566 lines
18 KiB
C++
566 lines
18 KiB
C++
/* fortran/dtrsm.f -- translated by f2c (version 20200916).
|
|
You must link the resulting object file with libf2c:
|
|
on Microsoft Windows system, link with libf2c.lib;
|
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
|
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
|
-- in that order, at the end of the command line, as in
|
|
cc *.o -lf2c -lm
|
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
|
|
|
http://www.netlib.org/f2c/libf2c.zip
|
|
*/
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
#include "lmp_f2c.h"
|
|
|
|
/* > \brief \b DTRSM */
|
|
|
|
/* =========== DOCUMENTATION =========== */
|
|
|
|
/* Online html documentation available at */
|
|
/* http://www.netlib.org/lapack/explore-html/ */
|
|
|
|
/* Definition: */
|
|
/* =========== */
|
|
|
|
/* SUBROUTINE DTRSM(SIDE,UPLO,TRANSA,DIAG,M,N,ALPHA,A,LDA,B,LDB) */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* DOUBLE PRECISION ALPHA */
|
|
/* INTEGER LDA,LDB,M,N */
|
|
/* CHARACTER DIAG,SIDE,TRANSA,UPLO */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* DOUBLE PRECISION A(LDA,*),B(LDB,*) */
|
|
/* .. */
|
|
|
|
|
|
/* > \par Purpose: */
|
|
/* ============= */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > DTRSM solves one of the matrix equations */
|
|
/* > */
|
|
/* > op( A )*X = alpha*B, or X*op( A ) = alpha*B, */
|
|
/* > */
|
|
/* > where alpha is a scalar, X and B are m by n matrices, A is a unit, or */
|
|
/* > non-unit, upper or lower triangular matrix and op( A ) is one of */
|
|
/* > */
|
|
/* > op( A ) = A or op( A ) = A**T. */
|
|
/* > */
|
|
/* > The matrix X is overwritten on B. */
|
|
/* > \endverbatim */
|
|
|
|
/* Arguments: */
|
|
/* ========== */
|
|
|
|
/* > \param[in] SIDE */
|
|
/* > \verbatim */
|
|
/* > SIDE is CHARACTER*1 */
|
|
/* > On entry, SIDE specifies whether op( A ) appears on the left */
|
|
/* > or right of X as follows: */
|
|
/* > */
|
|
/* > SIDE = 'L' or 'l' op( A )*X = alpha*B. */
|
|
/* > */
|
|
/* > SIDE = 'R' or 'r' X*op( A ) = alpha*B. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] UPLO */
|
|
/* > \verbatim */
|
|
/* > UPLO is CHARACTER*1 */
|
|
/* > On entry, UPLO specifies whether the matrix A is an upper or */
|
|
/* > lower triangular matrix as follows: */
|
|
/* > */
|
|
/* > UPLO = 'U' or 'u' A is an upper triangular matrix. */
|
|
/* > */
|
|
/* > UPLO = 'L' or 'l' A is a lower triangular matrix. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] TRANSA */
|
|
/* > \verbatim */
|
|
/* > TRANSA is CHARACTER*1 */
|
|
/* > On entry, TRANSA specifies the form of op( A ) to be used in */
|
|
/* > the matrix multiplication as follows: */
|
|
/* > */
|
|
/* > TRANSA = 'N' or 'n' op( A ) = A. */
|
|
/* > */
|
|
/* > TRANSA = 'T' or 't' op( A ) = A**T. */
|
|
/* > */
|
|
/* > TRANSA = 'C' or 'c' op( A ) = A**T. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] DIAG */
|
|
/* > \verbatim */
|
|
/* > DIAG is CHARACTER*1 */
|
|
