utils::missing_cmd_args(FLERR,"compute global/atom", error);
peratom_flag = 1;
// process index arg
int iarg = 3;
ArgInfo argi(arg[iarg]);
reference.which = argi.get_type();
reference.argindex = argi.get_index1();
reference.id = argi.get_name();
if ((reference.which == ArgInfo::UNKNOWN) || (reference.which == ArgInfo::NONE)
|| (argi.get_dim() > 1))
error->all(FLERR,"Illegal compute global/atom index property: {}", arg[iarg]);
iarg++;
// expand args if any have wildcard character "*"
int expand = 0;
char **earg;
int nargnew = utils::expand_args(FLERR,narg-iarg,&arg[iarg],1,earg,lmp);
if (earg != &arg[iarg]) expand = 1;
arg = earg;
// parse values until one isn't recognized
values.clear();
for (iarg = 0; iarg < nargnew; iarg++) {
ArgInfo argi2(arg[iarg]);
value_t val;
val.which = argi2.get_type();
val.argindex = argi2.get_index1();
val.id = argi2.get_name();
val.val.c = nullptr;
if ((val.which == ArgInfo::UNKNOWN) || (val.which == ArgInfo::NONE)
|| (argi2.get_dim() > 1))
error->all(FLERR,"Illegal compute global/atom global property: {}", arg[iarg]);
values.push_back(val);
}
// if wildcard expansion occurred, free earg memory from expand_args()
if (expand) {
for (int i = 0; i < nargnew; i++) delete [] earg[i];
memory->sfree(earg);
}
// setup and error check for both, index arg and values
if (reference.which == ArgInfo::COMPUTE) {
reference.val.c = modify->get_compute_by_id(reference.id);
if (!reference.val.c)
error->all(FLERR,"Compute ID {} for compute global/atom index", reference.id);
if (!reference.val.c->peratom_flag)
error->all(FLERR,"Compute global/atom compute {} does not calculate a per-atom "
"vector or array", reference.id);
if ((reference.argindex == 0) && (reference.val.c->size_peratom_cols != 0))
error->all(FLERR,"Compute global/atom compute {} does not calculate a per-atom "
"vector", reference.id);
if (reference.argindex && (reference.val.c->size_peratom_cols == 0))
error->all(FLERR,"Compute global/atom compute does not calculate a per-atom "
"array", reference.id);
if (reference.argindex && (reference.argindex > reference.val.c->size_peratom_cols))
error->all(FLERR, "Compute global/atom compute array {} is accessed out-of-range",
reference.id);
} else if (reference.which == ArgInfo::FIX) {
reference.val.f =modify->get_fix_by_id(reference.id);
if (!reference.val.f)
error->all(FLERR,"Fix ID {} for compute global/atom does not exist", reference.id);
if (!reference.val.f->peratom_flag)
error->all(FLERR,"Compute global/atom fix {} does not calculate a per-atom vector "
"or array", reference.id);
if (reference.argindex == 0 && (reference.val.f->size_peratom_cols != 0))
error->all(FLERR,"Compute global/atom fix {} does not calculate a per-atom vector",
reference.id);
if (reference.argindex && (reference.val.f->size_peratom_cols == 0))
error->all(FLERR,"Compute global/atom fix {} does not calculate a per-atom array",
reference.id);
if (reference.argindex && (reference.argindex > reference.val.f->size_peratom_cols))
error->all(FLERR, "Compute global/atom fix {} array is accessed out-of-range", reference.id);
} else if (reference.which == ArgInfo::VARIABLE) {
reference.val.v = input->variable->find(reference.id.c_str());
if (reference.val.v < 0)
error->all(FLERR,"Variable name {} for compute global/atom index does not exist",
reference.id);
if (input->variable->atomstyle(reference.val.v) == 0)
error->all(FLERR,"Compute global/atom index variable {} is not atom-style variable",
reference.id);
}
for (auto &val : values) {
if (val.which == ArgInfo::COMPUTE) {
val.val.c = modify->get_compute_by_id(val.id);
if (!val.val.c)
error->all(FLERR,"Compute ID {} for compute global/atom does not exist", val.id);
if (val.argindex == 0) {
if (!val.val.c->vector_flag)
error->all(FLERR,"Compute ID {} for global/atom compute does not calculate "
"a global vector", val.id);
} else {
if (!val.val.c->array_flag)
error->all(FLERR,"Compute ID {} for global/atom compute does not calculate "
"a global array", val.id);
if (val.argindex > val.val.c->size_array_cols)
error->all(FLERR,"Compute global/atom compute {} array is accessed out-of-range", val.id);
}
} else if (val.which == ArgInfo::FIX) {
val.val.f = modify->get_fix_by_id(val.id);
