Files
lammps/lib/linalg/dormbr.cpp
Axel Kohlmeyer 1e8b2ad5a0 whitespace fixes
2022-12-28 13:48:43 -05:00

465 lines
15 KiB
C++

/* fortran/dormbr.f -- translated by f2c (version 20200916).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "lmp_f2c.h"
/* Table of constant values */
static integer c__1 = 1;
static integer c_n1 = -1;
static integer c__2 = 2;
/* > \brief \b DORMBR */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* > \htmlonly */
/* > Download DORMBR + dependencies */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dormbr.
f"> */
/* > [TGZ]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dormbr.
f"> */
/* > [ZIP]</a> */
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dormbr.
f"> */
/* > [TXT]</a> */
/* > \endhtmlonly */
/* Definition: */
/* =========== */
/* SUBROUTINE DORMBR( VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C, */
/* LDC, WORK, LWORK, INFO ) */
/* .. Scalar Arguments .. */
/* CHARACTER SIDE, TRANS, VECT */
/* INTEGER INFO, K, LDA, LDC, LWORK, M, N */
/* .. */
/* .. Array Arguments .. */
/* DOUBLE PRECISION A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * ) */
/* .. */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > If VECT = 'Q', DORMBR overwrites the general real M-by-N matrix C */
/* > with */
/* > SIDE = 'L' SIDE = 'R' */
/* > TRANS = 'N': Q * C C * Q */
/* > TRANS = 'T': Q**T * C C * Q**T */
/* > */
/* > If VECT = 'P', DORMBR overwrites the general real M-by-N matrix C */
/* > with */
/* > SIDE = 'L' SIDE = 'R' */
/* > TRANS = 'N': P * C C * P */
/* > TRANS = 'T': P**T * C C * P**T */
/* > */
/* > Here Q and P**T are the orthogonal matrices determined by DGEBRD when */
/* > reducing a real matrix A to bidiagonal form: A = Q * B * P**T. Q and */
/* > P**T are defined as products of elementary reflectors H(i) and G(i) */
/* > respectively. */
/* > */
/* > Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the */
/* > order of the orthogonal matrix Q or P**T that is applied. */
/* > */
/* > If VECT = 'Q', A is assumed to have been an NQ-by-K matrix: */
/* > if nq >= k, Q = H(1) H(2) . . . H(k); */
/* > if nq < k, Q = H(1) H(2) . . . H(nq-1). */
/* > */
/* > If VECT = 'P', A is assumed to have been a K-by-NQ matrix: */
/* > if k < nq, P = G(1) G(2) . . . G(k); */
/* > if k >= nq, P = G(1) G(2) . . . G(nq-1). */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] VECT */
/* > \verbatim */
/* > VECT is CHARACTER*1 */
/* > = 'Q': apply Q or Q**T; */
/* > = 'P': apply P or P**T. */
/* > \endverbatim */
/* > */
/* > \param[in] SIDE */
/* > \verbatim */
/* > SIDE is CHARACTER*1 */
/* > = 'L': apply Q, Q**T, P or P**T from the Left; */
/* > = 'R': apply Q, Q**T, P or P**T from the Right. */
/* > \endverbatim */
/* > */
/* > \param[in] TRANS */
/* > \verbatim */
/* > TRANS is CHARACTER*1 */
/* > = 'N': No transpose, apply Q or P; */
/* > = 'T': Transpose, apply Q**T or P**T. */
/* > \endverbatim */
/* > */
/* > \param[in] M */
/* > \verbatim */
/* > M is INTEGER */
/* > The number of rows of the matrix C. M >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The number of columns of the matrix C. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] K */
/* > \verbatim */
/* > K is INTEGER */
/* > If VECT = 'Q', the number of columns in the original */
/* > matrix reduced by DGEBRD. */
/* > If VECT = 'P', the number of rows in the original */
/* > matrix reduced by DGEBRD. */
/* > K >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in] A */
/* > \verbatim */
/* > A is DOUBLE PRECISION array, dimension */
/* > (LDA,min(nq,K)) if VECT = 'Q' */
/* > (LDA,nq) if VECT = 'P' */
/* > The vectors which define the elementary reflectors H(i) and */
