Files
lammps/lib/linalg/dtrsv.cpp
Axel Kohlmeyer 1e8b2ad5a0 whitespace fixes
2022-12-28 13:48:43 -05:00

412 lines
13 KiB
C++

/* fortran/dtrsv.f -- translated by f2c (version 20200916).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#ifdef __cplusplus
extern "C" {
#endif
#include "lmp_f2c.h"
/* > \brief \b DTRSV */
/* =========== DOCUMENTATION =========== */
/* Online html documentation available at */
/* http://www.netlib.org/lapack/explore-html/ */
/* Definition: */
/* =========== */
/* SUBROUTINE DTRSV(UPLO,TRANS,DIAG,N,A,LDA,X,INCX) */
/* .. Scalar Arguments .. */
/* INTEGER INCX,LDA,N */
/* CHARACTER DIAG,TRANS,UPLO */
/* .. */
/* .. Array Arguments .. */
/* DOUBLE PRECISION A(LDA,*),X(*) */
/* .. */
/* > \par Purpose: */
/* ============= */
/* > */
/* > \verbatim */
/* > */
/* > DTRSV solves one of the systems of equations */
/* > */
/* > A*x = b, or A**T*x = b, */
/* > */
/* > where b and x are n element vectors and A is an n by n unit, or */
/* > non-unit, upper or lower triangular matrix. */
/* > */
/* > No test for singularity or near-singularity is included in this */
/* > routine. Such tests must be performed before calling this routine. */
/* > \endverbatim */
/* Arguments: */
/* ========== */
/* > \param[in] UPLO */
/* > \verbatim */
/* > UPLO is CHARACTER*1 */
/* > On entry, UPLO specifies whether the matrix is an upper or */
/* > lower triangular matrix as follows: */
/* > */
/* > UPLO = 'U' or 'u' A is an upper triangular matrix. */
/* > */
/* > UPLO = 'L' or 'l' A is a lower triangular matrix. */
/* > \endverbatim */
/* > */
/* > \param[in] TRANS */
/* > \verbatim */
/* > TRANS is CHARACTER*1 */
/* > On entry, TRANS specifies the equations to be solved as */
/* > follows: */
/* > */
/* > TRANS = 'N' or 'n' A*x = b. */
/* > */
/* > TRANS = 'T' or 't' A**T*x = b. */
/* > */
/* > TRANS = 'C' or 'c' A**T*x = b. */
/* > \endverbatim */
/* > */
/* > \param[in] DIAG */
/* > \verbatim */
/* > DIAG is CHARACTER*1 */
/* > On entry, DIAG specifies whether or not A is unit */
/* > triangular as follows: */
/* > */
/* > DIAG = 'U' or 'u' A is assumed to be unit triangular. */
/* > */
/* > DIAG = 'N' or 'n' A is not assumed to be unit */
/* > triangular. */
/* > \endverbatim */
/* > */
/* > \param[in] N */
/* > \verbatim */
/* > N is INTEGER */
/* > On entry, N specifies the order of the matrix A. */
/* > N must be at least zero. */
/* > \endverbatim */
/* > */
/* > \param[in] A */
/* > \verbatim */
/* > A is DOUBLE PRECISION array, dimension ( LDA, N ) */
/* > Before entry with UPLO = 'U' or 'u', the leading n by n */
/* > upper triangular part of the array A must contain the upper */
/* > triangular matrix and the strictly lower triangular part of */
/* > A is not referenced. */
/* > Before entry with UPLO = 'L' or 'l', the leading n by n */
/* > lower triangular part of the array A must contain the lower */
/* > triangular matrix and the strictly upper triangular part of */
/* > A is not referenced. */
/* > Note that when DIAG = 'U' or 'u', the diagonal elements of */
/* > A are not referenced either, but are assumed to be unity. */
/* > \endverbatim */
/* > */
/* > \param[in] LDA */
/* > \verbatim */
/* > LDA is INTEGER */
/* > On entry, LDA specifies the first dimension of A as declared */
/* > in the calling (sub) program. LDA must be at least */
/* > max( 1, n ). */
/* > \endverbatim */
/* > */
/* > \param[in,out] X */
/* > \verbatim */
/* > X is DOUBLE PRECISION array, dimension at least */
/* > ( 1 + ( n - 1 )*abs( INCX ) ). */
/* > Before entry, the incremented array X must contain the n */
/* > element right-hand side vector b. On exit, X is overwritten */
/* > with the solution vector x. */
/* > \endverbatim */
/* > */
/* > \param[in] INCX */
/* > \verbatim */
/* > INCX is INTEGER */
/* > On entry, INCX specifies the increment for the elements of */
/* > X. INCX must not be zero. */
/* > */
/* > Level 2 Blas routine. */
/* > */
/* > -- Written on 22-October-1986. */
/* > Jack Dongarra, Argonne National Lab. */
/* > Jeremy Du Croz, Nag Central Office. */
/* > Sven Hammarling, Nag Central Office. */
/* > Richard Hanson, Sandia National Labs. */
/* > \endverbatim */
/* Authors: */
/* ======== */
/* > \author Univ. of Tennessee */
/* > \author Univ. of California Berkeley */
/* > \author Univ. of Colorado Denver */
/* > \author NAG Ltd. */
