440 lines
15 KiB
C++
440 lines
15 KiB
C++
/* fortran/zhetd2.f -- translated by f2c (version 20200916).
|
|
You must link the resulting object file with libf2c:
|
|
on Microsoft Windows system, link with libf2c.lib;
|
|
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
|
|
or, if you install libf2c.a in a standard place, with -lf2c -lm
|
|
-- in that order, at the end of the command line, as in
|
|
cc *.o -lf2c -lm
|
|
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
|
|
|
|
http://www.netlib.org/f2c/libf2c.zip
|
|
*/
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
#include "lmp_f2c.h"
|
|
|
|
/* Table of constant values */
|
|
|
|
static doublecomplex c_b2 = {0.,0.};
|
|
static integer c__1 = 1;
|
|
|
|
/* > \brief \b ZHETD2 reduces a Hermitian matrix to real symmetric tridiagonal form by an unitary similarity t
|
|
ransformation (unblocked algorithm). */
|
|
|
|
/* =========== DOCUMENTATION =========== */
|
|
|
|
/* Online html documentation available at */
|
|
/* http://www.netlib.org/lapack/explore-html/ */
|
|
|
|
/* > \htmlonly */
|
|
/* > Download ZHETD2 + dependencies */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhetd2.
|
|
f"> */
|
|
/* > [TGZ]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhetd2.
|
|
f"> */
|
|
/* > [ZIP]</a> */
|
|
/* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhetd2.
|
|
f"> */
|
|
/* > [TXT]</a> */
|
|
/* > \endhtmlonly */
|
|
|
|
/* Definition: */
|
|
/* =========== */
|
|
|
|
/* SUBROUTINE ZHETD2( UPLO, N, A, LDA, D, E, TAU, INFO ) */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* CHARACTER UPLO */
|
|
/* INTEGER INFO, LDA, N */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* DOUBLE PRECISION D( * ), E( * ) */
|
|
/* COMPLEX*16 A( LDA, * ), TAU( * ) */
|
|
/* .. */
|
|
|
|
|
|
/* > \par Purpose: */
|
|
/* ============= */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > ZHETD2 reduces a complex Hermitian matrix A to real symmetric */
|
|
/* > tridiagonal form T by a unitary similarity transformation: */
|
|
/* > Q**H * A * Q = T. */
|
|
/* > \endverbatim */
|
|
|
|
/* Arguments: */
|
|
/* ========== */
|
|
|
|
/* > \param[in] UPLO */
|
|
/* > \verbatim */
|
|
/* > UPLO is CHARACTER*1 */
|
|
/* > Specifies whether the upper or lower triangular part of the */
|
|
/* > Hermitian matrix A is stored: */
|
|
/* > = 'U': Upper triangular */
|
|
/* > = 'L': Lower triangular */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] N */
|
|
/* > \verbatim */
|
|
/* > N is INTEGER */
|
|
/* > The order of the matrix A. N >= 0. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in,out] A */
|
|
/* > \verbatim */
|
|
/* > A is COMPLEX*16 array, dimension (LDA,N) */
|
|
/* > On entry, the Hermitian matrix A. If UPLO = 'U', the leading */
|
|