/* > On entry, DIAG specifies whether or not A is unit triangular */
|
|
/* > as follows: */
|
|
/* > */
|
|
/* > DIAG = 'U' or 'u' A is assumed to be unit triangular. */
|
|
/* > */
|
|
/* > DIAG = 'N' or 'n' A is not assumed to be unit */
|
|
/* > triangular. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] M */
|
|
/* > \verbatim */
|
|
/* > M is INTEGER */
|
|
/* > On entry, M specifies the number of rows of B. M must be at */
|
|
/* > least zero. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] N */
|
|
/* > \verbatim */
|
|
/* > N is INTEGER */
|
|
/* > On entry, N specifies the number of columns of B. N must be */
|
|
/* > at least zero. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] ALPHA */
|
|
/* > \verbatim */
|
|
/* > ALPHA is DOUBLE PRECISION. */
|
|
/* > On entry, ALPHA specifies the scalar alpha. When alpha is */
|
|
/* > zero then A is not referenced and B need not be set before */
|
|
/* > entry. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] A */
|
|
/* > \verbatim */
|
|
/* > A is DOUBLE PRECISION array, dimension ( LDA, k ), */
|
|
/* > where k is m when SIDE = 'L' or 'l' */
|
|
/* > and k is n when SIDE = 'R' or 'r'. */
|
|
/* > Before entry with UPLO = 'U' or 'u', the leading k by k */
|
|
/* > upper triangular part of the array A must contain the upper */
|
|
/* > triangular matrix and the strictly lower triangular part of */
|
|
/* > A is not referenced. */
|
|
/* > Before entry with UPLO = 'L' or 'l', the leading k by k */
|
|
/* > lower triangular part of the array A must contain the lower */
|
|
/* > triangular matrix and the strictly upper triangular part of */
|
|
/* > A is not referenced. */
|
|
/* > Note that when DIAG = 'U' or 'u', the diagonal elements of */
|
|
/* > A are not referenced either, but are assumed to be unity. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDA */
|
|
/* > \verbatim */
|
|
/* > LDA is INTEGER */
|
|
/* > On entry, LDA specifies the first dimension of A as declared */
|
|
/* > in the calling (sub) program. When SIDE = 'L' or 'l' then */
|
|
/* > LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' */
|
|
/* > then LDA must be at least max( 1, n ). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] B */
|
|
/* > \verbatim */
|
|
/* > B is DOUBLE PRECISION array, dimension ( LDB, N ) */
|
|
/* > Before entry, the leading m by n part of the array B must */
|
|
/* > contain the right-hand side matrix B, and on exit is */
|
|
/* > overwritten by the solution matrix X. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDB */
|
|
/* > \verbatim */
|
|
/* > LDB is INTEGER */
|
|
/* > On entry, LDB specifies the first dimension of B as declared */
|
|
/* > in the calling (sub) program. LDB must be at least */
|
|
/* > max( 1, m ). */
|
|
/* > \endverbatim */
|
|
|
|
/* Authors: */
|
|
/* ======== */
|
|
|
|
/* > \author Univ. of Tennessee */
|
|
/* > \author Univ. of California Berkeley */
|
|
/* > \author Univ. of Colorado Denver */
|
|
/* > \author NAG Ltd. */
|
|
|
|