/* > \ingroup double_blas_level1 */
/* ===================================================================== */
/* Subroutine */ int dtrsv_(char *uplo, char *trans, char *diag, integer *n,
doublereal *a, integer *lda, doublereal *x, integer *incx, ftnlen
uplo_len, ftnlen trans_len, ftnlen diag_len)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2;
/* Local variables */
integer i__, j, ix, jx, kx, info;
doublereal temp;
extern logical lsame_(char *, char *, ftnlen, ftnlen);
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
logical nounit;
/* -- Reference BLAS level1 routine -- */
/* -- Reference BLAS is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* Test the input parameters. */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--x;
/* Function Body */
info = 0;
if (! lsame_(uplo, (char *)"U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, (char *)"L", (
ftnlen)1, (ftnlen)1)) {
info = 1;
} else if (! lsame_(trans, (char *)"N", (ftnlen)1, (ftnlen)1) && ! lsame_(trans,
(char *)"T", (ftnlen)1, (ftnlen)1) && ! lsame_(trans, (char *)"C", (ftnlen)1, (
ftnlen)1)) {
info = 2;
} else if (! lsame_(diag, (char *)"U", (ftnlen)1, (ftnlen)1) && ! lsame_(diag,
(char *)"N", (ftnlen)1, (ftnlen)1)) {
info = 3;
} else if (*n < 0) {
info = 4;
} else if (*lda < max(1,*n)) {
info = 6;
} else if (*incx == 0) {
info = 8;
}
if (info != 0) {
xerbla_((char *)"DTRSV ", &info, (ftnlen)6);
return 0;
}
/* Quick return if possible. */
if (*n == 0) {
return 0;
}
nounit = lsame_(diag, (char *)"N", (ftnlen)1, (ftnlen)1);
/* Set up the start point in X if the increment is not unity. This */
/* will be ( N - 1 )*INCX too small for descending loops. */
if (*incx <= 0) {
kx = 1 - (*n - 1) * *incx;
} else if (*incx != 1) {
kx = 1;
}
/* Start the operations. In this version the elements of A are */
/* accessed sequentially with one pass through A. */
if (lsame_(trans, (char *)"N", (ftnlen)1, (ftnlen)1)) {
/* Form x := inv( A )*x. */
if (lsame_(uplo, (char *)"U", (ftnlen)1, (ftnlen)1)) {
if (*incx == 1) {
for (j = *n; j >= 1; --j) {
if (x[j] != 0.) {
if (nounit) {
x[j] /= a[j + j * a_dim1];
}
temp = x[j];
for (i__ = j - 1; i__ >= 1; --i__) {
x[i__] -= temp * a[i__ + j * a_dim1];
/* L10: */
}
}
/* L20: */
}
} else {
jx = kx + (*n - 1) * *incx;
for (j = *n; j >= 1; --j) {
if (x[jx] != 0.) {
if (nounit) {
x[jx] /= a[j + j * a_dim1];
}
temp = x[jx];
ix = jx;
for (i__ = j - 1; i__ >= 1; --i__) {
ix -= *incx;
x[ix] -= temp * a[i__ + j * a_dim1];
/* L30: */
}
}
jx -= *incx;
/* L40: */
}
}
} else {
if (*incx == 1) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
if (x[j] != 0.) {
if (nounit) {
x[j] /= a[j + j * a_dim1];
}
temp = x[j];
i__2 = *n;
for (i__ = j + 1; i__ <= i__2; ++i__) {
x[i__] -= temp * a[i__ + j * a_dim1];
/* L50: */
}
}
/* L60: */
}
} else {
jx = kx;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
if (x[jx] != 0.) {
if (nounit) {
x[jx] /= a[j + j * a_dim1];
}
temp = x[jx];
ix = jx;
i__2 = *n;
for (i__ = j + 1; i__ <= i__2; ++i__) {
ix += *incx;
x[ix] -= temp * a[i__ + j * a_dim1];
/* L70: */
}
}
jx += *incx;
/* L80: */
}
}
}
} else {
/* Form x := inv( A**T )*x. */
if (lsame_(uplo, (char *)"U", (ftnlen)1, (ftnlen)1)) {
if (*incx == 1) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
temp = x[j];
i__2 = j - 1;
for (i__ = 1; i__ <= i__2; ++i__) {
temp -= a[i__ + j * a_dim1] * x[i__];
/* L90: */
}
if (nounit) {
temp /= a[j + j * a_dim1];
}
x[j] = temp;
/* L100: */
}
} else {
jx = kx;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
temp = x[jx];
ix = kx;
i__2 = j - 1;
for (i__ = 1; i__ <= i__2; ++i__) {
temp -= a[i__ + j * a_dim1] * x[ix];
ix += *incx;
/* L110: */
}
if (nounit) {
temp /= a[j + j * a_dim1];
}
x[jx] = temp;
jx += *incx;
/* L120: */
}
}
} else {
if (*incx == 1) {
for (j = *n; j >= 1; --j) {
temp = x[j];
i__1 = j + 1;
for (i__ = *n; i__ >= i__1; --i__) {
temp -= a[i__ + j * a_dim1] * x[i__];
/* L130: */
}
if (nounit) {
temp /= a[j + j * a_dim1];
}
x[j] = temp;
/* L140: */
}
} else {
kx += (*n - 1) * *incx;
jx = kx;
for (j = *n; j >= 1; --j) {
temp = x[jx];
ix = kx;
i__1 = j + 1;
for (i__ = *n; i__ >= i__1; --i__) {
temp -= a[i__ + j * a_dim1] * x[ix];
ix -= *incx;
/* L150: */
}
if (nounit) {
temp /= a[j + j * a_dim1];
}
x[jx] = temp;
jx -= *incx;
/* L160: */
}
}
}
}
return 0;
/* End of DTRSV */
} /* dtrsv_ */
#ifdef __cplusplus
}
#endif