520 lines
19 KiB
C++
520 lines
19 KiB
C++
/* fortran/zher2.f -- translated by f2c (version 20200916).
|
|
You must link the resulting object file with libf2c:
|
|
on Microsoft Windows system, link with libf2c.lib;
|
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
|
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
|
-- in that order, at the end of the command line, as in
|
|
cc *.o -lf2c -lm
|
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
|
|
|
http://www.netlib.org/f2c/libf2c.zip
|
|
*/
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
#include "lmp_f2c.h"
|
|
|
|
/* > \brief \b ZHER2 */
|
|
|
|
/* =========== DOCUMENTATION =========== */
|
|
|
|
/* Online html documentation available at */
|
|
/* http://www.netlib.org/lapack/explore-html/ */
|
|
|
|
/* Definition: */
|
|
/* =========== */
|
|
|
|
/* SUBROUTINE ZHER2(UPLO,N,ALPHA,X,INCX,Y,INCY,A,LDA) */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* COMPLEX*16 ALPHA */
|
|
/* INTEGER INCX,INCY,LDA,N */
|
|
/* CHARACTER UPLO */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* COMPLEX*16 A(LDA,*),X(*),Y(*) */
|
|
/* .. */
|
|
|
|
|
|
/* > \par Purpose: */
|
|
/* ============= */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > ZHER2 performs the hermitian rank 2 operation */
|
|
/* > */
|
|
/* > A := alpha*x*y**H + conjg( alpha )*y*x**H + A, */
|
|
/* > */
|
|
/* > where alpha is a scalar, x and y are n element vectors and A is an n */
|
|
/* > by n hermitian matrix. */
|
|
/* > \endverbatim */
|
|
|
|
/* Arguments: */
|
|
/* ========== */
|
|
|
|
/* > \param[in] UPLO */
|
|
/* > \verbatim */
|
|
/* > UPLO is CHARACTER*1 */
|
|
/* > On entry, UPLO specifies whether the upper or lower */
|
|
/* > triangular part of the array A is to be referenced as */
|
|
/* > follows: */
|
|
/* > */
|
|
/* > UPLO = 'U' or 'u' Only the upper triangular part of A */
|
|
/* > is to be referenced. */
|
|
/* > */
|
|
/* > UPLO = 'L' or 'l' Only the lower triangular part of A */
|
|
/* > is to be referenced. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] N */
|
|
/* > \verbatim */
|
|
/* > N is INTEGER */
|
|
/* > On entry, N specifies the order of the matrix A. */
|
|
/* > N must be at least zero. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] ALPHA */
|
|
/* > \verbatim */
|
|
/* > ALPHA is COMPLEX*16 */
|
|
/* > On entry, ALPHA specifies the scalar alpha. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] X */
|
|
/* > \verbatim */
|
|
/* > X is COMPLEX*16 array, dimension at least */
|
|
/* > ( 1 + ( n - 1 )*abs( INCX ) ). */
|
|
/* > Before entry, the incremented array X must contain the n */
|
|
/* > element vector x. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] INCX */
|
|
/* > \verbatim */
|
|
/* > INCX is INTEGER */
|
|
/* > On entry, INCX specifies the increment for the elements of */
|
|
/* > X. INCX must not be zero. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] Y */
|
|
/* > \verbatim */
|
|
/* > Y is COMPLEX*16 array, dimension at least */
|
|
/* > ( 1 + ( n - 1 )*abs( INCY ) ). */
|
|
/* > Before entry, the incremented array Y must contain the n */
