Files
lammps/lib/linalg/dpotrf2.cpp
Axel Kohlmeyer 1e8b2ad5a0 whitespace fixes
2022-12-28 13:48:43 -05:00

286 lines
8.4 KiB
C++

/* static/dpotrf2.f -- translated by f2c (version 20200916).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "lmp_f2c.h"
/* Table of constant values */
static doublereal c_b9 = 1.;
static doublereal c_b11 = -1.;
/* > \brief \b DPOTRF2 */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* Definition: */
/* =========== */
/* RECURSIVE SUBROUTINE DPOTRF2( UPLO, N, A, LDA, INFO ) */
/* .. Scalar Arguments .. */
/* CHARACTER UPLO */
/* INTEGER INFO, LDA, N */
/* .. */
/* .. Array Arguments .. */
/* REAL A( LDA, * ) */
/* .. */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > DPOTRF2 computes the Cholesky factorization of a real symmetric */
/* > positive definite matrix A using the recursive algorithm. */
/* > */
/* > The factorization has the form */
/* > A = U**T * U, if UPLO = 'U', or */
/* > A = L * L**T, if UPLO = 'L', */
/* > where U is an upper triangular matrix and L is lower triangular. */
/* > */
/* > This is the recursive version of the algorithm. It divides */
/* > the matrix into four submatrices: */
/* > */
/* > [ A11 | A12 ] where A11 is n1 by n1 and A22 is n2 by n2 */
/* > A = [ -----|----- ] with n1 = n/2 */
/* > [ A21 | A22 ] n2 = n-n1 */
/* > */
/* > The subroutine calls itself to factor A11. Update and scale A21 */
/* > or A12, update A22 then calls itself to factor A22. */
/* > */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] UPLO */
/* > \verbatim */
/* > UPLO is CHARACTER*1 */
/* > = 'U': Upper triangle of A is stored; */
/* > = 'L': Lower triangle of A is stored. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > The order of the matrix A. N >= 0. */
/* > \endverbatim */
/* > */
/* > \param[in,out] A */
/* > \verbatim */
/* > A is DOUBLE PRECISION array, dimension (LDA,N) */
/* > On entry, the symmetric matrix A. If UPLO = 'U', the leading */
/* > N-by-N upper triangular part of A contains the upper */
/* > triangular part of the matrix A, and the strictly lower */
/* > triangular part of A is not referenced. If UPLO = 'L', the */
/* > leading N-by-N lower triangular part of A contains the lower */
/* > triangular part of the matrix A, and the strictly upper */
/* > triangular part of A is not referenced. */
/* > */
/* > On exit, if INFO = 0, the factor U or L from the Cholesky */
/* > factorization A = U**T*U or A = L*L**T. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > The leading dimension of the array A. LDA >= max(1,N). */
/* > \endverbatim */
/* > */
/* > \param[out] INFO */
/* > \verbatim */
/* > INFO is INTEGER */
/* > = 0: successful exit */
/* > < 0: if INFO = -i, the i-th argument had an illegal value */
/* > > 0: if INFO = i, the leading minor of order i is not */
/* > positive definite, and the factorization could not be */
/* > completed. */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \ingroup doublePOcomputational */
/* ===================================================================== */
/* Subroutine */ int dpotrf2_(char *uplo, integer *n, doublereal *a, integer *
lda, integer *info, ftnlen uplo_len)
{
/* System generated locals */
integer a_dim1, a_offset, i__1;
/* Builtin functions */
double sqrt(doublereal);
/* Local variables */
integer n1, n2;
extern logical lsame_(char *, char *, ftnlen, ftnlen);
integer iinfo;
extern /* Subroutine */ int dtrsm_(char *, char *, char *, char *,
integer *, integer *, doublereal *, doublereal *, integer *,
doublereal *, integer *, ftnlen, ftnlen, ftnlen, ftnlen);
logical upper;
extern /* Subroutine */ int dsyrk_(char *, char *, integer *, integer *,
doublereal *, doublereal *, integer *, doublereal *, doublereal *,
integer *, ftnlen, ftnlen);
extern logical disnan_(doublereal *);
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
/* -- LAPACK computational routine -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
/* Function Body */
*info = 0;
upper = lsame_(uplo, (char *)"U", (ftnlen)1, (ftnlen)1);
if (! upper && ! lsame_(uplo, (char *)"L", (ftnlen)1, (ftnlen)1)) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*lda < max(1,*n)) {
*info = -4;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_((char *)"DPOTRF2", &i__1, (ftnlen)7);
return 0;
}
/* Quick return if possible */
if (*n == 0) {
return 0;
}
/* N=1 case */
if (*n == 1) {
/* Test for non-positive-definiteness */
if (a[a_dim1 + 1] <= 0. || disnan_(&a[a_dim1 + 1])) {
*info = 1;
return 0;
}
/* Factor */
a[a_dim1 + 1] = sqrt(a[a_dim1 + 1]);
/* Use recursive code */
} else {
n1 = *n / 2;
n2 = *n - n1;
/* Factor A11 */
dpotrf2_(uplo, &n1, &a[a_dim1 + 1], lda, &iinfo, (ftnlen)1);
if (iinfo != 0) {
*info = iinfo;
return 0;
}
/* Compute the Cholesky factorization A = U**T*U */
if (upper) {
/* Update and scale A12 */
dtrsm_((char *)"L", (char *)"U", (char *)"T", (char *)"N", &n1, &n2, &c_b9, &a[a_dim1 + 1], lda, &
a[(n1 + 1) * a_dim1 + 1], lda, (ftnlen)1, (ftnlen)1, (
ftnlen)1, (ftnlen)1);
/* Update and factor A22 */
dsyrk_(uplo, (char *)"T", &n2, &n1, &c_b11, &a[(n1 + 1) * a_dim1 + 1],
lda, &c_b9, &a[n1 + 1 + (n1 + 1) * a_dim1], lda, (ftnlen)
1, (ftnlen)1);
dpotrf2_(uplo, &n2, &a[n1 + 1 + (n1 + 1) * a_dim1], lda, &iinfo, (
ftnlen)1);
if (iinfo != 0) {
*info = iinfo + n1;
return 0;
}
/* Compute the Cholesky factorization A = L*L**T */
} else {
/* Update and scale A21 */
dtrsm_((char *)"R", (char *)"L", (char *)"T", (char *)"N", &n2, &n1, &c_b9, &a[a_dim1 + 1], lda, &
a[n1 + 1 + a_dim1], lda, (ftnlen)1, (ftnlen)1, (ftnlen)1,
(ftnlen)1);
/* Update and factor A22 */
dsyrk_(uplo, (char *)"N", &n2, &n1, &c_b11, &a[n1 + 1 + a_dim1], lda, &
c_b9, &a[n1 + 1 + (n1 + 1) * a_dim1], lda, (ftnlen)1, (
ftnlen)1);
dpotrf2_(uplo, &n2, &a[n1 + 1 + (n1 + 1) * a_dim1], lda, &iinfo, (
ftnlen)1);
if (iinfo != 0) {
*info = iinfo + n1;
return 0;
}
}
}
return 0;
/* End of DPOTRF2 */
} /* dpotrf2_ */
#ifdef __cplusplus
}
#endif