/* > n-by-n upper triangular part of A contains the upper */
|
|
/* > triangular part of the matrix A, and the strictly lower */
|
|
/* > triangular part of A is not referenced. If UPLO = 'L', the */
|
|
/* > leading n-by-n lower triangular part of A contains the lower */
|
|
/* > triangular part of the matrix A, and the strictly upper */
|
|
/* > triangular part of A is not referenced. */
|
|
/* > On exit, if UPLO = 'U', the diagonal and first superdiagonal */
|
|
/* > of A are overwritten by the corresponding elements of the */
|
|
/* > tridiagonal matrix T, and the elements above the first */
|
|
/* > superdiagonal, with the array TAU, represent the unitary */
|
|
/* > matrix Q as a product of elementary reflectors; if UPLO */
|
|
/* > = 'L', the diagonal and first subdiagonal of A are over- */
|
|
/* > written by the corresponding elements of the tridiagonal */
|
|
/* > matrix T, and the elements below the first subdiagonal, with */
|
|
/* > the array TAU, represent the unitary matrix Q as a product */
|
|
/* > of elementary reflectors. See Further Details. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[in] LDA */
|
|
/* > \verbatim */
|
|
/* > LDA is INTEGER */
|
|
/* > The leading dimension of the array A. LDA >= max(1,N). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] D */
|
|
/* > \verbatim */
|
|
/* > D is DOUBLE PRECISION array, dimension (N) */
|
|
/* > The diagonal elements of the tridiagonal matrix T: */
|
|
/* > D(i) = A(i,i). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] E */
|
|
/* > \verbatim */
|
|
/* > E is DOUBLE PRECISION array, dimension (N-1) */
|
|
/* > The off-diagonal elements of the tridiagonal matrix T: */
|
|
/* > E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'. */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] TAU */
|
|
/* > \verbatim */
|
|
/* > TAU is COMPLEX*16 array, dimension (N-1) */
|
|
/* > The scalar factors of the elementary reflectors (see Further */
|
|
/* > Details). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* > \param[out] INFO */
|
|
/* > \verbatim */
|
|
/* > INFO is INTEGER */
|
|
/* > = 0: successful exit */
|
|
/* > < 0: if INFO = -i, the i-th argument had an illegal value. */
|
|
/* > \endverbatim */
|
|
|
|
/* Authors: */
|
|
/* ======== */
|
|
|
|
/* > \author Univ. of Tennessee */
|
|
/* > \author Univ. of California Berkeley */
|
|
/* > \author Univ. of Colorado Denver */
|
|
/* > \author NAG Ltd. */
|
|
|
|
/* > \ingroup complex16HEcomputational */
|
|
|
|
/* > \par Further Details: */
|
|
/* ===================== */
|
|
/* > */
|
|
/* > \verbatim */
|
|
/* > */
|
|
/* > If UPLO = 'U', the matrix Q is represented as a product of elementary */
|
|
/* > reflectors */
|
|
/* > */
|
|
/* > Q = H(n-1) . . . H(2) H(1). */
|
|
/* > */
|
|
/* > Each H(i) has the form */