/* > G(i), whose products determine the matrices Q and P, as */
/* > returned by DGEBRD. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. */
/* > If VECT = 'Q', LDA >= max(1,nq); */
/* > if VECT = 'P', LDA >= max(1,min(nq,K)). */
/* > \endverbatim */
/* > */
/* > \param[in] TAU */
/* > \verbatim */
/* > TAU is DOUBLE PRECISION array, dimension (min(nq,K)) */
/* > TAU(i) must contain the scalar factor of the elementary */
/* > reflector H(i) or G(i) which determines Q or P, as returned */
/* > by DGEBRD in the array argument TAUQ or TAUP. */
/* > \endverbatim */
/* > */
/* > \param[in,out] C */
/* > \verbatim */
/* > C is DOUBLE PRECISION array, dimension (LDC,N) */
/* > On entry, the M-by-N matrix C. */
/* > On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q */
/* > or P*C or P**T*C or C*P or C*P**T. */
/* > \endverbatim */
/* > */
/* > \param[in] LDC */
/* > \verbatim */
/* > LDC is INTEGER */
/* > The leading dimension of the array C. LDC >= max(1,M). */
/* > \endverbatim */
/* > */
/* > \param[out] WORK */
/* > \verbatim */
/* > WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
/* > On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
/* > \endverbatim */
/* > */
/* > \param[in] LWORK */
/* > \verbatim */
/* > LWORK is INTEGER */
/* > The dimension of the array WORK. */
/* > If SIDE = 'L', LWORK >= max(1,N); */
/* > if SIDE = 'R', LWORK >= max(1,M). */
/* > For optimum performance LWORK >= N*NB if SIDE = 'L', and */
/* > LWORK >= M*NB if SIDE = 'R', where NB is the optimal */
/* > blocksize. */
/* > */
/* > If LWORK = -1, then a workspace query is assumed; the routine */
/* > only calculates the optimal size of the WORK array, returns */
/* > this value as the first entry of the WORK array, and no error */
/* > message related to LWORK is issued by XERBLA. */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \ingroup doubleOTHERcomputational */
/* ===================================================================== */
/* Subroutine */ int dormbr_(char *vect, char *side, char *trans, integer *m,
integer *n, integer *k, doublereal *a, integer *lda, doublereal *tau,
doublereal *c__, integer *ldc, doublereal *work, integer *lwork,
integer *info, ftnlen vect_len, ftnlen side_len, ftnlen trans_len)
{
/* System generated locals */
address a__1[2];
integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2, i__3[2];
char ch__1[2];
/* Builtin functions */
/* Subroutine */ int s_cat(char *, char **, integer *, integer *, ftnlen);
/* Local variables */
integer i1, i2, nb, mi, ni, nq, nw;
logical left;
extern logical lsame_(char *, char *, ftnlen, ftnlen);
integer iinfo;
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *, ftnlen, ftnlen);
extern /* Subroutine */ int dormlq_(char *, char *, integer *, integer *,
integer *, doublereal *, integer *, doublereal *, doublereal *,
integer *, doublereal *, integer *, integer *, ftnlen, ftnlen);
logical notran;
extern /* Subroutine */ int dormqr_(char *, char *, integer *, integer *,
integer *, doublereal *, integer *, doublereal *, doublereal *,
integer *, doublereal *, integer *, integer *, ftnlen, ftnlen);
logical applyq;
char transt[1];
integer lwkopt;
logical lquery;
/* -- LAPACK computational routine -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* ===================================================================== */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input arguments */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--tau;
c_dim1 = *ldc;
c_offset = 1 + c_dim1;
c__ -= c_offset;
--work;
/* Function Body */
*info = 0;
applyq = lsame_(vect, (char *)"Q", (ftnlen)1, (ftnlen)1);
