325 lines
9.1 KiB
C++
325 lines
9.1 KiB
C++
/* fortran/dorml2.f -- translated by f2c (version 20200916).
|
|
You must link the resulting object file with libf2c:
|
|
on Microsoft Windows system, link with libf2c.lib;
|
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
|
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
|
-- in that order, at the end of the command line, as in
|
|
cc *.o -lf2c -lm
|
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
|
|
|
http://www.netlib.org/f2c/libf2c.zip
|
|
*/
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
#include "lmp_f2c.h"
|
|
|
|
/* > \brief \b DORML2 multiplies a general matrix by the orthogonal matrix from a LQ factorization determined
|
|
by sgelqf (unblocked algorithm). */
|
|
|
|
/* =========== DOCUMENTATION =========== */
|
|
|
|
/* Online html documentation available at */
|
|
/* http://www.netlib.org/lapack/explore-html/ */
|
|
|
|
/* > \htmlonly */
|
|
/* > Download DORML2 + dependencies */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dorml2.
|
|
f"> */
|
|
/* > [TGZ]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dorml2.
|
|
f"> */
|
|
/* > [ZIP]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dorml2.
|
|
f"> */
|
|
/* > [TXT]</a> */
|
|
/* > \endhtmlonly */
|
|
|
|
/* Definition: */
|
|
/* =========== */
|
|
|
|
/* SUBROUTINE DORML2( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, */
|
|
/* WORK, INFO ) */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* CHARACTER SIDE, TRANS */
|
|
/* INTEGER INFO, K, LDA, LDC, M, N */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* DOUBLE PRECISION A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * ) */
|
|
/* .. */
|
|
|
|
|
|
/* > \par Purpose: */
|
|
/* ============= */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > DORML2 overwrites the general real m by n matrix C with */
|
|
/* > */
|
|
/* > Q * C if SIDE = 'L' and TRANS = 'N', or */
|
|
/* > */
|
|
/* > Q**T* C if SIDE = 'L' and TRANS = 'T', or */
|
|
/* > */
|
|
/* > C * Q if SIDE = 'R' and TRANS = 'N', or */
|
|
/* > */
|
|
/* > C * Q**T if SIDE = 'R' and TRANS = 'T', */
|
|
/* > */
|
|
/* > where Q is a real orthogonal matrix defined as the product of k */
|
|
/* > elementary reflectors */
|
|
/* > */
|
|
/* > Q = H(k) . . . H(2) H(1) */
|
|
/* > */
|
|
/* > as returned by DGELQF. Q is of order m if SIDE = 'L' and of order n */
|
|
/* > if SIDE = 'R'. */
|
|
/* > \endverbatim */
|
|
|
|
/* Arguments: */
|
|
/* ========== */
|
|
|
|
/* > \param[in] SIDE */
|
|
/* > \verbatim */
|
|
/* > SIDE is CHARACTER*1 */
|
|
/* > = 'L': apply Q or Q**T from the Left */
|
|
/* > = 'R': apply Q or Q**T from the Right */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] TRANS */
|
|
/* > \verbatim */
|
|
/* > TRANS is CHARACTER*1 */
|
|
/* > = 'N': apply Q (No transpose) */
|
|
/* > = 'T': apply Q**T (Transpose) */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] M */
|
|
/* > \verbatim */
|
|
/* > M is INTEGER */
|
|
/* > The number of rows of the matrix C. M >= 0. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] N */
|
|
/* > \verbatim */
|
|
/* > N is INTEGER */
|
|
/* > The number of columns of the matrix C. N >= 0. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] K */
|
|
/* > \verbatim */
|
|
/* > K is INTEGER */
|
|
/* > The number of elementary reflectors whose product defines */
|
|
/* > the matrix Q. */
|
|
/* > If SIDE = 'L', M >= K >= 0; */
|
|
/* > if SIDE = 'R', N >= K >= 0. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] A */
|
|
/* > \verbatim */
|
|
/* > A is DOUBLE PRECISION array, dimension */
|
|
/* > (LDA,M) if SIDE = 'L', */
|
|
/* > (LDA,N) if SIDE = 'R' */
|
|
/* > The i-th row must contain the vector which defines the */
|
|
/* > elementary reflector H(i), for i = 1,2,...,k, as returned by */
|
|
/* > DGELQF in the first k rows of its array argument A. */
|
|
/* > A is modified by the routine but restored on exit. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDA */
|
|
/* > \verbatim */
|
|
/* > LDA is INTEGER */
|
|
/* > The leading dimension of the array A. LDA >= max(1,K). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] TAU */
|
|
/* > \verbatim */
|
|
/* > TAU is DOUBLE PRECISION array, dimension (K) */
|
|
/* > TAU(i) must contain the scalar factor of the elementary */
|
|
/* > reflector H(i), as returned by DGELQF. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] C */
|
|
/* > \verbatim */