|
|
/* > */
|
|
/* > H(i) = I - tau * v * v**H */
|
|
/* > */
|
|
/* > where tau is a complex scalar, and v is a complex vector with */
|
|
/* > v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in */
|
|
/* > A(1:i-1,i+1), and tau in TAU(i). */
|
|
/* > */
|
|
/* > If UPLO = 'L', the matrix Q is represented as a product of elementary */
|
|
/* > reflectors */
|
|
/* > */
|
|
/* > Q = H(1) H(2) . . . H(n-1). */
|
|
/* > */
|
|
/* > Each H(i) has the form */
|
|
/* > */
|
|
/* > H(i) = I - tau * v * v**H */
|
|
/* > */
|
|
/* > where tau is a complex scalar, and v is a complex vector with */
|
|
/* > v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i), */
|
|
/* > and tau in TAU(i). */
|
|
/* > */
|
|
/* > The contents of A on exit are illustrated by the following examples */
|
|
/* > with n = 5: */
|
|
/* > */
|
|
/* > if UPLO = 'U': if UPLO = 'L': */
|
|
/* > */
|
|
/* > ( d e v2 v3 v4 ) ( d ) */
|
|
/* > ( d e v3 v4 ) ( e d ) */
|
|
/* > ( d e v4 ) ( v1 e d ) */
|
|
/* > ( d e ) ( v1 v2 e d ) */
|
|
/* > ( d ) ( v1 v2 v3 e d ) */
|
|
/* > */
|
|
/* > where d and e denote diagonal and off-diagonal elements of T, and vi */
|
|
/* > denotes an element of the vector defining H(i). */
|
|
/* > \endverbatim */
|
|
/* > */
|
|
/* ===================================================================== */
|
|
/* Subroutine */ int zhetd2_(char *uplo, integer *n, doublecomplex *a,
|
|
integer *lda, doublereal *d__, doublereal *e, doublecomplex *tau,
|
|
integer *info, ftnlen uplo_len)
|
|
{
|
|
/* System generated locals */
|
|
integer a_dim1, a_offset, i__1, i__2, i__3;
|
|
doublereal d__1;
|
|
doublecomplex z__1, z__2, z__3, z__4;
|
|
|
|
/* Local variables */
|
|
integer i__;
|
|
doublecomplex taui;
|
|
extern /* Subroutine */ int zher2_(char *, integer *, doublecomplex *,
|
|
doublecomplex *, integer *, doublecomplex *, integer *,
|
|
doublecomplex *, integer *, ftnlen);
|
|
doublecomplex alpha;
|
|
extern logical lsame_(char *, char *, ftnlen, ftnlen);
|
|
extern /* Double Complex */ VOID zdotc_(doublecomplex *, integer *,
|
|
doublecomplex *, integer *, doublecomplex *, integer *);
|
|
extern /* Subroutine */ int zhemv_(char *, integer *, doublecomplex *,
|
|
doublecomplex *, integer *, doublecomplex *, integer *,
|
|
doublecomplex *, doublecomplex *, integer *, ftnlen);
|
|
logical upper;
|
|
extern /* Subroutine */ int zaxpy_(integer *, doublecomplex *,
|
|
doublecomplex *, integer *, doublecomplex *, integer *), xerbla_(
|
|
char *, integer *, ftnlen), zlarfg_(integer *, doublecomplex *,
|
|
doublecomplex *, integer *, doublecomplex *);
|
|
|
|
|
|
/* -- LAPACK computational routine -- */
|
|
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
|
|
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
|
|
|
|