left = lsame_(side, (char *)"L", (ftnlen)1, (ftnlen)1);
notran = lsame_(trans, (char *)"N", (ftnlen)1, (ftnlen)1);
lquery = *lwork == -1;
/* NQ is the order of Q or P and NW is the minimum dimension of WORK */
if (left) {
nq = *m;
nw = max(1,*n);
} else {
nq = *n;
nw = max(1,*m);
}
if (! applyq && ! lsame_(vect, (char *)"P", (ftnlen)1, (ftnlen)1)) {
*info = -1;
} else if (! left && ! lsame_(side, (char *)"R", (ftnlen)1, (ftnlen)1)) {
*info = -2;
} else if (! notran && ! lsame_(trans, (char *)"T", (ftnlen)1, (ftnlen)1)) {
*info = -3;
} else if (*m < 0) {
*info = -4;
} else if (*n < 0) {
*info = -5;
} else if (*k < 0) {
*info = -6;
} else /* if(complicated condition) */ {
/* Computing MAX */
i__1 = 1, i__2 = min(nq,*k);
if (applyq && *lda < max(1,nq) || ! applyq && *lda < max(i__1,i__2)) {
*info = -8;
} else if (*ldc < max(1,*m)) {
*info = -11;
} else if (*lwork < nw && ! lquery) {
*info = -13;
}
}
if (*info == 0) {
if (applyq) {
if (left) {
/* Writing concatenation */
i__3[0] = 1, a__1[0] = side;
i__3[1] = 1, a__1[1] = trans;
s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
i__1 = *m - 1;
i__2 = *m - 1;
nb = ilaenv_(&c__1, (char *)"DORMQR", ch__1, &i__1, n, &i__2, &c_n1, (
ftnlen)6, (ftnlen)2);
} else {
/* Writing concatenation */
i__3[0] = 1, a__1[0] = side;
i__3[1] = 1, a__1[1] = trans;
s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
i__1 = *n - 1;
i__2 = *n - 1;
nb = ilaenv_(&c__1, (char *)"DORMQR", ch__1, m, &i__1, &i__2, &c_n1, (
ftnlen)6, (ftnlen)2);
}
} else {
if (left) {
/* Writing concatenation */
i__3[0] = 1, a__1[0] = side;
i__3[1] = 1, a__1[1] = trans;
s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
i__1 = *m - 1;
i__2 = *m - 1;
nb = ilaenv_(&c__1, (char *)"DORMLQ", ch__1, &i__1, n, &i__2, &c_n1, (
ftnlen)6, (ftnlen)2);
} else {
/* Writing concatenation */
i__3[0] = 1, a__1[0] = side;
i__3[1] = 1, a__1[1] = trans;
s_cat(ch__1, a__1, i__3, &c__2, (ftnlen)2);
i__1 = *n - 1;
i__2 = *n - 1;
nb = ilaenv_(&c__1, (char *)"DORMLQ", ch__1, m, &i__1, &i__2, &c_n1, (
ftnlen)6, (ftnlen)2);
}
}
lwkopt = nw * nb;
work[1] = (doublereal) lwkopt;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_((char *)"DORMBR", &i__1, (ftnlen)6);
return 0;
} else if (lquery) {
return 0;
}
/* Quick return if possible */
work[1] = 1.;
if (*m == 0 || *n == 0) {
return 0;
}
if (applyq) {
/* Apply Q */
if (nq >= *k) {
/* Q was determined by a call to DGEBRD with nq >= k */
dormqr_(side, trans, m, n, k, &a[a_offset], lda, &tau[1], &c__[
c_offset], ldc, &work[1], lwork, &iinfo, (ftnlen)1, (
ftnlen)1);
} else if (nq > 1) {
/* Q was determined by a call to DGEBRD with nq < k */
if (left) {
mi = *m - 1;
ni = *n;
i1 = 2;
i2 = 1;
} else {
mi = *m;
ni = *n - 1;
i1 = 1;
i2 = 2;
}
i__1 = nq - 1;
dormqr_(side, trans, &mi, &ni, &i__1, &a[a_dim1 + 2], lda, &tau[1]
, &c__[i1 + i2 * c_dim1], ldc, &work[1], lwork, &iinfo, (
ftnlen)1, (ftnlen)1);
}
} else {
/* Apply P */
if (notran) {
*(unsigned char *)transt = 'T';
} else {
*(unsigned char *)transt = 'N';
}
if (nq > *k) {
/* P was determined by a call to DGEBRD with nq > k */
dormlq_(side, transt, m, n, k, &a[a_offset], lda, &tau[1], &c__[
c_offset], ldc, &work[1], lwork, &iinfo, (ftnlen)1, (
ftnlen)1);
} else if (nq > 1) {
/* P was determined by a call to DGEBRD with nq <= k */
if (left) {
mi = *m - 1;
ni = *n;
i1 = 2;
i2 = 1;
} else {
mi = *m;
ni = *n - 1;
i1 = 1;
i2 = 2;
}
i__1 = nq - 1;
dormlq_(side, transt, &mi, &ni, &i__1, &a[(a_dim1 << 1) + 1], lda,
&tau[1], &c__[i1 + i2 * c_dim1], ldc, &work[1], lwork, &
iinfo, (ftnlen)1, (ftnlen)1);
}
}
work[1] = (doublereal) lwkopt;
return 0;
/* End of DORMBR */
} /* dormbr_ */
#ifdef __cplusplus
}
#endif