|
|
/* > C is DOUBLE PRECISION array, dimension (LDC,N) */
|
|
/* > On entry, the m by n matrix C. */
|
|
/* > On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDC */
|
|
/* > \verbatim */
|
|
/* > LDC is INTEGER */
|
|
/* > The leading dimension of the array C. LDC >= max(1,M). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] WORK */
|
|
/* > \verbatim */
|
|
/* > WORK is DOUBLE PRECISION array, dimension */
|
|
/* > (N) if SIDE = 'L', */
|
|
/* > (M) if SIDE = 'R' */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] INFO */
|
|
/* > \verbatim */
|
|
/* > INFO is INTEGER */
|
|
/* > = 0: successful exit */
|
|
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
|
|
/* > \endverbatim */
|
|
|
|
/* Authors: */
|
|
/* ======== */
|
|
|
|
/* > \author Univ. of Tennessee */
|
|
/* > \author Univ. of California Berkeley */
|
|
/* > \author Univ. of Colorado Denver */
|
|
/* > \author NAG Ltd. */
|
|
|
|
/* > \ingroup doubleOTHERcomputational */
|
|
|
|
/* ===================================================================== */
|
|
/* Subroutine */ int dorml2_(char *side, char *trans, integer *m, integer *n,
|
|
integer *k, doublereal *a, integer *lda, doublereal *tau, doublereal *
|
|
c__, integer *ldc, doublereal *work, integer *info, ftnlen side_len,
|
|
ftnlen trans_len)
|
|
{
|
|
/* System generated locals */
|
|
integer a_dim1, a_offset, c_dim1, c_offset, i__1, i__2;
|
|
|
|
/* Local variables */
|
|
integer i__, i1, i2, i3, ic, jc, mi, ni, nq;
|
|
doublereal aii;
|
|
logical left;
|
|
extern /* Subroutine */ int dlarf_(char *, integer *, integer *,
|
|
doublereal *, integer *, doublereal *, doublereal *, integer *,
|
|
doublereal *, ftnlen);
|
|
extern logical lsame_(char *, char *, ftnlen, ftnlen);
|
|
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
|
|
logical notran;
|
|
|
|
|
|
/* -- LAPACK computational routine -- */
|
|
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
|
|
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* .. */
|
|
|
|
/* ===================================================================== */
|
|
|
|
/* .. Parameters .. */
|
|
/* .. */
|
|
/* .. Local Scalars .. */
|
|
/* .. */
|
|
/* .. External Functions .. */
|
|
/* .. */
|
|
/* .. External Subroutines .. */
|
|
/* .. */
|
|
/* .. Intrinsic Functions .. */
|
|
/* .. */
|
|
/* .. Executable Statements .. */
|
|
|
|
/* Test the input arguments */
|
|
|
|
/* Parameter adjustments */
|
|
a_dim1 = *lda;
|
|
a_offset = 1 + a_dim1;
|
|
a -= a_offset;
|
|
--tau;
|
|
c_dim1 = *ldc;
|
|
c_offset = 1 + c_dim1;
|
|
c__ -= c_offset;
|
|
--work;
|
|
|
|
/* Function Body */
|
|
*info = 0;
|
|
left = lsame_(side, (char *)"L", (ftnlen)1, (ftnlen)1);
|
|
notran = lsame_(trans, (char *)"N", (ftnlen)1, (ftnlen)1);
|
|
|
|
/* NQ is the order of Q */
|
|
|
|
if (left) {
|
|
nq = *m;
|
|
} else {
|
|
nq = *n;
|
|
}
|
|
if (! left && ! lsame_(side, (char *)"R", (ftnlen)1, (ftnlen)1)) {
|
|
*info = -1;
|
|
} else if (! notran && ! lsame_(trans, (char *)"T", (ftnlen)1, (ftnlen)1)) {
|
|
*info = -2;
|
|
} else if (*m < 0) {
|
|
*info = -3;
|
|
} else if (*n < 0) {
|
|
*info = -4;
|
|
} else if (*k < 0 || *k > nq) {
|
|
*info = -5;
|
|
} else if (*lda < max(1,*k)) {
|
|
*info = -7;
|
|
} else if (*ldc < max(1,*m)) {
|
|
*info = -10;
|
|
}
|
|
if (*info != 0) {
|
|
i__1 = -(*info);
|
|
xerbla_((char *)"DORML2", &i__1, (ftnlen)6);
|
|
return 0;
|
|
}
|
|
|
|
/* Quick return if possible */
|
|
|
|
if (*m == 0 || *n == 0 || *k == 0) {
|
|
return 0;
|
|
}
|
|
|
|
if (left && notran || ! left && ! notran) {
|
|
i1 = 1;
|
|
i2 = *k;
|
|
i3 = 1;
|
|
} else {
|
|
i1 = *k;
|
|
i2 = 1;
|
|
i3 = -1;
|
|
}
|
|
|
|
if (left) {
|
|
ni = *n;
|
|
jc = 1;
|
|
} else {
|
|
mi = *m;
|
|
ic = 1;
|
|
}
|
|
|
|
i__1 = i2;
|
|
i__2 = i3;
|
|
for (i__ = i1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
|
|
if (left) {
|
|
|
|
/* H(i) is applied to C(i:m,1:n) */
|
|
|
|
mi = *m - i__ + 1;
|
|
ic = i__;
|
|
} else {
|
|
|
|
/* H(i) is applied to C(1:m,i:n) */
|
|
|
|
ni = *n - i__ + 1;
|
|
jc = i__;
|
|
}
|
|
|
|
/* Apply H(i) */
|
|
|
|
aii = a[i__ + i__ * a_dim1];
|
|
a[i__ + i__ * a_dim1] = 1.;
|
|
dlarf_(side, &mi, &ni, &a[i__ + i__ * a_dim1], lda, &tau[i__], &c__[
|
|
ic + jc * c_dim1], ldc, &work[1], (ftnlen)1);
|
|
a[i__ + i__ * a_dim1] = aii;
|
|
/* L10: */
|
|
}
|
|
return 0;
|
|
|
|
/* End of DORML2 */
|
|
|
|
} /* dorml2_ */
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|