/* .. Scalar Arguments .. */
|
|
/* .. */
|
|
/* .. Array Arguments .. */
|
|
/* .. */
|
|
|
|
/* ===================================================================== */
|
|
|
|
/* .. Parameters .. */
|
|
/* .. */
|
|
/* .. Local Scalars .. */
|
|
/* .. */
|
|
/* .. External Subroutines .. */
|
|
/* .. */
|
|
/* .. External Functions .. */
|
|
/* .. */
|
|
/* .. Intrinsic Functions .. */
|
|
/* .. */
|
|
/* .. Executable Statements .. */
|
|
|
|
/* Test the input parameters */
|
|
|
|
/* Parameter adjustments */
|
|
a_dim1 = *lda;
|
|
a_offset = 1 + a_dim1;
|
|
a -= a_offset;
|
|
--d__;
|
|
--e;
|
|
--tau;
|
|
|
|
/* Function Body */
|
|
*info = 0;
|
|
upper = lsame_(uplo, (char *)"U", (ftnlen)1, (ftnlen)1);
|
|
if (! upper && ! lsame_(uplo, (char *)"L", (ftnlen)1, (ftnlen)1)) {
|
|
*info = -1;
|
|
} else if (*n < 0) {
|
|
*info = -2;
|
|
} else if (*lda < max(1,*n)) {
|
|
*info = -4;
|
|
}
|
|
if (*info != 0) {
|
|
i__1 = -(*info);
|
|
xerbla_((char *)"ZHETD2", &i__1, (ftnlen)6);
|
|
return 0;
|
|
}
|
|
|
|
/* Quick return if possible */
|
|
|
|
if (*n <= 0) {
|
|
return 0;
|
|
}
|
|
|
|
if (upper) {
|
|
|
|
/* Reduce the upper triangle of A */
|
|
|
|
i__1 = *n + *n * a_dim1;
|
|
i__2 = *n + *n * a_dim1;
|
|
d__1 = a[i__2].r;
|
|
a[i__1].r = d__1, a[i__1].i = 0.;
|
|
for (i__ = *n - 1; i__ >= 1; --i__) {
|
|
|
|
/* Generate elementary reflector H(i) = I - tau * v * v**H */
|
|
/* to annihilate A(1:i-1,i+1) */
|
|
|
|
i__1 = i__ + (i__ + 1) * a_dim1;
|
|
alpha.r = a[i__1].r, alpha.i = a[i__1].i;
|
|
zlarfg_(&i__, &alpha, &a[(i__ + 1) * a_dim1 + 1], &c__1, &taui);
|
|
e[i__] = alpha.r;
|
|
|
|
if (taui.r != 0. || taui.i != 0.) {
|
|
|
|
/* Apply H(i) from both sides to A(1:i,1:i) */
|
|
|
|
i__1 = i__ + (i__ + 1) * a_dim1;
|
|
a[i__1].r = 1., a[i__1].i = 0.;
|
|
|
|
/* Compute x := tau * A * v storing x in TAU(1:i) */
|
|
|
|
zhemv_(uplo, &i__, &taui, &a[a_offset], lda, &a[(i__ + 1) *
|
|
a_dim1 + 1], &c__1, &c_b2, &tau[1], &c__1, (ftnlen)1);
|
|
|
|
/* Compute w := x - 1/2 * tau * (x**H * v) * v */
|
|
|
|
z__3.r = -.5, z__3.i = -0.;
|
|
z__2.r = z__3.r * taui.r - z__3.i * taui.i, z__2.i = z__3.r *
|
|
taui.i + z__3.i * taui.r;
|
|
zdotc_(&z__4, &i__, &tau[1], &c__1, &a[(i__ + 1) * a_dim1 + 1]
|
|
, &c__1);
|
|
z__1.r = z__2.r * z__4.r - z__2.i * z__4.i, z__1.i = z__2.r *
|
|
z__4.i + z__2.i * z__4.r;
|
|
alpha.r = z__1.r, alpha.i = z__1.i;
|
|
zaxpy_(&i__, &alpha, &a[(i__ + 1) * a_dim1 + 1], &c__1, &tau[
|
|
1], &c__1);
|
|
|
|
/* Apply the transformation as a rank-2 update: */
|
|
/* A := A - v * w**H - w * v**H */
|
|
|
|
z__1.r = -1., z__1.i = -0.;
|
|
zher2_(uplo, &i__, &z__1, &a[(i__ + 1) * a_dim1 + 1], &c__1, &
|
|
tau[1], &c__1, &a[a_offset], lda, (ftnlen)1);
|
|
|
|
} else {
|
|
i__1 = i__ + i__ * a_dim1;
|
|
i__2 = i__ + i__ * a_dim1;
|
|
