533 lines
21 KiB
C++
533 lines
21 KiB
C++
/* fortran/dlabrd.f -- translated by f2c (version 20200916).
|
|
You must link the resulting object file with libf2c:
|
|
on Microsoft Windows system, link with libf2c.lib;
|
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
|
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
|
-- in that order, at the end of the command line, as in
|
|
cc *.o -lf2c -lm
|
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
|
|
|
http://www.netlib.org/f2c/libf2c.zip
|
|
*/
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
#include "lmp_f2c.h"
|
|
|
|
/* Table of constant values */
|
|
|
|
static doublereal c_b4 = -1.;
|
|
static doublereal c_b5 = 1.;
|
|
static integer c__1 = 1;
|
|
static doublereal c_b16 = 0.;
|
|
|
|
/* > \brief \b DLABRD reduces the first nb rows and columns of a general matrix to a bidiagonal form. */
|
|
|
|
/* =========== DOCUMENTATION =========== */
|
|
|
|
/* Online html documentation available at */
|
|
/* http://www.netlib.org/lapack/explore-html/ */
|
|
|
|
/* > \htmlonly */
|
|
/* > Download DLABRD + dependencies */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlabrd.
|
|
f"> */
|
|
/* > [TGZ]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlabrd.
|
|
f"> */
|
|
/* > [ZIP]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlabrd.
|
|
f"> */
|
|
/* > [TXT]</a> */
|
|
/* > \endhtmlonly */
|
|
|
|
/* Definition: */
|
|
/* =========== */
|
|
|
|
/* SUBROUTINE DLABRD( M, N, NB, A, LDA, D, E, TAUQ, TAUP, X, LDX, Y, */
|
|
/* LDY ) */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* INTEGER LDA, LDX, LDY, M, N, NB */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* DOUBLE PRECISION A( LDA, * ), D( * ), E( * ), TAUP( * ), */
|
|
/* $ TAUQ( * ), X( LDX, * ), Y( LDY, * ) */
|
|
/* .. */
|
|
|
|
|
|
/* > \par Purpose: */
|
|
/* ============= */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > DLABRD reduces the first NB rows and columns of a real general */
|
|
/* > m by n matrix A to upper or lower bidiagonal form by an orthogonal */
|
|
/* > transformation Q**T * A * P, and returns the matrices X and Y which */
|
|
/* > are needed to apply the transformation to the unreduced part of A. */
|
|
/* > */
|
|
/* > If m >= n, A is reduced to upper bidiagonal form; if m < n, to lower */
|
|
/* > bidiagonal form. */
|
|
/* > */
|
|
/* > This is an auxiliary routine called by DGEBRD */
|
|
/* > \endverbatim */
|
|
|
|
/* Arguments: */
|
|
/* ========== */
|
|
|
|
/* > \param[in] M */
|
|
/* > \verbatim */
|
|
/* > M is INTEGER */
|
|
/* > The number of rows in the matrix A. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] N */
|
|
/* > \verbatim */
|
|
/* > N is INTEGER */
|
|
/* > The number of columns in the matrix A. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] NB */
|
|
/* > \verbatim */
|
|
/* > NB is INTEGER */
|
|
/* > The number of leading rows and columns of A to be reduced. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] A */
|
|
/* > \verbatim */
|
|
/* > A is DOUBLE PRECISION array, dimension (LDA,N) */