|
|
/* > element vector y. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] INCY */
|
|
/* > \verbatim */
|
|
/* > INCY is INTEGER */
|
|
/* > On entry, INCY specifies the increment for the elements of */
|
|
/* > Y. INCY must not be zero. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] A */
|
|
/* > \verbatim */
|
|
/* > A is COMPLEX*16 array, dimension ( LDA, N ) */
|
|
/* > Before entry with UPLO = 'U' or 'u', the leading n by n */
|
|
/* > upper triangular part of the array A must contain the upper */
|
|
/* > triangular part of the hermitian matrix and the strictly */
|
|
/* > lower triangular part of A is not referenced. On exit, the */
|
|
/* > upper triangular part of the array A is overwritten by the */
|
|
/* > upper triangular part of the updated matrix. */
|
|
/* > Before entry with UPLO = 'L' or 'l', the leading n by n */
|
|
/* > lower triangular part of the array A must contain the lower */
|
|
/* > triangular part of the hermitian matrix and the strictly */
|
|
/* > upper triangular part of A is not referenced. On exit, the */
|
|
/* > lower triangular part of the array A is overwritten by the */
|
|
/* > lower triangular part of the updated matrix. */
|
|
/* > Note that the imaginary parts of the diagonal elements need */
|
|
/* > not be set, they are assumed to be zero, and on exit they */
|
|
/* > are set to zero. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDA */
|
|
/* > \verbatim */
|
|
/* > LDA is INTEGER */
|
|
/* > On entry, LDA specifies the first dimension of A as declared */
|
|
/* > in the calling (sub) program. LDA must be at least */
|
|
/* > max( 1, n ). */
|
|
/* > \endverbatim */
|
|
|
|
/* Authors: */
|
|
/* ======== */
|
|
|
|
/* > \author Univ. of Tennessee */
|
|
/* > \author Univ. of California Berkeley */
|
|
/* > \author Univ. of Colorado Denver */
|
|
/* > \author NAG Ltd. */
|
|
|
|
/* > \ingroup complex16_blas_level2 */
|
|
|
|
/* > \par Further Details: */
|
|
/* ===================== */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > Level 2 Blas routine. */
|
|
/* > */
|
|
/* > -- Written on 22-October-1986. */
|
|
/* > Jack Dongarra, Argonne National Lab. */
|
|
/* > Jeremy Du Croz, Nag Central Office. */
|
|
/* > Sven Hammarling, Nag Central Office. */
|
|
/* > Richard Hanson, Sandia National Labs. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* ===================================================================== */
|
|
/* Subroutine */ int zher2_(char *uplo, integer *n, doublecomplex *alpha,
|
|
doublecomplex *x, integer *incx, doublecomplex *y, integer *incy,
|
|
doublecomplex *a, integer *lda, ftnlen uplo_len)
|
|
{
|
|
/* System generated locals */
|
|
integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5, i__6;
|
|
doublereal d__1;
|
|
doublecomplex z__1, z__2, z__3, z__4;
|
|
|
|
/* Builtin functions */
|
|
void d_cnjg(doublecomplex *, doublecomplex *);
|
|
|
|
/* Local variables */
|
|
integer i__, j, ix, iy, jx, jy, kx, ky, info;
|
|
doublecomplex temp1, temp2;
|
|
extern logical lsame_(char *, char *, ftnlen, ftnlen);
|
|
extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
|
|
|
|
|
|
/* -- Reference BLAS level2 routine -- */
|
|
/* -- Reference BLAS is a software package provided by Univ. of Tennessee, -- */
|
|
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* .. */
|
|
|
|
/* ===================================================================== */
|
|
|
|
/* .. Parameters .. */
|
|
/* .. */
|
|
/* .. Local Scalars .. */
|
|
/* .. */
|
|
/* .. External Functions .. */
|
|
/* .. */
|
|
/* .. External Subroutines .. */
|
|
/* .. */
|
|
/* .. Intrinsic Functions .. */
|
|
/* .. */
|
|
|
|
/* Test the input parameters. */
|
|
|
|
/* Parameter adjustments */
|
|
--x;
|
|
--y;
|
|
a_dim1 = *lda;
|
|
a_offset = 1 + a_dim1;
|
|
a -= a_offset;
|
|
|
|
/* Function Body */
|
|
info = 0;
|
|
if (! lsame_(uplo, (char *)"U", (ftnlen)1, (ftnlen)1) && ! lsame_(uplo, (char *)"L", (
|
|
ftnlen)1, (ftnlen)1)) {
|
|
info = 1;
|
|
} else if (*n < 0) {
|
|
info = 2;
|
|
} else if (*incx == 0) {
|
|
info = 5;
|
|
} else if (*incy == 0) {
|
|
info = 7;
|
|
} else if (*lda < max(1,*n)) {
|
|
info = 9;
|
|
}
|
|
if (info != 0) {
|
|
xerbla_((char *)"ZHER2 ", &info, (ftnlen)6);
|
|
return 0;
|
|
}
|
|
|
|
/* Quick return if possible. */
|
|
|
|
if (*n == 0 || alpha->r == 0. && alpha->i == 0.) {
|
|
return 0;
|
|
}
|
|
|
|
/* Set up the start points in X and Y if the increments are not both */
|
|
/* unity. */
|
|
|
|
if (*incx != 1 || *incy != 1) {
|
|
if (*incx > 0) {
|
|
kx = 1;
|
|
} else {
|
|
kx = 1 - (*n - 1) * *incx;
|
|
}
|
|
if (*incy > 0) {
|
|
ky = 1;
|
|
} else {
|
|
ky = 1 - (*n - 1) * *incy;
|
|
}
|
|
jx = kx;
|
|
jy = ky;
|
|
}
|
|
|
|
/* Start the operations. In this version the elements of A are */
|
|
/* accessed sequentially with one pass through the triangular part */
|
|
/* of A. */
|
|
|
|
if (lsame_(uplo, (char *)"U", (ftnlen)1, (ftnlen)1)) {
|
|
|
|
/* Form A when A is stored in the upper triangle. */
|
|
|
|
if (*incx == 1 && *incy == 1) {
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
i__2 = j;
|
|
i__3 = j;
|
|
if (x[i__2].r != 0. || x[i__2].i != 0. || (y[i__3].r != 0. ||
|
|
y[i__3].i != 0.)) {
|
|
d_cnjg(&z__2, &y[j]);
|
|
z__1.r = alpha->r * z__2.r - alpha->i * z__2.i, z__1.i =
|
|
alpha->r * z__2.i + alpha->i * z__2.r;
|
|
temp1.r = z__1.r, temp1.i = z__1.i;
|
|
i__2 = j;
|
|
z__2.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i,
|
|
z__2.i = alpha->r * x[i__2].i + alpha->i * x[i__2]
|
|
.r;
|
|
d_cnjg(&z__1, &z__2);
|
|
temp2.r = z__1.r, temp2.i = z__1.i;
|
|
i__2 = j - 1;
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
i__3 = i__ + j * a_dim1;
|
|
i__4 = i__ + j * a_dim1;
|
|
i__5 = i__;
|
|
z__3.r = x[i__5].r * temp1.r - x[i__5].i * temp1.i,
|
|
z__3.i = x[i__5].r * temp1.i + x[i__5].i *
|
|
temp1.r;
|
|
z__2.r = a[i__4].r + z__3.r, z__2.i = a[i__4].i +
|
|
z__3.i;
|
|
i__6 = i__;
|
|
z__4.r = y[i__6].r * temp2.r - y[i__6].i * temp2.i,
|
|
z__4.i = y[i__6].r * temp2.i + y[i__6].i *
|
|
temp2.r;
|
|
z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i;
|
|
a[i__3].r = z__1.r, a[i__3].i = z__1.i;
|
|
/* L10: */
|
|
}
|
|
i__2 = j + j * a_dim1;