if (!val.val.f) error->all(FLERR,"Fix ID {} for compute global/atom does not exist", val.id);
if (val.argindex == 0) {
if (!val.val.f->vector_flag)
error->all(FLERR,"Fix ID {} for compute global/atom compute does not calculate "
"a global vector", val.id);
} else {
if (!val.val.f->array_flag)
error->all(FLERR,"Fix ID {} for compute global/atom compute does not calculate "
"a global array", val.id);
if (val.argindex > val.val.f->size_array_cols)
error->all(FLERR,"Compute global/atom fix {} array is accessed out-of-range", val.id);
}
} else if (val.which == ArgInfo::VARIABLE) {
val.val.v = input->variable->find(val.id.c_str());
if (val.val.v < 0)
error->all(FLERR,"Variable name {} for compute global/atom does not exist", val.id);
if (input->variable->vectorstyle(val.val.v) == 0)
error->all(FLERR,"Compute global/atom variable {} is not vector-style variable", val.id);
}
}
// this compute produces either a peratom vector or array
if (values.size() == 1) size_peratom_cols = 0;
else size_peratom_cols = values.size();
nmax = maxvector = 0;
vector_atom = nullptr;
array_atom = nullptr;
}
/* ---------------------------------------------------------------------- */
ComputeGlobalAtom::~ComputeGlobalAtom()
{
memory->destroy(indices);
memory->destroy(varatom);
memory->destroy(vecglobal);
memory->destroy(vector_atom);
memory->destroy(array_atom);
}
/* ---------------------------------------------------------------------- */
void ComputeGlobalAtom::init()
{
// store references of all computes, fixes, or variables
if (reference.which == ArgInfo::COMPUTE) {
reference.val.c = modify->get_compute_by_id(reference.id);
if (!reference.val.c)
error->all(FLERR,"Compute ID {} for compute global/atom index does not exist", reference.id);
} else if (reference.which == ArgInfo::FIX) {
reference.val.f = modify->get_fix_by_id(reference.id);
if (reference.val.f)
error->all(FLERR,"Fix ID {} for compute global/atom index does not exist", reference.id);
} else if (reference.which == ArgInfo::VARIABLE) {
reference.val.v = input->variable->find(reference.id.c_str());
if (reference.val.v < 0)
error->all(FLERR,"Variable name {} for compute global/atom index does not exist",
reference.id);
}
for (auto &val : values) {
if (val.which == ArgInfo::COMPUTE) {
val.val.c = modify->get_compute_by_id(val.id);
if (!val.val.c)
error->all(FLERR,"Compute ID {} for compute global/atom does not exist", val.id);
} else if (val.which == ArgInfo::FIX) {
val.val.f = modify->get_fix_by_id(val.id);
if (!val.val.f)
error->all(FLERR,"Fix ID {} for compute global/atom does not exist", val.id);
} else if (val.which == ArgInfo::VARIABLE) {
val.val.v = input->variable->find(val.id.c_str());
if (val.val.v < 0)
error->all(FLERR,"Variable name {} for compute global/atom does not exist", val.id);
}
}
}
/* ---------------------------------------------------------------------- */
void ComputeGlobalAtom::compute_peratom()
{
invoked_peratom = update->ntimestep;
// grow indices and output vector or array if necessary
if (atom->nmax > nmax) {
nmax = atom->nmax;
memory->destroy(indices);
memory->create(indices,nmax,"global/atom:indices");
if (reference.which == ArgInfo::VARIABLE) {
memory->destroy(varatom);
memory->create(varatom,nmax,"global/atom:varatom");
}
if (values.size() == 1) {
memory->destroy(vector_atom);
memory->create(vector_atom,nmax,"global/atom:vector_atom");
} else {
memory->destroy(array_atom);
memory->create(array_atom,nmax,values.size(),"global/atom:array_atom");
}
}
// setup current peratom indices
// integer indices are rounded down from double values
// indices are decremented from 1 to N -> 0 to N-1
int *mask = atom->mask;
const int nlocal = atom->nlocal;
if (reference.which == ArgInfo::COMPUTE) {
if (!(reference.val.c->invoked_flag & Compute::INVOKED_PERATOM)) {
reference.val.c->compute_peratom();
reference.val.c->invoked_flag |= Compute::INVOKED_PERATOM;
}
if (reference.argindex == 0) {
double *compute_vector = reference.val.c->vector_atom;
for (int i = 0; i < nlocal; i++)
if (mask[i] & groupbit)
indices[i] = static_cast<int> (compute_vector[i]) - 1;
} else {
double **compute_array = reference.val.c->array_atom;
int im1 = reference.argindex - 1;
for (int i = 0; i < nlocal; i++)