/* > \ingroup double_blas_level3 */
|
|
|
|
/* > \par Further Details: */
|
|
/* ===================== */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > Level 3 Blas routine. */
|
|
/* > */
|
|
/* > */
|
|
/* > -- Written on 8-February-1989. */
|
|
/* > Jack Dongarra, Argonne National Laboratory. */
|
|
/* > Iain Duff, AERE Harwell. */
|
|
/* > Jeremy Du Croz, Numerical Algorithms Group Ltd. */
|
|
/* > Sven Hammarling, Numerical Algorithms Group Ltd. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* ===================================================================== */
|
|
/* Subroutine */ int dtrsm_(char *side, char *uplo, char *transa, char *diag,
|
|
integer *m, integer *n, doublereal *alpha, doublereal *a, integer *
|
|
lda, doublereal *b, integer *ldb, ftnlen side_len, ftnlen uplo_len,
|
|
ftnlen transa_len, ftnlen diag_len)
|
|
{
|
|
/* System generated locals */
|
|
integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3;
|
|
|
|
/* Local variables */
|
|
integer i__, j, k, info;
|
|
doublereal temp;
|
|
logical lside;
|
|
extern logical lsame_(char *, char *, ftnlen, ftnlen);
|
|
integer nrowa;
|
|
logical upper;
|
|
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
|
|
logical nounit;
|
|
|
|
|
|
/* -- Reference BLAS level3 routine -- */
|
|
/* -- Reference BLAS is a software package provided by Univ. of Tennessee, -- */
|
|
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* .. */
|
|
|
|
/* ===================================================================== */
|
|
|
|
/* .. External Functions .. */
|
|
/* .. */
|
|
/* .. External Subroutines .. */
|
|
/* .. */
|
|
/* .. Intrinsic Functions .. */
|
|
/* .. */
|
|
/* .. Local Scalars .. */
|
|
/* .. */
|
|
/* .. Parameters .. */
|
|
/* .. */
|
|
|
|
/* Test the input parameters. */
|
|
|
|
/* Parameter adjustments */
|
|
a_dim1 = *lda;
|
|
a_offset = 1 + a_dim1;
|
|
a -= a_offset;
|
|
b_dim1 = *ldb;
|
|
b_offset = 1 + b_dim1;
|
|
b -= b_offset;
|
|
|
|
/* Function Body */
|
|
lside = lsame_(side, (char *)"L", (ftnlen)1, (ftnlen)1);
|
|
if (lside) {
|
|
nrowa = *m;
|
|
} else {
|
|
nrowa = *n;
|
|
}
|
|
nounit = lsame_(diag, (char *)"N", (ftnlen)1, (ftnlen)1);
|
|
upper = lsame_(uplo, (char *)"U", (ftnlen)1, (ftnlen)1);
|
|
|
|
info = 0;
|
|
if (! lside && ! lsame_(side, (char *)"R", (ftnlen)1, (ftnlen)1)) {
|
|
info = 1;
|
|
} else if (! upper && ! lsame_(uplo, (char *)"L", (ftnlen)1, (ftnlen)1)) {
|
|
info = 2;
|
|
} else if (! lsame_(transa, (char *)"N", (ftnlen)1, (ftnlen)1) && ! lsame_(transa,
|
|
(char *)"T", (ftnlen)1, (ftnlen)1) && ! lsame_(transa, (char *)"C", (ftnlen)1, (
|
|
ftnlen)1)) {
|
|
info = 3;
|
|
} else if (! lsame_(diag, (char *)"U", (ftnlen)1, (ftnlen)1) && ! lsame_(diag,
|
|
(char *)"N", (ftnlen)1, (ftnlen)1)) {
|
|
info = 4;
|
|
} else if (*m < 0) {
|
|
info = 5;
|
|
} else if (*n < 0) {
|
|
info = 6;
|
|
} else if (*lda < max(1,nrowa)) {
|
|
info = 9;
|
|
} else if (*ldb < max(1,*m)) {
|
|
info = 11;
|
|
}
|
|
if (info != 0) {
|
|