|
|
i__3 = j + j * a_dim1;
|
|
i__4 = j;
|
|
z__2.r = x[i__4].r * temp1.r - x[i__4].i * temp1.i,
|
|
z__2.i = x[i__4].r * temp1.i + x[i__4].i *
|
|
temp1.r;
|
|
i__5 = j;
|
|
z__3.r = y[i__5].r * temp2.r - y[i__5].i * temp2.i,
|
|
z__3.i = y[i__5].r * temp2.i + y[i__5].i *
|
|
temp2.r;
|
|
z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
|
|
d__1 = a[i__3].r + z__1.r;
|
|
a[i__2].r = d__1, a[i__2].i = 0.;
|
|
} else {
|
|
i__2 = j + j * a_dim1;
|
|
i__3 = j + j * a_dim1;
|
|
d__1 = a[i__3].r;
|
|
a[i__2].r = d__1, a[i__2].i = 0.;
|
|
}
|
|
/* L20: */
|
|
}
|
|
} else {
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
i__2 = jx;
|
|
i__3 = jy;
|
|
if (x[i__2].r != 0. || x[i__2].i != 0. || (y[i__3].r != 0. ||
|
|
y[i__3].i != 0.)) {
|
|
d_cnjg(&z__2, &y[jy]);
|
|
z__1.r = alpha->r * z__2.r - alpha->i * z__2.i, z__1.i =
|
|
alpha->r * z__2.i + alpha->i * z__2.r;
|
|
temp1.r = z__1.r, temp1.i = z__1.i;
|
|
i__2 = jx;
|
|
z__2.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i,
|
|
z__2.i = alpha->r * x[i__2].i + alpha->i * x[i__2]
|
|
.r;
|
|
d_cnjg(&z__1, &z__2);
|
|
temp2.r = z__1.r, temp2.i = z__1.i;
|
|
ix = kx;
|
|
iy = ky;
|
|
i__2 = j - 1;
|
|
for (i__ = 1; i__ <= i__2; ++i__) {
|
|
i__3 = i__ + j * a_dim1;
|
|
i__4 = i__ + j * a_dim1;
|
|
i__5 = ix;
|
|
z__3.r = x[i__5].r * temp1.r - x[i__5].i * temp1.i,
|
|
z__3.i = x[i__5].r * temp1.i + x[i__5].i *
|
|
temp1.r;
|
|
z__2.r = a[i__4].r + z__3.r, z__2.i = a[i__4].i +
|
|
z__3.i;
|
|
i__6 = iy;
|
|
z__4.r = y[i__6].r * temp2.r - y[i__6].i * temp2.i,
|
|
z__4.i = y[i__6].r * temp2.i + y[i__6].i *
|
|
temp2.r;
|
|
z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i;
|
|
a[i__3].r = z__1.r, a[i__3].i = z__1.i;
|
|
ix += *incx;
|
|
iy += *incy;
|
|
/* L30: */
|
|
}
|
|
i__2 = j + j * a_dim1;
|
|
i__3 = j + j * a_dim1;
|
|
i__4 = jx;
|
|
z__2.r = x[i__4].r * temp1.r - x[i__4].i * temp1.i,
|
|
z__2.i = x[i__4].r * temp1.i + x[i__4].i *
|
|
temp1.r;
|
|
i__5 = jy;
|
|
z__3.r = y[i__5].r * temp2.r - y[i__5].i * temp2.i,
|
|
z__3.i = y[i__5].r * temp2.i + y[i__5].i *
|
|
temp2.r;
|
|
z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
|
|
d__1 = a[i__3].r + z__1.r;
|
|
a[i__2].r = d__1, a[i__2].i = 0.;
|
|
} else {
|
|
i__2 = j + j * a_dim1;
|
|
i__3 = j + j * a_dim1;
|
|
d__1 = a[i__3].r;
|
|
a[i__2].r = d__1, a[i__2].i = 0.;
|
|
}
|
|
jx += *incx;
|
|
jy += *incy;
|
|
/* L40: */
|
|
}
|
|
}
|
|
} else {
|
|
|
|
/* Form A when A is stored in the lower triangle. */
|
|
|
|
if (*incx == 1 && *incy == 1) {
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
i__2 = j;
|
|
i__3 = j;
|
|
if (x[i__2].r != 0. || x[i__2].i != 0. || (y[i__3].r != 0. ||
|
|
y[i__3].i != 0.)) {
|
|
d_cnjg(&z__2, &y[j]);
|
|
z__1.r = alpha->r * z__2.r - alpha->i * z__2.i, z__1.i =
|
|
alpha->r * z__2.i + alpha->i * z__2.r;
|
|
temp1.r = z__1.r, temp1.i = z__1.i;
|
|
i__2 = j;
|
|
z__2.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i,
|
|
z__2.i = alpha->r * x[i__2].i + alpha->i * x[i__2]
|
|
.r;
|
|
d_cnjg(&z__1, &z__2);
|
|
temp2.r = z__1.r, temp2.i = z__1.i;
|
|
i__2 = j + j * a_dim1;
|
|
