405 lines
12 KiB
C++
405 lines
12 KiB
C++
/* fortran/dorgbr.f -- translated by f2c (version 20200916).
|
|
You must link the resulting object file with libf2c:
|
|
on Microsoft Windows system, link with libf2c.lib;
|
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
|
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
|
-- in that order, at the end of the command line, as in
|
|
cc *.o -lf2c -lm
|
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
|
|
|
http://www.netlib.org/f2c/libf2c.zip
|
|
*/
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
#include "lmp_f2c.h"
|
|
|
|
/* Table of constant values */
|
|
|
|
static integer c_n1 = -1;
|
|
|
|
/* > \brief \b DORGBR */
|
|
|
|
/* =========== DOCUMENTATION =========== */
|
|
|
|
/* Online html documentation available at */
|
|
/* http://www.netlib.org/lapack/explore-html/ */
|
|
|
|
/* > \htmlonly */
|
|
/* > Download DORGBR + dependencies */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorgbr.
|
|
f"> */
|
|
/* > [TGZ]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorgbr.
|
|
f"> */
|
|
/* > [ZIP]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorgbr.
|
|
f"> */
|
|
/* > [TXT]</a> */
|
|
/* > \endhtmlonly */
|
|
|
|
/* Definition: */
|
|
/* =========== */
|
|
|
|
/* SUBROUTINE DORGBR( VECT, M, N, K, A, LDA, TAU, WORK, LWORK, INFO ) */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* CHARACTER VECT */
|
|
/* INTEGER INFO, K, LDA, LWORK, M, N */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* DOUBLE PRECISION A( LDA, * ), TAU( * ), WORK( * ) */
|
|
/* .. */
|
|
|
|
|
|
/* > \par Purpose: */
|
|
/* ============= */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > DORGBR generates one of the real orthogonal matrices Q or P**T */
|
|
/* > determined by DGEBRD when reducing a real matrix A to bidiagonal */
|
|
/* > form: A = Q * B * P**T. Q and P**T are defined as products of */
|
|
/* > elementary reflectors H(i) or G(i) respectively. */
|
|
/* > */
|
|
/* > If VECT = 'Q', A is assumed to have been an M-by-K matrix, and Q */
|
|
/* > is of order M: */
|
|
/* > if m >= k, Q = H(1) H(2) . . . H(k) and DORGBR returns the first n */
|
|
/* > columns of Q, where m >= n >= k; */
|
|
/* > if m < k, Q = H(1) H(2) . . . H(m-1) and DORGBR returns Q as an */
|
|
/* > M-by-M matrix. */
|
|
/* > */
|
|
/* > If VECT = 'P', A is assumed to have been a K-by-N matrix, and P**T */
|
|
/* > is of order N: */
|
|
/* > if k < n, P**T = G(k) . . . G(2) G(1) and DORGBR returns the first m */
|
|
/* > rows of P**T, where n >= m >= k; */
|
|
/* > if k >= n, P**T = G(n-1) . . . G(2) G(1) and DORGBR returns P**T as */
|
|
/* > an N-by-N matrix. */
|
|
/* > \endverbatim */
|
|
|
|
/* Arguments: */
|
|
/* ========== */
|
|
|
|
/* > \param[in] VECT */
|
|
/* > \verbatim */
|
|
/* > VECT is CHARACTER*1 */
|
|
/* > Specifies whether the matrix Q or the matrix P**T is */
|
|
/* > required, as defined in the transformation applied by DGEBRD: */
|
|
/* > = 'Q': generate Q; */
|
|
/* > = 'P': generate P**T. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] M */
|
|
/* > \verbatim */
|
|
/* > M is INTEGER */
|
|
/* > The number of rows of the matrix Q or P**T to be returned. */
|
|
/* > M >= 0. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] N */
|
|
/* > \verbatim */
|
|
/* > N is INTEGER */
|
|
/* > The number of columns of the matrix Q or P**T to be returned. */
|
|
/* > N >= 0. */
|
|
/* > If VECT = 'Q', M >= N >= min(M,K); */
|
|
/* > if VECT = 'P', N >= M >= min(N,K). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] K */
|
|
/* > \verbatim */
|
|
/* > K is INTEGER */
|
|
/* > If VECT = 'Q', the number of columns in the original M-by-K */
|
|
/* > matrix reduced by DGEBRD. */
|
|
/* > If VECT = 'P', the number of rows in the original K-by-N */
|
|