xerbla_((char *)"DTRSM ", &info, (ftnlen)6);
|
|
return 0;
|
|
}
|
|
|
|
/* Quick return if possible. */
|
|
|
|
if (*m == 0 || *n == 0) {
|
|
return 0;
|
|
}
|
|
|
|
/* And when alpha.eq.zero. */
|
|
|
|
if (*alpha == 0.) {
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
i__2 = *m;
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
b[i__ + j * b_dim1] = 0.;
|
|
/* L10: */
|
|
}
|
|
/* L20: */
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Start the operations. */
|
|
|
|
if (lside) {
|
|
if (lsame_(transa, (char *)"N", (ftnlen)1, (ftnlen)1)) {
|
|
|
|
/* Form B := alpha*inv( A )*B. */
|
|
|
|
if (upper) {
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
if (*alpha != 1.) {
|
|
i__2 = *m;
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
b[i__ + j * b_dim1] = *alpha * b[i__ + j * b_dim1]
|
|
;
|
|
/* L30: */
|
|
}
|
|
}
|
|
for (k = *m; k >= 1; --k) {
|
|
if (b[k + j * b_dim1] != 0.) {
|
|
if (nounit) {
|
|
b[k + j * b_dim1] /= a[k + k * a_dim1];
|
|
}
|
|
i__2 = k - 1;
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
b[i__ + j * b_dim1] -= b[k + j * b_dim1] * a[
|
|
i__ + k * a_dim1];
|
|
/* L40: */
|
|
}
|
|
}
|
|
/* L50: */
|
|
}
|
|
/* L60: */
|
|
}
|
|
} else {
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
if (*alpha != 1.) {
|
|
i__2 = *m;
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
b[i__ + j * b_dim1] = *alpha * b[i__ + j * b_dim1]
|
|
;
|
|
/* L70: */
|
|
}
|
|
}
|
|
i__2 = *m;
|
|
for (k = 1; k <= i__2; ++k) {
|
|
if (b[k + j * b_dim1] != 0.) {
|
|
if (nounit) {
|
|
b[k + j * b_dim1] /= a[k + k * a_dim1];
|
|
}
|
|
i__3 = *m;
|
|
for (i__ = k + 1; i__ <= i__3; ++i__) {
|
|
b[i__ + j * b_dim1] -= b[k + j * b_dim1] * a[
|
|
i__ + k * a_dim1];
|
|
/* L80: */
|
|
}
|
|
}
|
|
/* L90: */
|
|
}
|
|
/* L100: */
|
|
}
|
|
}
|
|
} else {
|
|
|
|
/* Form B := alpha*inv( A**T )*B. */
|
|
|
|
if (upper) {
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
i__2 = *m;
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
temp = *alpha * b[i__ + j * b_dim1];
|
|
i__3 = i__ - 1;
|
|
for (k = 1; k <= i__3; ++k) {
|
|
temp -= a[k + i__ * a_dim1] * b[k + j * b_dim1];
|
|
/* L110: */
|
|
}
|
|
if (nounit) {
|
|
temp /= a[i__ + i__ * a_dim1];
|
|
}
|
|
b[i__ + j * b_dim1] = temp;
|
|
/* L120: */
|
|
}
|
|
/* L130: */
|
|
}
|
|
} else {
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
for (i__ = *m; i__ >= 1; --i__) {
|
|
temp = *alpha * b[i__ + j * b_dim1];
|
|
i__2 = *m;
|
|
for (k = i__ + 1; k <= i__2; ++k) {
|
|
temp -= a[k + i__ * a_dim1] * b[k + j * b_dim1];
|
|
/* L140: */
|
|
}
|
|
if (nounit) {
|
|
temp /= a[i__ + i__ * a_dim1];
|
|
}
|
|
b[i__ + j * b_dim1] = temp;
|
|
/* L150: */
|
|
}
|
|
/* L160: */
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
if (lsame_(transa, (char *)"N", (ftnlen)1, (ftnlen)1)) {
|
|
|
|
/* Form B := alpha*B*inv( A ). */
|
|
|
|
if (upper) {
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
if (*alpha != 1.) {
|
|
i__2 = *m;
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