|
|
/* > On entry, the m by n general matrix to be reduced. */
|
|
/* > On exit, the first NB rows and columns of the matrix are */
|
|
/* > overwritten; the rest of the array is unchanged. */
|
|
/* > If m >= n, elements on and below the diagonal in the first NB */
|
|
/* > columns, with the array TAUQ, represent the orthogonal */
|
|
/* > matrix Q as a product of elementary reflectors; and */
|
|
/* > elements above the diagonal in the first NB rows, with the */
|
|
/* > array TAUP, represent the orthogonal matrix P as a product */
|
|
/* > of elementary reflectors. */
|
|
/* > If m < n, elements below the diagonal in the first NB */
|
|
/* > columns, with the array TAUQ, represent the orthogonal */
|
|
/* > matrix Q as a product of elementary reflectors, and */
|
|
/* > elements on and above the diagonal in the first NB rows, */
|
|
/* > with the array TAUP, represent the orthogonal matrix P as */
|
|
/* > a product of elementary reflectors. */
|
|
/* > See Further Details. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDA */
|
|
/* > \verbatim */
|
|
/* > LDA is INTEGER */
|
|
/* > The leading dimension of the array A. LDA >= max(1,M). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] D */
|
|
/* > \verbatim */
|
|
/* > D is DOUBLE PRECISION array, dimension (NB) */
|
|
/* > The diagonal elements of the first NB rows and columns of */
|
|
/* > the reduced matrix. D(i) = A(i,i). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] E */
|
|
/* > \verbatim */
|
|
/* > E is DOUBLE PRECISION array, dimension (NB) */
|
|
/* > The off-diagonal elements of the first NB rows and columns of */
|
|
/* > the reduced matrix. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] TAUQ */
|
|
/* > \verbatim */
|
|
/* > TAUQ is DOUBLE PRECISION array, dimension (NB) */
|
|
/* > The scalar factors of the elementary reflectors which */
|
|
/* > represent the orthogonal matrix Q. See Further Details. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] TAUP */
|
|
/* > \verbatim */
|
|
/* > TAUP is DOUBLE PRECISION array, dimension (NB) */
|
|
/* > The scalar factors of the elementary reflectors which */
|
|
/* > represent the orthogonal matrix P. See Further Details. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] X */
|
|
/* > \verbatim */
|
|
/* > X is DOUBLE PRECISION array, dimension (LDX,NB) */
|
|
/* > The m-by-nb matrix X required to update the unreduced part */
|
|
/* > of A. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDX */
|
|
/* > \verbatim */
|
|
/* > LDX is INTEGER */
|
|
/* > The leading dimension of the array X. LDX >= max(1,M). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] Y */
|
|
/* > \verbatim */
|
|
/* > Y is DOUBLE PRECISION array, dimension (LDY,NB) */
|
|
/* > The n-by-nb matrix Y required to update the unreduced part */
|
|
/* > of A. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDY */
|
|
/* > \verbatim */
|
|
/* > LDY is INTEGER */
|
|
/* > The leading dimension of the array Y. LDY >= max(1,N). */
|
|
/* > \endverbatim */
|
|
|
|
/* Authors: */
|
|
/* ======== */