/* > matrix reduced by DGEBRD. */
|
|
/* > K >= 0. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] A */
|
|
/* > \verbatim */
|
|
/* > A is DOUBLE PRECISION array, dimension (LDA,N) */
|
|
/* > On entry, the vectors which define the elementary reflectors, */
|
|
/* > as returned by DGEBRD. */
|
|
/* > On exit, the M-by-N matrix Q or P**T. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDA */
|
|
/* > \verbatim */
|
|
/* > LDA is INTEGER */
|
|
/* > The leading dimension of the array A. LDA >= max(1,M). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] TAU */
|
|
/* > \verbatim */
|
|
/* > TAU is DOUBLE PRECISION array, dimension */
|
|
/* > (min(M,K)) if VECT = 'Q' */
|
|
/* > (min(N,K)) if VECT = 'P' */
|
|
/* > TAU(i) must contain the scalar factor of the elementary */
|
|
/* > reflector H(i) or G(i), which determines Q or P**T, as */
|
|
/* > returned by DGEBRD in its array argument TAUQ or TAUP. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] WORK */
|
|
/* > \verbatim */
|
|
/* > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
|
|
/* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LWORK */
|
|
/* > \verbatim */
|
|
/* > LWORK is INTEGER */
|
|
/* > The dimension of the array WORK. LWORK >= max(1,min(M,N)). */
|
|
/* > For optimum performance LWORK >= min(M,N)*NB, where NB */
|
|
/* > is the optimal blocksize. */
|
|
/* > */
|
|
/* > If LWORK = -1, then a workspace query is assumed; the routine */
|
|
/* > only calculates the optimal size of the WORK array, returns */
|
|
/* > this value as the first entry of the WORK array, and no error */
|
|
/* > message related to LWORK is issued by XERBLA. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] INFO */
|
|
/* > \verbatim */
|
|
/* > INFO is INTEGER */
|
|
/* > = 0: successful exit */
|
|
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
|
|
/* > \endverbatim */
|
|
|
|
/* Authors: */
|
|
/* ======== */
|
|
|
|
/* > \author Univ. of Tennessee */
|
|
/* > \author Univ. of California Berkeley */
|
|
/* > \author Univ. of Colorado Denver */
|
|
/* > \author NAG Ltd. */
|
|
|
|
/* > \ingroup doubleGBcomputational */
|
|
|
|
/* ===================================================================== */
|
|
/* Subroutine */ int dorgbr_(char *vect, integer *m, integer *n, integer *k,
|
|
doublereal *a, integer *lda, doublereal *tau, doublereal *work,
|
|
integer *lwork, integer *info, ftnlen vect_len)
|
|
{
|
|
/* System generated locals */
|
|
integer a_dim1, a_offset, i__1, i__2, i__3;
|
|
|
|
/* Local variables */
|
|
integer i__, j, mn;
|
|
extern logical lsame_(char *, char *, ftnlen, ftnlen);
|
|
integer iinfo;
|
|
logical wantq;
|
|
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen), dorglq_(
|
|
integer *, integer *, integer *, doublereal *, integer *,
|
|
doublereal *, doublereal *, integer *, integer *), dorgqr_(
|
|
integer *, integer *, integer *, doublereal *, integer *,
|
|
doublereal *, doublereal *, integer *, integer *);
|
|
integer lwkopt;
|
|
logical lquery;
|
|
|
|
|
|
/* -- LAPACK computational routine -- */
|
|
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
|
|
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* .. */
|
|
|
|
/* ===================================================================== */
|
|
|
|
/* .. Parameters .. */
|
|
/* .. */
|
|
/* .. Local Scalars .. */
|
|
/* .. */
|
|
/* .. External Functions .. */
|
|
/* .. */
|
|
/* .. External Subroutines .. */
|
|
/* .. */
|
|
/* .. Intrinsic Functions .. */
|
|
/* .. */
|
|
/* .. Executable Statements .. */
|
|
|
|
/* Test the input arguments */
|
|
|
|
/* Parameter adjustments */
|
|
a_dim1 = *lda;
|
|
a_offset = 1 + a_dim1;
|
|
a -= a_offset;
|
|
--tau;
|
|
--work;
|
|
|
|
/* Function Body */
|
|
*info = 0;
|
|
wantq = lsame_(vect, (char *)"Q", (ftnlen)1, (ftnlen)1);
