295 lines
8.8 KiB
C++
295 lines
8.8 KiB
C++
/* fortran/dpotf2.f -- translated by f2c (version 20200916).
|
|
You must link the resulting object file with libf2c:
|
|
on Microsoft Windows system, link with libf2c.lib;
|
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
|
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
|
-- in that order, at the end of the command line, as in
|
|
cc *.o -lf2c -lm
|
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
|
|
|
http://www.netlib.org/f2c/libf2c.zip
|
|
*/
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
#include "lmp_f2c.h"
|
|
|
|
/* Table of constant values */
|
|
|
|
static integer c__1 = 1;
|
|
static doublereal c_b10 = -1.;
|
|
static doublereal c_b12 = 1.;
|
|
|
|
/* > \brief \b DPOTF2 computes the Cholesky factorization of a symmetric/Hermitian positive definite matrix (u
|
|
nblocked algorithm). */
|
|
|
|
/* =========== DOCUMENTATION =========== */
|
|
|
|
/* Online html documentation available at */
|
|
/* http://www.netlib.org/lapack/explore-html/ */
|
|
|
|
/* > \htmlonly */
|
|
/* > Download DPOTF2 + dependencies */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dpotf2.
|
|
f"> */
|
|
/* > [TGZ]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dpotf2.
|
|
f"> */
|
|
/* > [ZIP]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dpotf2.
|
|
f"> */
|
|
/* > [TXT]</a> */
|
|
/* > \endhtmlonly */
|
|
|
|
/* Definition: */
|
|
/* =========== */
|
|
|
|
/* SUBROUTINE DPOTF2( UPLO, N, A, LDA, INFO ) */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* CHARACTER UPLO */
|
|
/* INTEGER INFO, LDA, N */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* DOUBLE PRECISION A( LDA, * ) */
|
|
/* .. */
|
|
|
|
|
|
/* > \par Purpose: */
|
|
/* ============= */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > DPOTF2 computes the Cholesky factorization of a real symmetric */
|
|
/* > positive definite matrix A. */
|
|
/* > */
|
|
/* > The factorization has the form */
|
|
/* > A = U**T * U , if UPLO = 'U', or */
|
|
/* > A = L * L**T, if UPLO = 'L', */
|
|
/* > where U is an upper triangular matrix and L is lower triangular. */
|
|
/* > */
|
|
/* > This is the unblocked version of the algorithm, calling Level 2 BLAS. */
|
|
/* > \endverbatim */
|
|
|
|
/* Arguments: */
|
|
/* ========== */
|
|
|
|
/* > \param[in] UPLO */
|
|
/* > \verbatim */
|
|
/* > UPLO is CHARACTER*1 */
|
|
/* > Specifies whether the upper or lower triangular part of the */
|
|
/* > symmetric matrix A is stored. */
|
|
/* > = 'U': Upper triangular */
|
|
/* > = 'L': Lower triangular */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] N */
|
|
/* > \verbatim */
|
|
/* > N is INTEGER */
|
|
/* > The order of the matrix A. N >= 0. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] A */
|
|
/* > \verbatim */
|
|
/* > A is DOUBLE PRECISION array, dimension (LDA,N) */
|
|
/* > On entry, the symmetric matrix A. If UPLO = 'U', the leading */
|
|
/* > n by n upper triangular part of A contains the upper */
|
|
/* > triangular part of the matrix A, and the strictly lower */
|
|
/* > triangular part of A is not referenced. If UPLO = 'L', the */
|
|
/* > leading n by n lower triangular part of A contains the lower */
|
|
/* > triangular part of the matrix A, and the strictly upper */
|
|
/* > triangular part of A is not referenced. */
|
|
/* > */
|
|
/* > On exit, if INFO = 0, the factor U or L from the Cholesky */
|
|
/* > factorization A = U**T *U or A = L*L**T. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDA */
|
|
/* > \verbatim */
|
|
/* > LDA is INTEGER */
|
|
/* > The leading dimension of the array A. LDA >= max(1,N). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] INFO */
|
|
/* > \verbatim */
|
|
/* > INFO is INTEGER */
|
|
/* > = 0: successful exit */
|
|
/* > < 0: if INFO = -k, the k-th argument had an illegal value */
|
|
/* > > 0: if INFO = k, the leading minor of order k is not */
|
|
/* > positive definite, and the factorization could not be */
|
|
/* > completed. */
|
|
/* > \endverbatim */
|
|
|
|
/* Authors: */
|
|
/* ======== */
|
|
|
|
/* > \author Univ. of Tennessee */
|
|
/* > \author Univ. of California Berkeley */