|
|
|
|
/* > \author Univ. of Tennessee */
|
|
/* > \author Univ. of California Berkeley */
|
|
/* > \author Univ. of Colorado Denver */
|
|
/* > \author NAG Ltd. */
|
|
|
|
/* > \ingroup doubleOTHERauxiliary */
|
|
|
|
/* > \par Further Details: */
|
|
/* ===================== */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > The matrices Q and P are represented as products of elementary */
|
|
/* > reflectors: */
|
|
/* > */
|
|
/* > Q = H(1) H(2) . . . H(nb) and P = G(1) G(2) . . . G(nb) */
|
|
/* > */
|
|
/* > Each H(i) and G(i) has the form: */
|
|
/* > */
|
|
/* > H(i) = I - tauq * v * v**T and G(i) = I - taup * u * u**T */
|
|
/* > */
|
|
/* > where tauq and taup are real scalars, and v and u are real vectors. */
|
|
/* > */
|
|
/* > If m >= n, v(1:i-1) = 0, v(i) = 1, and v(i:m) is stored on exit in */
|
|
/* > A(i:m,i); u(1:i) = 0, u(i+1) = 1, and u(i+1:n) is stored on exit in */
|
|
/* > A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i). */
|
|
/* > */
|
|
/* > If m < n, v(1:i) = 0, v(i+1) = 1, and v(i+1:m) is stored on exit in */
|
|
/* > A(i+2:m,i); u(1:i-1) = 0, u(i) = 1, and u(i:n) is stored on exit in */
|
|
/* > A(i,i+1:n); tauq is stored in TAUQ(i) and taup in TAUP(i). */
|
|
/* > */
|
|
/* > The elements of the vectors v and u together form the m-by-nb matrix */
|
|
/* > V and the nb-by-n matrix U**T which are needed, with X and Y, to apply */
|
|
/* > the transformation to the unreduced part of the matrix, using a block */
|
|
/* > update of the form: A := A - V*Y**T - X*U**T. */
|
|
/* > */
|
|
/* > The contents of A on exit are illustrated by the following examples */
|
|
/* > with nb = 2: */
|
|
/* > */
|
|
/* > m = 6 and n = 5 (m > n): m = 5 and n = 6 (m < n): */
|
|
/* > */
|
|
/* > ( 1 1 u1 u1 u1 ) ( 1 u1 u1 u1 u1 u1 ) */
|
|
/* > ( v1 1 1 u2 u2 ) ( 1 1 u2 u2 u2 u2 ) */
|
|
/* > ( v1 v2 a a a ) ( v1 1 a a a a ) */
|
|
/* > ( v1 v2 a a a ) ( v1 v2 a a a a ) */
|
|
/* > ( v1 v2 a a a ) ( v1 v2 a a a a ) */
|
|
/* > ( v1 v2 a a a ) */
|
|
/* > */
|
|
/* > where a denotes an element of the original matrix which is unchanged, */
|
|
/* > vi denotes an element of the vector defining H(i), and ui an element */
|
|
/* > of the vector defining G(i). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* ===================================================================== */
|
|
/* Subroutine */ int dlabrd_(integer *m, integer *n, integer *nb, doublereal *
|
|
a, integer *lda, doublereal *d__, doublereal *e, doublereal *tauq,
|
|
doublereal *taup, doublereal *x, integer *ldx, doublereal *y, integer
|
|
*ldy)
|
|
{
|
|
/* System generated locals */
|
|
integer a_dim1, a_offset, x_dim1, x_offset, y_dim1, y_offset, i__1, i__2,
|
|
i__3;
|
|
|
|
/* Local variables */
|
|
integer i__;
|
|
extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
|
|
integer *), dgemv_(char *, integer *, integer *, doublereal *,
|
|
doublereal *, integer *, doublereal *, integer *, doublereal *,
|
|
doublereal *, integer *, ftnlen), dlarfg_(integer *, doublereal *,
|
|
doublereal *, integer *, doublereal *);