b[i__ + j * b_dim1] = *alpha * b[i__ + j * b_dim1]
|
|
;
|
|
/* L170: */
|
|
}
|
|
}
|
|
i__2 = j - 1;
|
|
for (k = 1; k <= i__2; ++k) {
|
|
if (a[k + j * a_dim1] != 0.) {
|
|
i__3 = *m;
|
|
for (i__ = 1; i__ <= i__3; ++i__) {
|
|
b[i__ + j * b_dim1] -= a[k + j * a_dim1] * b[
|
|
i__ + k * b_dim1];
|
|
/* L180: */
|
|
}
|
|
}
|
|
/* L190: */
|
|
}
|
|
if (nounit) {
|
|
temp = 1. / a[j + j * a_dim1];
|
|
i__2 = *m;
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
b[i__ + j * b_dim1] = temp * b[i__ + j * b_dim1];
|
|
/* L200: */
|
|
}
|
|
}
|
|
/* L210: */
|
|
}
|
|
} else {
|
|
for (j = *n; j >= 1; --j) {
|
|
if (*alpha != 1.) {
|
|
i__1 = *m;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
b[i__ + j * b_dim1] = *alpha * b[i__ + j * b_dim1]
|
|
;
|
|
/* L220: */
|
|
}
|
|
}
|
|
i__1 = *n;
|
|
for (k = j + 1; k <= i__1; ++k) {
|
|
if (a[k + j * a_dim1] != 0.) {
|
|
i__2 = *m;
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
b[i__ + j * b_dim1] -= a[k + j * a_dim1] * b[
|
|
i__ + k * b_dim1];
|
|
/* L230: */
|
|
}
|
|
}
|
|
/* L240: */
|
|
}
|
|
if (nounit) {
|
|
temp = 1. / a[j + j * a_dim1];
|
|
i__1 = *m;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
b[i__ + j * b_dim1] = temp * b[i__ + j * b_dim1];
|
|
/* L250: */
|
|
}
|
|
}
|
|
/* L260: */
|
|
}
|
|
}
|
|
} else {
|
|
|
|
/* Form B := alpha*B*inv( A**T ). */
|
|
|
|
if (upper) {
|
|
for (k = *n; k >= 1; --k) {
|
|
if (nounit) {
|
|
temp = 1. / a[k + k * a_dim1];
|
|
i__1 = *m;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
b[i__ + k * b_dim1] = temp * b[i__ + k * b_dim1];
|
|
/* L270: */
|
|
}
|
|
}
|
|
i__1 = k - 1;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
if (a[j + k * a_dim1] != 0.) {
|
|
temp = a[j + k * a_dim1];
|
|
i__2 = *m;
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
b[i__ + j * b_dim1] -= temp * b[i__ + k *
|
|
b_dim1];
|
|
/* L280: */
|
|
}
|
|
}
|
|
/* L290: */
|
|
}
|
|
if (*alpha != 1.) {
|
|
i__1 = *m;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
b[i__ + k * b_dim1] = *alpha * b[i__ + k * b_dim1]
|
|
;
|
|
/* L300: */
|
|
}
|
|
}
|
|
/* L310: */
|
|
}
|
|
} else {
|
|
i__1 = *n;
|
|
for (k = 1; k <= i__1; ++k) {
|
|
if (nounit) {
|
|
temp = 1. / a[k + k * a_dim1];
|
|
i__2 = *m;
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
b[i__ + k * b_dim1] = temp * b[i__ + k * b_dim1];
|
|
/* L320: */
|
|
}
|
|
}
|
|
i__2 = *n;
|
|
for (j = k + 1; j <= i__2; ++j) {
|
|
if (a[j + k * a_dim1] != 0.) {
|
|
temp = a[j + k * a_dim1];
|
|
i__3 = *m;
|
|
for (i__ = 1; i__ <= i__3; ++i__) {
|
|
b[i__ + j * b_dim1] -= temp * b[i__ + k *
|
|
b_dim1];
|
|
/* L330: */
|
|
}
|
|
}
|
|
/* L340: */
|
|
}
|
|
if (*alpha != 1.) {
|
|
i__2 = *m;
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
b[i__ + k * b_dim1] = *alpha * b[i__ + k * b_dim1]
|
|
;
|
|
/* L350: */
|
|
}
|
|
}
|
|
/* L360: */
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
/* End of DTRSM */
|
|
|
|
} /* dtrsm_ */
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|