|
|
mn = min(*m,*n);
|
|
lquery = *lwork == -1;
|
|
if (! wantq && ! lsame_(vect, (char *)"P", (ftnlen)1, (ftnlen)1)) {
|
|
*info = -1;
|
|
} else if (*m < 0) {
|
|
*info = -2;
|
|
} else if (*n < 0 || wantq && (*n > *m || *n < min(*m,*k)) || ! wantq && (
|
|
*m > *n || *m < min(*n,*k))) {
|
|
*info = -3;
|
|
} else if (*k < 0) {
|
|
*info = -4;
|
|
} else if (*lda < max(1,*m)) {
|
|
*info = -6;
|
|
} else if (*lwork < max(1,mn) && ! lquery) {
|
|
*info = -9;
|
|
}
|
|
|
|
if (*info == 0) {
|
|
work[1] = 1.;
|
|
if (wantq) {
|
|
if (*m >= *k) {
|
|
dorgqr_(m, n, k, &a[a_offset], lda, &tau[1], &work[1], &c_n1,
|
|
&iinfo);
|
|
} else {
|
|
if (*m > 1) {
|
|
i__1 = *m - 1;
|
|
i__2 = *m - 1;
|
|
i__3 = *m - 1;
|
|
dorgqr_(&i__1, &i__2, &i__3, &a[a_offset], lda, &tau[1], &
|
|
work[1], &c_n1, &iinfo);
|
|
}
|
|
}
|
|
} else {
|
|
if (*k < *n) {
|
|
dorglq_(m, n, k, &a[a_offset], lda, &tau[1], &work[1], &c_n1,
|
|
&iinfo);
|
|
} else {
|
|
if (*n > 1) {
|
|
i__1 = *n - 1;
|
|
i__2 = *n - 1;
|
|
i__3 = *n - 1;
|
|
dorglq_(&i__1, &i__2, &i__3, &a[a_offset], lda, &tau[1], &
|
|
work[1], &c_n1, &iinfo);
|
|
}
|
|
}
|
|
}
|
|
lwkopt = (integer) work[1];
|
|
lwkopt = max(lwkopt,mn);
|
|
}
|
|
|
|
if (*info != 0) {
|
|
i__1 = -(*info);
|
|
xerbla_((char *)"DORGBR", &i__1, (ftnlen)6);
|
|
return 0;
|
|
} else if (lquery) {
|
|
work[1] = (doublereal) lwkopt;
|
|
return 0;
|
|
}
|
|
|
|
/* Quick return if possible */
|
|
|
|
if (*m == 0 || *n == 0) {
|
|
work[1] = 1.;
|
|
return 0;
|
|
}
|
|
|
|
if (wantq) {
|
|
|
|
/* Form Q, determined by a call to DGEBRD to reduce an m-by-k */
|
|
/* matrix */
|
|
|
|
if (*m >= *k) {
|
|
|
|
/* If m >= k, assume m >= n >= k */
|
|
|
|
dorgqr_(m, n, k, &a[a_offset], lda, &tau[1], &work[1], lwork, &
|
|
iinfo);
|
|
|
|
} else {
|
|
|
|
/* If m < k, assume m = n */
|
|
|
|
/* Shift the vectors which define the elementary reflectors one */
|
|
/* column to the right, and set the first row and column of Q */
|
|
/* to those of the unit matrix */
|
|
|
|
for (j = *m; j >= 2; --j) {
|
|
a[j * a_dim1 + 1] = 0.;
|
|
i__1 = *m;
|
|
for (i__ = j + 1; i__ <= i__1; ++i__) {
|
|
a[i__ + j * a_dim1] = a[i__ + (j - 1) * a_dim1];
|
|
/* L10: */
|
|
}
|
|
/* L20: */
|
|
}
|
|
a[a_dim1 + 1] = 1.;
|
|
i__1 = *m;
|
|
for (i__ = 2; i__ <= i__1; ++i__) {
|
|
a[i__ + a_dim1] = 0.;
|
|
/* L30: */
|
|
}
|
|
if (*m > 1) {
|
|
|
|
/* Form Q(2:m,2:m) */
|
|
|
|
i__1 = *m - 1;
|
|
i__2 = *m - 1;
|
|
i__3 = *m - 1;
|
|
dorgqr_(&i__1, &i__2, &i__3, &a[(a_dim1 << 1) + 2], lda, &tau[
|
|
1], &work[1], lwork, &iinfo);
|
|
}
|
|
}
|
|
} else {
|
|
|
|
/* Form P**T, determined by a call to DGEBRD to reduce a k-by-n */
|
|
/* matrix */
|
|
|
|
if (*k < *n) {
|
|
|
|
/* If k < n, assume k <= m <= n */
|
|
|
|
dorglq_(m, n, k, &a[a_offset], lda, &tau[1], &work[1], lwork, &
|
|
iinfo);
|
|
|
|
} else {
|
|
|
|
/* If k >= n, assume m = n */
|
|
|
|
/* Shift the vectors which define the elementary reflectors one */
|
|
/* row downward, and set the first row and column of P**T to */
|
|
/* those of the unit matrix */
|
|
|
|
a[a_dim1 + 1] = 1.;
|
|
i__1 = *n;
|
|
for (i__ = 2; i__ <= i__1; ++i__) {
|
|
a[i__ + a_dim1] = 0.;
|
|
/* L40: */
|
|
}
|
|
i__1 = *n;
|
|
for (j = 2; j <= i__1; ++j) {
|
|
for (i__ = j - 1; i__ >= 2; --i__) {
|
|
a[i__ + j * a_dim1] = a[i__ - 1 + j * a_dim1];
|
|
/* L50: */
|
|
}
|
|
a[j * a_dim1 + 1] = 0.;
|
|
/* L60: */
|
|
}
|
|
if (*n > 1) {
|
|
|
|
/* Form P**T(2:n,2:n) */
|
|
|
|
i__1 = *n - 1;
|
|
i__2 = *n - 1;
|
|
i__3 = *n - 1;
|
|
dorglq_(&i__1, &i__2, &i__3, &a[(a_dim1 << 1) + 2], lda, &tau[
|
|
1], &work[1], lwork, &iinfo);
|
|
}
|
|
}
|
|
}
|
|
work[1] = (doublereal) lwkopt;
|
|
return 0;
|
|
|
|
/* End of DORGBR */
|
|
|
|
} /* dorgbr_ */
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|