if (mask[i] & groupbit)
indices[i] = static_cast<int> (compute_array[i][im1]) - 1;
}
} else if (reference.which == ArgInfo::FIX) {
if (update->ntimestep % reference.val.f->peratom_freq)
error->all(FLERR,"Fix {} used in compute global/atom not computed at compatible time",
reference.id);
if (reference.argindex == 0) {
double *fix_vector = reference.val.f->vector_atom;
for (int i = 0; i < nlocal; i++)
if (mask[i] & groupbit)
indices[i] = static_cast<int> (fix_vector[i]) - 1;
} else {
double **fix_array = reference.val.f->array_atom;
int im1 = reference.argindex - 1;
for (int i = 0; i < nlocal; i++)
if (mask[i] & groupbit)
indices[i] = static_cast<int> (fix_array[i][im1]) - 1;
}
} else if (reference.which == ArgInfo::VARIABLE) {
input->variable->compute_atom(reference.val.v, igroup, varatom, 1, 0);
for (int i = 0; i < nlocal; i++)
if (mask[i] & groupbit)
indices[i] = static_cast<int> (varatom[i]) - 1;
}
// loop over values to fill output vector or array
int m = 0;
for (auto &val : values) {
// output = vector
if (val.argindex == 0) {
int vmax;
double *source;
if (val.which == ArgInfo::COMPUTE) {
if (!(val.val.c->invoked_flag & Compute::INVOKED_VECTOR)) {
val.val.c->compute_vector();
val.val.c->invoked_flag |= Compute::INVOKED_VECTOR;
}
source = val.val.c->vector;
vmax = val.val.c->size_vector;
} else if (val.which == ArgInfo::FIX) {
if (update->ntimestep % val.val.f->peratom_freq)
error->all(FLERR,"Fix {} used in compute global/atom not computed at compatible time",
val.id);
vmax = reference.val.f->size_vector;
if (vmax > maxvector) {
maxvector = vmax;
memory->destroy(vecglobal);
memory->create(vecglobal,maxvector,"global/atom:vecglobal");
}
for (int i = 0; i < vmax; i++)
vecglobal[i] = val.val.f->compute_vector(i);
source = vecglobal;
} else if (val.which == ArgInfo::VARIABLE) {
vmax = input->variable->compute_vector(val.val.v, &source);
}
if (values.size() == 1) {
for (int i = 0; i < nlocal; i++) {
vector_atom[i] = 0.0;
if (mask[i] & groupbit) {
int j = indices[i];
if (j >= 0 && j < vmax) vector_atom[i] = source[j];
}
}
} else {
for (int i = 0; i < nlocal; i++) {
array_atom[i][m] = 0.0;
if (mask[i] & groupbit) {
int j = indices[i];
if (j >= 0 && j < vmax) array_atom[i][m] = source[j];
}
}
}
// output = array
} else {
int vmax;
double *source;
int col = val.argindex - 1;
if (val.which == ArgInfo::COMPUTE) {
if (!(val.val.c->invoked_flag & Compute::INVOKED_ARRAY)) {
val.val.c->compute_array();
val.val.c->invoked_flag |= Compute::INVOKED_ARRAY;
}
double **compute_array = val.val.c->array;
vmax = val.val.c->size_array_rows;
if (vmax > maxvector) {
maxvector = vmax;
memory->destroy(vecglobal);
memory->create(vecglobal,maxvector,"global/atom:vecglobal");
}
for (int i = 0; i < vmax; i++)
vecglobal[i] = compute_array[i][col];
source = vecglobal;
} else if (val.which == ArgInfo::FIX) {
if (update->ntimestep % val.val.f->peratom_freq)
error->all(FLERR,"Fix {} used in compute global/atom not computed at compatible time",
val.id);
vmax = val.val.f->size_array_rows;
if (vmax > maxvector) {
maxvector = vmax;
memory->destroy(vecglobal);
memory->create(vecglobal,maxvector,"global/atom:vecglobal");
}
for (int i = 0; i < vmax; i++)
vecglobal[i] = val.val.f->compute_array(i,col);
source = vecglobal;
} else if (val.which == ArgInfo::VARIABLE) {
vmax = input->variable->compute_vector(val.val.v, &source);
}
if (values.size() == 1) {
for (int i = 0; i < nlocal; i++) {
vector_atom[i] = 0.0;
if (mask[i] & groupbit) {
int j = indices[i];
if (j >= 0 && j < vmax) vector_atom[i] = source[j];
}
}
} else {
for (int i = 0; i < nlocal; i++) {
array_atom[i][m] = 0.0;
if (mask[i] & groupbit) {
int j = indices[i];
if (j >= 0 && j < vmax) array_atom[i][m] = source[j];
}
}
}
}
++m;
}
}
/* ----------------------------------------------------------------------
memory usage of local atom-based array
------------------------------------------------------------------------- */
double ComputeGlobalAtom::memory_usage()
{
double bytes = (double)nmax*values.size() * sizeof(double);
bytes += (double)nmax * sizeof(int); // indices
if (varatom) bytes += (double)nmax * sizeof(double); // varatom
bytes += (double)maxvector * sizeof(double); // vecglobal
return bytes;
}