|
|
/* > \author Univ. of Colorado Denver */
|
|
/* > \author NAG Ltd. */
|
|
|
|
/* > \ingroup doublePOcomputational */
|
|
|
|
/* ===================================================================== */
|
|
/* Subroutine */ int dpotf2_(char *uplo, integer *n, doublereal *a, integer *
|
|
lda, integer *info, ftnlen uplo_len)
|
|
{
|
|
/* System generated locals */
|
|
integer a_dim1, a_offset, i__1, i__2, i__3;
|
|
doublereal d__1;
|
|
|
|
/* Builtin functions */
|
|
double sqrt(doublereal);
|
|
|
|
/* Local variables */
|
|
integer j;
|
|
doublereal ajj;
|
|
extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *,
|
|
integer *);
|
|
extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
|
|
integer *);
|
|
extern logical lsame_(char *, char *, ftnlen, ftnlen);
|
|
extern /* Subroutine */ int dgemv_(char *, integer *, integer *,
|
|
doublereal *, doublereal *, integer *, doublereal *, integer *,
|
|
doublereal *, doublereal *, integer *, ftnlen);
|
|
logical upper;
|
|
extern logical disnan_(doublereal *);
|
|
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
|
|
|
|
|
|
/* -- LAPACK computational routine -- */
|
|
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
|
|
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* .. */
|
|
|
|
/* ===================================================================== */
|
|
|
|
/* .. Parameters .. */
|
|
/* .. */
|
|
/* .. Local Scalars .. */
|
|
/* .. */
|
|
/* .. External Functions .. */
|
|
/* .. */
|
|
/* .. External Subroutines .. */
|
|
/* .. */
|
|
/* .. Intrinsic Functions .. */
|
|
/* .. */
|
|
/* .. Executable Statements .. */
|
|
|
|
/* Test the input parameters. */
|
|
|
|
/* Parameter adjustments */
|
|
a_dim1 = *lda;
|
|
a_offset = 1 + a_dim1;
|
|
a -= a_offset;
|
|
|
|
/* Function Body */
|
|
*info = 0;
|
|
upper = lsame_(uplo, (char *)"U", (ftnlen)1, (ftnlen)1);
|
|
if (! upper && ! lsame_(uplo, (char *)"L", (ftnlen)1, (ftnlen)1)) {
|
|
*info = -1;
|
|
} else if (*n < 0) {
|
|
*info = -2;
|
|
} else if (*lda < max(1,*n)) {
|
|
*info = -4;
|
|
}
|
|
if (*info != 0) {
|
|
i__1 = -(*info);
|
|
xerbla_((char *)"DPOTF2", &i__1, (ftnlen)6);
|
|
return 0;
|
|
}
|
|
|
|
/* Quick return if possible */
|
|
|
|
if (*n == 0) {
|
|
return 0;
|
|
}
|
|
|
|
if (upper) {
|
|
|
|
/* Compute the Cholesky factorization A = U**T *U. */
|
|
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
|
|
/* Compute U(J,J) and test for non-positive-definiteness. */
|
|
|
|
i__2 = j - 1;
|
|
ajj = a[j + j * a_dim1] - ddot_(&i__2, &a[j * a_dim1 + 1], &c__1,
|
|
&a[j * a_dim1 + 1], &c__1);
|
|
if (ajj <= 0. || disnan_(&ajj)) {
|
|
a[j + j * a_dim1] = ajj;
|
|
goto L30;
|
|
}
|
|
ajj = sqrt(ajj);
|
|
a[j + j * a_dim1] = ajj;
|
|
|
|
/* Compute elements J+1:N of row J. */
|
|
|
|
if (j < *n) {
|
|
i__2 = j - 1;
|
|
i__3 = *n - j;
|
|
dgemv_((char *)"Transpose", &i__2, &i__3, &c_b10, &a[(j + 1) * a_dim1
|
|
+ 1], lda, &a[j * a_dim1 + 1], &c__1, &c_b12, &a[j + (
|
|
j + 1) * a_dim1], lda, (ftnlen)9);
|
|
i__2 = *n - j;
|
|
d__1 = 1. / ajj;
|
|
dscal_(&i__2, &d__1, &a[j + (j + 1) * a_dim1], lda);
|
|
}
|
|
/* L10: */
|
|
}
|
|
} else {
|
|
|
|
/* Compute the Cholesky factorization A = L*L**T. */
|
|
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
|
|
/* Compute L(J,J) and test for non-positive-definiteness. */
|
|
|
|
i__2 = j - 1;
|
|
ajj = a[j + j * a_dim1] - ddot_(&i__2, &a[j + a_dim1], lda, &a[j
|
|
+ a_dim1], lda);
|
|
if (ajj <= 0. || disnan_(&ajj)) {
|
|
a[j + j * a_dim1] = ajj;
|
|
goto L30;
|
|
}
|
|
ajj = sqrt(ajj);
|
|
a[j + j * a_dim1] = ajj;
|
|
|
|
/* Compute elements J+1:N of column J. */
|
|
|
|
if (j < *n) {
|
|
i__2 = *n - j;
|
|
i__3 = j - 1;
|
|
dgemv_((char *)"No transpose", &i__2, &i__3, &c_b10, &a[j + 1 +
|
|
a_dim1], lda, &a[j + a_dim1], lda, &c_b12, &a[j + 1 +
|
|
j * a_dim1], &c__1, (ftnlen)12);
|
|
i__2 = *n - j;
|
|
d__1 = 1. / ajj;
|
|
dscal_(&i__2, &d__1, &a[j + 1 + j * a_dim1], &c__1);
|
|
}
|
|
/* L20: */
|
|
}
|
|
}
|
|
goto L40;
|
|
|
|
L30:
|
|
*info = j;
|
|
|
|
L40:
|
|
return 0;
|
|
|
|
/* End of DPOTF2 */
|
|
|
|
} /* dpotf2_ */
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|