i__3 = j + j * a_dim1;
|
|
i__4 = j;
|
|
z__2.r = x[i__4].r * temp1.r - x[i__4].i * temp1.i,
|
|
z__2.i = x[i__4].r * temp1.i + x[i__4].i *
|
|
temp1.r;
|
|
i__5 = j;
|
|
z__3.r = y[i__5].r * temp2.r - y[i__5].i * temp2.i,
|
|
z__3.i = y[i__5].r * temp2.i + y[i__5].i *
|
|
temp2.r;
|
|
z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
|
|
d__1 = a[i__3].r + z__1.r;
|
|
a[i__2].r = d__1, a[i__2].i = 0.;
|
|
i__2 = *n;
|
|
for (i__ = j + 1; i__ <= i__2; ++i__) {
|
|
i__3 = i__ + j * a_dim1;
|
|
i__4 = i__ + j * a_dim1;
|
|
i__5 = i__;
|
|
z__3.r = x[i__5].r * temp1.r - x[i__5].i * temp1.i,
|
|
z__3.i = x[i__5].r * temp1.i + x[i__5].i *
|
|
temp1.r;
|
|
z__2.r = a[i__4].r + z__3.r, z__2.i = a[i__4].i +
|
|
z__3.i;
|
|
i__6 = i__;
|
|
z__4.r = y[i__6].r * temp2.r - y[i__6].i * temp2.i,
|
|
z__4.i = y[i__6].r * temp2.i + y[i__6].i *
|
|
temp2.r;
|
|
z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i;
|
|
a[i__3].r = z__1.r, a[i__3].i = z__1.i;
|
|
/* L50: */
|
|
}
|
|
} else {
|
|
i__2 = j + j * a_dim1;
|
|
i__3 = j + j * a_dim1;
|
|
d__1 = a[i__3].r;
|
|
a[i__2].r = d__1, a[i__2].i = 0.;
|
|
}
|
|
/* L60: */
|
|
}
|
|
} else {
|
|
i__1 = *n;
|
|
for (j = 1; j <= i__1; ++j) {
|
|
i__2 = jx;
|
|
i__3 = jy;
|
|
if (x[i__2].r != 0. || x[i__2].i != 0. || (y[i__3].r != 0. ||
|
|
y[i__3].i != 0.)) {
|
|
d_cnjg(&z__2, &y[jy]);
|
|
z__1.r = alpha->r * z__2.r - alpha->i * z__2.i, z__1.i =
|
|
alpha->r * z__2.i + alpha->i * z__2.r;
|
|
temp1.r = z__1.r, temp1.i = z__1.i;
|
|
i__2 = jx;
|
|
z__2.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i,
|
|
z__2.i = alpha->r * x[i__2].i + alpha->i * x[i__2]
|
|
.r;
|
|
d_cnjg(&z__1, &z__2);
|
|
temp2.r = z__1.r, temp2.i = z__1.i;
|
|
i__2 = j + j * a_dim1;
|
|
i__3 = j + j * a_dim1;
|
|
i__4 = jx;
|
|
z__2.r = x[i__4].r * temp1.r - x[i__4].i * temp1.i,
|
|
z__2.i = x[i__4].r * temp1.i + x[i__4].i *
|
|
temp1.r;
|
|
i__5 = jy;
|
|
z__3.r = y[i__5].r * temp2.r - y[i__5].i * temp2.i,
|
|
z__3.i = y[i__5].r * temp2.i + y[i__5].i *
|
|
temp2.r;
|
|
z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
|
|
d__1 = a[i__3].r + z__1.r;
|
|
a[i__2].r = d__1, a[i__2].i = 0.;
|
|
ix = jx;
|
|
iy = jy;
|
|
i__2 = *n;
|
|
for (i__ = j + 1; i__ <= i__2; ++i__) {
|
|
ix += *incx;
|
|
iy += *incy;
|
|
i__3 = i__ + j * a_dim1;
|
|
i__4 = i__ + j * a_dim1;
|
|
i__5 = ix;
|
|
z__3.r = x[i__5].r * temp1.r - x[i__5].i * temp1.i,
|
|
z__3.i = x[i__5].r * temp1.i + x[i__5].i *
|
|
temp1.r;
|
|
z__2.r = a[i__4].r + z__3.r, z__2.i = a[i__4].i +
|
|
z__3.i;
|
|
i__6 = iy;
|
|
z__4.r = y[i__6].r * temp2.r - y[i__6].i * temp2.i,
|
|
z__4.i = y[i__6].r * temp2.i + y[i__6].i *
|
|
temp2.r;
|
|
z__1.r = z__2.r + z__4.r, z__1.i = z__2.i + z__4.i;
|
|
a[i__3].r = z__1.r, a[i__3].i = z__1.i;
|
|
/* L70: */
|
|
}
|
|
} else {
|
|
i__2 = j + j * a_dim1;
|
|
i__3 = j + j * a_dim1;
|
|
d__1 = a[i__3].r;
|
|
a[i__2].r = d__1, a[i__2].i = 0.;
|
|
}
|
|
jx += *incx;
|
|
jy += *incy;
|
|
/* L80: */
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
|
|
/* End of ZHER2 */
|
|
|
|
} /* zher2_ */
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|