d__1 = a[i__2].r;
|
|
a[i__1].r = d__1, a[i__1].i = 0.;
|
|
}
|
|
i__1 = i__ + (i__ + 1) * a_dim1;
|
|
i__2 = i__;
|
|
a[i__1].r = e[i__2], a[i__1].i = 0.;
|
|
i__1 = i__ + 1 + (i__ + 1) * a_dim1;
|
|
d__[i__ + 1] = a[i__1].r;
|
|
i__1 = i__;
|
|
tau[i__1].r = taui.r, tau[i__1].i = taui.i;
|
|
/* L10: */
|
|
}
|
|
i__1 = a_dim1 + 1;
|
|
d__[1] = a[i__1].r;
|
|
} else {
|
|
|
|
/* Reduce the lower triangle of A */
|
|
|
|
i__1 = a_dim1 + 1;
|
|
i__2 = a_dim1 + 1;
|
|
d__1 = a[i__2].r;
|
|
a[i__1].r = d__1, a[i__1].i = 0.;
|
|
i__1 = *n - 1;
|
|
for (i__ = 1; i__ <= i__1; ++i__) {
|
|
|
|
/* Generate elementary reflector H(i) = I - tau * v * v**H */
|
|
/* to annihilate A(i+2:n,i) */
|
|
|
|
i__2 = i__ + 1 + i__ * a_dim1;
|
|
alpha.r = a[i__2].r, alpha.i = a[i__2].i;
|
|
i__2 = *n - i__;
|
|
/* Computing MIN */
|
|
i__3 = i__ + 2;
|
|
zlarfg_(&i__2, &alpha, &a[min(i__3,*n) + i__ * a_dim1], &c__1, &
|
|
taui);
|
|
e[i__] = alpha.r;
|
|
|
|
if (taui.r != 0. || taui.i != 0.) {
|
|
|
|
/* Apply H(i) from both sides to A(i+1:n,i+1:n) */
|
|
|
|
i__2 = i__ + 1 + i__ * a_dim1;
|
|
a[i__2].r = 1., a[i__2].i = 0.;
|
|
|
|
/* Compute x := tau * A * v storing y in TAU(i:n-1) */
|
|
|
|
i__2 = *n - i__;
|
|
zhemv_(uplo, &i__2, &taui, &a[i__ + 1 + (i__ + 1) * a_dim1],
|
|
lda, &a[i__ + 1 + i__ * a_dim1], &c__1, &c_b2, &tau[
|
|
i__], &c__1, (ftnlen)1);
|
|
|
|
/* Compute w := x - 1/2 * tau * (x**H * v) * v */
|
|
|
|
z__3.r = -.5, z__3.i = -0.;
|
|
z__2.r = z__3.r * taui.r - z__3.i * taui.i, z__2.i = z__3.r *
|
|
taui.i + z__3.i * taui.r;
|
|
i__2 = *n - i__;
|
|
zdotc_(&z__4, &i__2, &tau[i__], &c__1, &a[i__ + 1 + i__ *
|
|
a_dim1], &c__1);
|
|
z__1.r = z__2.r * z__4.r - z__2.i * z__4.i, z__1.i = z__2.r *
|
|
z__4.i + z__2.i * z__4.r;
|
|
alpha.r = z__1.r, alpha.i = z__1.i;
|
|
i__2 = *n - i__;
|
|
zaxpy_(&i__2, &alpha, &a[i__ + 1 + i__ * a_dim1], &c__1, &tau[
|
|
i__], &c__1);
|
|
|
|
/* Apply the transformation as a rank-2 update: */
|
|
/* A := A - v * w**H - w * v**H */
|
|
|
|
i__2 = *n - i__;
|
|
z__1.r = -1., z__1.i = -0.;
|
|
zher2_(uplo, &i__2, &z__1, &a[i__ + 1 + i__ * a_dim1], &c__1,
|
|
&tau[i__], &c__1, &a[i__ + 1 + (i__ + 1) * a_dim1],
|
|
lda, (ftnlen)1);
|
|
|
|
} else {
|
|
i__2 = i__ + 1 + (i__ + 1) * a_dim1;
|
|
i__3 = i__ + 1 + (i__ + 1) * a_dim1;
|
|
d__1 = a[i__3].r;
|
|
a[i__2].r = d__1, a[i__2].i = 0.;
|
|
}
|
|
i__2 = i__ + 1 + i__ * a_dim1;
|
|
i__3 = i__;
|
|
a[i__2].r = e[i__3], a[i__2].i = 0.;
|
|
i__2 = i__ + i__ * a_dim1;
|
|
d__[i__] = a[i__2].r;
|
|
i__2 = i__;
|
|
tau[i__2].r = taui.r, tau[i__2].i = taui.i;
|
|
/* L20: */
|
|
}
|
|
i__1 = *n + *n * a_dim1;
|
|
d__[*n] = a[i__1].r;
|
|
}
|
|
|
|
return 0;
|
|
|
|
/* End of ZHETD2 */
|
|
|
|
} /* zhetd2_ */
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
#endif
|