|
|
|
|
|
|
/* -- LAPACK auxiliary routine -- */
|
|
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
|
|
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* .. */
|
|
|
|
/* ===================================================================== */
|
|
|
|
/* .. Parameters .. */
|
|
/* .. */
|
|
/* .. Local Scalars .. */
|
|
/* .. */
|
|
/* .. External Subroutines .. */
|
|
/* .. */
|
|
/* .. Intrinsic Functions .. */
|
|
/* .. */
|
|
/* .. Executable Statements .. */
|
|
|
|
/* Quick return if possible */
|
|
|
|
/* Parameter adjustments */
|
|
a_dim1 = *lda;
|
|
a_offset = 1 + a_dim1;
|
|
a -= a_offset;
|
|
--d__;
|
|
--e;
|
|
--tauq;
|
|
--taup;
|
|
x_dim1 = *ldx;
|
|
x_offset = 1 + x_dim1;
|
|
x -= x_offset;
|
|
y_dim1 = *ldy;
|
|
y_offset = 1 + y_dim1;
|
|
y -= y_offset;
|
|
|
|
/* Function Body */
|
|
if (*m <= 0 || *n <= 0) {
|
|
return 0;
|
|
}
|
|
|
|
if (*m >= *n) {
|
|
|
|
/* Reduce to upper bidiagonal form */
|
|
|
|
i__1 = *nb;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
|
|
/* Update A(i:m,i) */
|
|
|
|
i__2 = *m - i__ + 1;
|
|
i__3 = i__ - 1;
|
|
dgemv_((char *)"No transpose", &i__2, &i__3, &c_b4, &a[i__ + a_dim1], lda,
|
|
&y[i__ + y_dim1], ldy, &c_b5, &a[i__ + i__ * a_dim1], &
|
|
c__1, (ftnlen)12);
|
|
i__2 = *m - i__ + 1;
|
|
i__3 = i__ - 1;
|
|
dgemv_((char *)"No transpose", &i__2, &i__3, &c_b4, &x[i__ + x_dim1], ldx,
|
|
&a[i__ * a_dim1 + 1], &c__1, &c_b5, &a[i__ + i__ *
|
|
a_dim1], &c__1, (ftnlen)12);
|
|
|
|
/* Generate reflection Q(i) to annihilate A(i+1:m,i) */
|
|
|
|
i__2 = *m - i__ + 1;
|
|
/* Computing MIN */
|
|
i__3 = i__ + 1;
|
|
dlarfg_(&i__2, &a[i__ + i__ * a_dim1], &a[min(i__3,*m) + i__ *
|
|
a_dim1], &c__1, &tauq[i__]);
|
|
d__[i__] = a[i__ + i__ * a_dim1];
|
|
if (i__ < *n) {
|
|
a[i__ + i__ * a_dim1] = 1.;
|
|
|
|
/* Compute Y(i+1:n,i) */
|
|
|
|
i__2 = *m - i__ + 1;
|
|
i__3 = *n - i__;
|
|
dgemv_((char *)"Transpose", &i__2, &i__3, &c_b5, &a[i__ + (i__ + 1) *
|
|
a_dim1], lda, &a[i__ + i__ * a_dim1], &c__1, &c_b16, &
|
|
y[i__ + 1 + i__ * y_dim1], &c__1, (ftnlen)9);
|
|
i__2 = *m - i__ + 1;
|
|
i__3 = i__ - 1;
|
|
dgemv_((char *)"Transpose", &i__2, &i__3, &c_b5, &a[i__ + a_dim1],
|
|
lda, &a[i__ + i__ * a_dim1], &c__1, &c_b16, &y[i__ *
|
|
y_dim1 + 1], &c__1, (ftnlen)9);
|
|
i__2 = *n - i__;
|
|
i__3 = i__ - 1;
|
|
dgemv_((char *)"No transpose", &i__2, &i__3, &c_b4, &y[i__ + 1 +
|
|
y_dim1], ldy, &y[i__ * y_dim1 + 1], &c__1, &c_b5, &y[
|
|
i__ + 1 + i__ * y_dim1], &c__1, (ftnlen)12);
|
|
i__2 = *m - i__ + 1;
|
|
i__3 = i__ - 1;
|
|
dgemv_((char *)"Transpose", &i__2, &i__3, &c_b5, &x[i__ + x_dim1],
|
|
ldx, &a[i__ + i__ * a_dim1], &c__1, &c_b16, &y[i__ *
|
|
y_dim1 + 1], &c__1, (ftnlen)9);
|
|
i__2 = i__ - 1;
|
|
i__3 = *n - i__;
|
|
dgemv_((char *)"Transpose", &i__2, &i__3, &c_b4, &a[(i__ + 1) *
|
|
a_dim1 + 1], lda, &y[i__ * y_dim1 + 1], &c__1, &c_b5,
|
|
&y[i__ + 1 + i__ * y_dim1], &c__1, (ftnlen)9);
|
|
i__2 = *n - i__;
|
|
dscal_(&i__2, &tauq[i__], &y[i__ + 1 + i__ * y_dim1], &c__1);
|
|
|
|
/* Update A(i,i+1:n) */
|
|
|
|
i__2 = *n - i__;
|
|
dgemv_((char *)"No transpose", &i__2, &i__, &c_b4, &y[i__ + 1 +
|
|
y_dim1], ldy, &a[i__ + a_dim1], lda, &c_b5, &a[i__ + (
|
|
i__ + 1) * a_dim1], lda, (ftnlen)12);
|
|
i__2 = i__ - 1;
|
|
i__3 = *n - i__;
|
|
dgemv_((char *)"Transpose", &i__2, &i__3, &c_b4, &a[(i__ + 1) *
|
|
a_dim1 + 1], lda, &x[i__ + x_dim1], ldx, &c_b5, &a[
|
|
i__ + (i__ + 1) * a_dim1], lda, (ftnlen)9);
|
|
|
|
/* Generate reflection P(i) to annihilate A(i,i+2:n) */
|
|
|
|
i__2 = *n - i__;
|
|
/* Computing MIN */
|
|
i__3 = i__ + 2;
|
|
dlarfg_(&i__2, &a[i__ + (i__ + 1) * a_dim1], &a[i__ + min(
|
|
i__3,*n) * a_dim1], lda, &taup[i__]);
|
|
e[i__] = a[i__ + (i__ + 1) * a_dim1];
|
|
a[i__ + (i__ + 1) * a_dim1] = 1.;
|
|
|
|
/* Compute X(i+1:m,i) */
|
|
|
|
i__2 = *m - i__;
|
|
i__3 = *n - i__;
|
|
dgemv_((char *)"No transpose", &i__2, &i__3, &c_b5, &a[i__ + 1 + (i__
|
|
+ 1) * a_dim1], lda, &a[i__ + (i__ + 1) * a_dim1],
|
|
lda, &c_b16, &x[i__ + 1 + i__ * x_dim1], &c__1, (
|
|
ftnlen)12);
|
|
i__2 = *n - i__;
|
|
dgemv_((char *)"Transpose", &i__2, &i__, &c_b5, &y[i__ + 1 + y_dim1],
|
|
ldy, &a[i__ + (i__ + 1) * a_dim1], lda, &c_b16, &x[
|
|
i__ * x_dim1 + 1], &c__1, (ftnlen)9);
|
|
i__2 = *m - i__;
|
|
dgemv_((char *)"No transpose", &i__2, &i__, &c_b4, &a[i__ + 1 +
|
|
a_dim1], lda, &x[i__ * x_dim1 + 1], &c__1, &c_b5, &x[
|
|
i__ + 1 + i__ * x_dim1], &c__1, (ftnlen)12);
|
|
i__2 = i__ - 1;
|
|
i__3 = *n - i__;
|
|
dgemv_((char *)"No transpose", &i__2, &i__3, &c_b5, &a[(i__ + 1) *
|
|
a_dim1 + 1], lda, &a[i__ + (i__ + 1) * a_dim1], lda, &
|
|
c_b16, &x[i__ * x_dim1 + 1], &c__1, (ftnlen)12);
|
|
i__2 = *m - i__;
|
|
i__3 = i__ - 1;
|
|
dgemv_((char *)"No transpose", &i__2, &i__3, &c_b4, &x[i__ + 1 +
|
|
x_dim1], ldx, &x[i__ * x_dim1 + 1], &c__1, &c_b5, &x[
|
|
i__ + 1 + i__ * x_dim1], &c__1, (ftnlen)12);
|
|
i__2 = *m - i__;
|
|
dscal_(&i__2, &taup[i__], &x[i__ + 1 + i__ * x_dim1], &c__1);
|
|
}
|
|
/* L10: */
|
|
}
|
|
} else {
|
|
|
|
/* Reduce to lower bidiagonal form */
|
|
|
|
i__1 = *nb;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
|
|
/* Update A(i,i:n) */
|
|
|
|
i__2 = *n - i__ + 1;
|
|
i__3 = i__ - 1;
|
|
dgemv_((char *)"No transpose", &i__2, &i__3, &c_b4, &y[i__ + y_dim1], ldy,
|
|
&a[i__ + a_dim1], lda, &c_b5, &a[i__ + i__ * a_dim1],
|
|
lda, (ftnlen)12);
|
|
i__2 = i__ - 1;
|
|
i__3 = *n - i__ + 1;
|
|
dgemv_((char *)"Transpose", &i__2, &i__3, &c_b4, &a[i__ * a_dim1 + 1],
|
|
lda, &x[i__ + x_dim1], ldx, &c_b5, &a[i__ + i__ * a_dim1],
|
|
lda, (ftnlen)9);
|
|
|
|
/* Generate reflection P(i) to annihilate A(i,i+1:n) */
|
|
|
|
i__2 = *n - i__ + 1;
|
|
/* Computing MIN */
|
|
i__3 = i__ + 1;
|
|
dlarfg_(&i__2, &a[i__ + i__ * a_dim1], &a[i__ + min(i__3,*n) *
|
|
a_dim1], lda, &taup[i__]);
|
|
d__[i__] = a[i__ + i__ * a_dim1];
|
|
if (i__ < *m) {
|
|
a[i__ + i__ * a_dim1] = 1.;
|
|
|
|
/* Compute X(i+1:m,i) */
|
|
|
|
i__2 = *m - i__;
|
|
i__3 = *n - i__ + 1;
|
|
dgemv_((char *)"No transpose", &i__2, &i__3, &c_b5, &a[i__ + 1 + i__ *
|
|
a_dim1], lda, &a[i__ + i__ * a_dim1], lda, &c_b16, &
|
|
x[i__ + 1 + i__ * x_dim1], &c__1, (ftnlen)12);
|
|
i__2 = *n - i__ + 1;
|
|
i__3 = i__ - 1;
|
|
dgemv_((char *)"Transpose", &i__2, &i__3, &c_b5, &y[i__ + y_dim1],
|
|
ldy, &a[i__ + i__ * a_dim1], lda, &c_b16, &x[i__ *
|
|
x_dim1 + 1], &c__1, (ftnlen)9);
|
|
i__2 = *m - i__;
|
|
i__3 = i__ - 1;
|
|
dgemv_((char *)"No transpose", &i__2, &i__3, &c_b4, &a[i__ + 1 +
|
|
a_dim1], lda, &x[i__ * x_dim1 + 1], &c__1, &c_b5, &x[
|
|
i__ + 1 + i__ * x_dim1], &c__1, (ftnlen)12);
|
|
i__2 = i__ - 1;
|
|
i__3 = *n - i__ + 1;
|
|
dgemv_((char *)"No transpose", &i__2, &i__3, &c_b5, &a[i__ * a_dim1 +
|
|
1], lda, &a[i__ + i__ * a_dim1], lda, &c_b16, &x[i__ *
|
|
x_dim1 + 1], &c__1, (ftnlen)12);
|
|
i__2 = *m - i__;
|
|
i__3 = i__ - 1;
|
|
dgemv_((char *)"No transpose", &i__2, &i__3, &c_b4, &x[i__ + 1 +
|
|
x_dim1], ldx, &x[i__ * x_dim1 + 1], &c__1, &c_b5, &x[
|
|
i__ + 1 + i__ * x_dim1], &c__1, (ftnlen)12);
|
|
i__2 = *m - i__;
|
|
dscal_(&i__2, &taup[i__], &x[i__ + 1 + i__ * x_dim1], &c__1);
|
|
|
|
/* Update A(i+1:m,i) */
|
|
|
|
i__2 = *m - i__;
|
|
i__3 = i__ - 1;
|
|
dgemv_((char *)"No transpose", &i__2, &i__3, &c_b4, &a[i__ + 1 +
|
|
a_dim1], lda, &y[i__ + y_dim1], ldy, &c_b5, &a[i__ +
|
|
1 + i__ * a_dim1], &c__1, (ftnlen)12);
|
|
i__2 = *m - i__;
|
|
dgemv_((char *)"No transpose", &i__2, &i__, &c_b4, &x[i__ + 1 +
|
|
x_dim1], ldx, &a[i__ * a_dim1 + 1], &c__1, &c_b5, &a[
|
|
i__ + 1 + i__ * a_dim1], &c__1, (ftnlen)12);
|
|
|
|
/* Generate reflection Q(i) to annihilate A(i+2:m,i) */
|
|
|
|
i__2 = *m - i__;
|
|
/* Computing MIN */
|
|
i__3 = i__ + 2;
|
|
dlarfg_(&i__2, &a[i__ + 1 + i__ * a_dim1], &a[min(i__3,*m) +
|
|
i__ * a_dim1], &c__1, &tauq[i__]);
|
|
e[i__] = a[i__ + 1 + i__ * a_dim1];
|
|
a[i__ + 1 + i__ * a_dim1] = 1.;
|
|
|
|
/* Compute Y(i+1:n,i) */
|
|
|
|
i__2 = *m - i__;
|
|
i__3 = *n - i__;
|
|
dgemv_((char *)"Transpose", &i__2, &i__3, &c_b5, &a[i__ + 1 + (i__ +
|
|
1) * a_dim1], lda, &a[i__ + 1 + i__ * a_dim1], &c__1,
|
|
&c_b16, &y[i__ + 1 + i__ * y_dim1], &c__1, (ftnlen)9);
|
|
i__2 = *m - i__;
|
|
i__3 = i__ - 1;
|
|
dgemv_((char *)"Transpose", &i__2, &i__3, &c_b5, &a[i__ + 1 + a_dim1],
|
|
lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b16, &y[
|
|
i__ * y_dim1 + 1], &c__1, (ftnlen)9);
|
|
i__2 = *n - i__;
|
|
i__3 = i__ - 1;
|
|
dgemv_((char *)"No transpose", &i__2, &i__3, &c_b4, &y[i__ + 1 +
|
|
y_dim1], ldy, &y[i__ * y_dim1 + 1], &c__1, &c_b5, &y[
|
|
i__ + 1 + i__ * y_dim1], &c__1, (ftnlen)12);
|
|
i__2 = *m - i__;
|
|
dgemv_((char *)"Transpose", &i__2, &i__, &c_b5, &x[i__ + 1 + x_dim1],
|
|
ldx, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b16, &y[
|
|
i__ * y_dim1 + 1], &c__1, (ftnlen)9);
|
|
i__2 = *n - i__;
|
|
dgemv_((char *)"Transpose", &i__, &i__2, &c_b4, &a[(i__ + 1) * a_dim1
|
|
+ 1], lda, &y[i__ * y_dim1 + 1], &c__1, &c_b5, &y[i__
|
|
+ 1 + i__ * y_dim1], &c__1, (ftnlen)9);
|
|
i__2 = *n - i__;
|
|
dscal_(&i__2, &tauq[i__], &y[i__ + 1 + i__ * y_dim1], &c__1);
|
|
}
|
|
/* L20: */
|
|
}
|
|
}
|
|
return 0;
|
|
|
|
/* End of DLABRD */
|
|
|
|
} /* dlabrd_ */
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|